JPH0132285B2 - - Google Patents

Info

Publication number
JPH0132285B2
JPH0132285B2 JP15294282A JP15294282A JPH0132285B2 JP H0132285 B2 JPH0132285 B2 JP H0132285B2 JP 15294282 A JP15294282 A JP 15294282A JP 15294282 A JP15294282 A JP 15294282A JP H0132285 B2 JPH0132285 B2 JP H0132285B2
Authority
JP
Japan
Prior art keywords
temperature material
partition
temperature
low
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15294282A
Other languages
Japanese (ja)
Other versions
JPS5941787A (en
Inventor
Masatomo Nakamura
Takashi Ishimoto
Kenjiro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15294282A priority Critical patent/JPS5941787A/en
Publication of JPS5941787A publication Critical patent/JPS5941787A/en
Publication of JPH0132285B2 publication Critical patent/JPH0132285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高温材を冷却して昇温した気体によ
つて低温材の加熱をおこなう材料の冷却加熱装置
に関する。 従来連続式熱処理炉においては、炉体を平面コ
字状に折曲構築して、該炉体の平行な往路側と復
路側との対応部分に互いの炉内雰囲気を循環させ
る連通ダクトを設け、復路側において高温材の冷
却により昇温した雰囲気ガスにより往路側の低温
材の予熱をおこなう方法がある。しかし復路側に
おいて高温材を単にガス流中に位置させるだけで
は、対流熱伝達による伝熱が主であるため熱伝達
率が低く、充分なガスの昇温およびこれに伴う低
温材の予熱ができなかつた。 この発明は上記従来の欠点を解消するもので、
高温材の有する顕熱を効率よく気体に伝熱して低
温材を効率よく加熱することができる材料の冷却
加熱装置を提供しようとするものである。 しかしてこの発明は気体の流路内に配置した高
温材の上流側および下流側の少なくとも一方に通
気性固体を設け、上記気体を上記仕切を通過させ
ることを骨子とする。 この発明において通気性固体とは金属やセラミ
ツク等の耐熱材料から成り、網状、ハニカム状、
せんい状、外孔質状などの通気性を有する形成に
成形された適宜厚さの固体をいう。 発明者はこの通気性固体について種々研究の結
果、気体流路内の高温材の近傍に該流路を横切る
形で通気性固体の仕切を設けると、高温材の顕熱
が効率よく気体に伝熱されることを知見した。こ
の現象を示す実験結果について第1図a〜dによ
り説明する。 図中、1は炉体、2は580℃に加熱された重量
2000Kgのブロツク状の鋼材、3は通気性固体から
成る仕切で、ステンレス金網(線径0.5mm、20メ
ツシユ)を8枚積層して角板状に成形したもので
ある。第1図aは仕切3を設けない場合、同図b
は仕切3を鋼材2の上流側に設けた場合、同図c
は同じく下流側に設けた場合、同図dは同じく上
流側および下流側に設けた場合を示し、t1=455
℃に加熱された空気を上流側から流速1.5m/秒
で流通させたところ、流通開始後間もない時点に
おける下流側での空気流温度t2は図示の通りとな
つた。すなわち仕切3を設けない通常の場合に比
べて、仕切3を設けることにより空気流温度t2
約10〜30℃昇温し、剛材2の顕熱が効率よく空気
に伝熱されることを示している。これらは鋼材2
からの放射熱により仕切3が先ず加熱され、実質
的な表面積および熱伝達係数の大きい通気性固体
から成る仕切3により該仕切を通過する空気が効
率よく加熱されるためである。 次に第2図によりこの発明の一実施例を説明す
る。 図中、5は平面上コ字状に構築した熱処理炉の
炉体で、6は往路側炉体、7は復路側炉体、8は
被熱物搬送用のローラである。9は装入口から装
入された低温材10が通過する低温材収容室で、
往路側炉体6内に形成され、また11は図示しな
いラジアントチユーブなどの加熱装置により加熱
された高温材12が通過する高温材収容室で、復
路側炉体7内に形成されている。13は低温材収
容室9と高温材収容室11の上部を連結する低温
側連通路、14は同じく各収容室の下部を連結す
る高温側連通路、15は低温材収容室9の天井1
6に設けた吸気口、17はモータ18により駆動
されるフアンである。また19は通気性固体から
成る仕切で、第1図における仕切3と同材料から
成り、高温材12の下方において雰囲気ガスの循
環流(後述)を横切る高温材収容室11内に取付
けてある。 上記構成の熱処理炉において低温材10および
高温材12を炉内搬送しつつフアン17を駆動し
て、図中矢印20で示すように低温材収容室9と
高温材収容室11との間に雰囲気ガスの循環流を
形成させれば、この循環流により高温材12は冷
却され、この冷却に伴つて昇温したた雰囲気ガス
は低温材10を予熱する。このとき高温材12よ
りの放射熱により加熱され高温となつた仕切19
によつて、この仕切を通過する雰囲気ガスが主と
して対流熱伝達により加熱され、高温材12と雰
囲気ガスとの対流熱伝達による奪熱量に加算され
るので、雰囲気ガスは高温となつて低温材収容室
9に流入するのである。 上記の熱処理炉において、仕切19を図示通り
取付けた場合とこれを取外した場合の実験結果を
第1表に示す。被熱材は鋼材であり、高温材12
の初期温度は580℃、低温材10の初期温度は325
℃、ローラ8は停止状態とし、雰囲気ガス循環開
始後の経過時間に対応して被熱材の温度を測定し
たものである。
The present invention relates to a material cooling/heating device that heats a low temperature material using gas that cools a high temperature material and raises its temperature. In conventional continuous heat treatment furnaces, the furnace body is bent into a U-shape in plan, and communication ducts are provided at corresponding parts of the parallel forward and return sides of the furnace body to circulate the atmosphere inside the furnace. Another method is to preheat the low-temperature material on the outward journey using atmospheric gas whose temperature has been raised by cooling the high-temperature material on the return journey. However, simply placing the high-temperature material in the gas flow on the return journey results in a low heat transfer coefficient because heat transfer is mainly through convective heat transfer, and it is not possible to sufficiently raise the temperature of the gas and preheat the low-temperature material accordingly. Nakatsuta. This invention solves the above-mentioned conventional drawbacks,
The object of the present invention is to provide a material cooling/heating device that can efficiently heat a low-temperature material by efficiently transferring the sensible heat of the high-temperature material to a gas. However, the gist of the present invention is to provide a gas permeable solid on at least one of the upstream and downstream sides of the high-temperature material disposed in the gas flow path, and to allow the gas to pass through the partition. In this invention, the breathable solid is made of a heat-resistant material such as metal or ceramic, and has a net shape, a honeycomb shape,
A solid body of an appropriate thickness formed into an air permeable shape such as a fiber or an externally porous shape. As a result of various studies on this breathable solid, the inventor found that if a partition made of breathable solid is provided near the high-temperature material in the gas flow path and across the flow path, the sensible heat of the high-temperature material will be efficiently transferred to the gas. I found out that it gets heated. Experimental results showing this phenomenon will be explained with reference to FIGS. 1a to 1d. In the figure, 1 is the furnace body, 2 is the weight heated to 580℃
2000Kg block-shaped steel material, 3 is a partition made of breathable solid material, which is made by laminating 8 pieces of stainless steel wire mesh (wire diameter 0.5mm, 20 meshes) and forming it into a square plate shape. Fig. 1a shows the case where partition 3 is not provided, and Fig. 1b
When the partition 3 is installed on the upstream side of the steel material 2,
is also provided on the downstream side, and d in the same figure shows the case where it is also provided on the upstream and downstream sides, t 1 = 455
When air heated to .degree. C. was passed from the upstream side at a flow rate of 1.5 m/sec, the airflow temperature t2 on the downstream side shortly after the start of the circulation was as shown in the figure. In other words, compared to the normal case where the partition 3 is not provided, the air flow temperature t 2 increases by approximately 10 to 30°C by providing the partition 3, and the sensible heat of the rigid material 2 is efficiently transferred to the air. It shows. These are steel materials 2
This is because the partition 3 is heated first by the radiant heat from the partition 3, and the air passing through the partition is efficiently heated by the partition 3 made of an air-permeable solid having a substantial surface area and a large heat transfer coefficient. Next, an embodiment of the present invention will be explained with reference to FIG. In the figure, 5 is a furnace body of a heat treatment furnace constructed in a U-shape in plan, 6 is an outgoing furnace body, 7 is a return side furnace body, and 8 is a roller for conveying the object to be heated. 9 is a low temperature material storage chamber through which the low temperature material 10 charged from the charging port passes;
It is formed in the forward furnace body 6, and 11 is a high temperature material storage chamber through which the high temperature material 12 heated by a heating device such as a radiant tube (not shown) passes, and is formed in the return furnace body 7. Reference numeral 13 indicates a low-temperature side communication path connecting the upper portions of the low-temperature material storage chamber 9 and the high-temperature material storage chamber 11, 14 a high-temperature side communication path connecting the lower portions of each storage chamber, and 15 a ceiling 1 of the low-temperature material storage chamber 9.
6 is an intake port provided, and 17 is a fan driven by a motor 18. Further, reference numeral 19 denotes a partition made of a breathable solid material, which is made of the same material as the partition 3 in FIG. In the heat treatment furnace configured as described above, the fan 17 is driven while the low-temperature material 10 and the high-temperature material 12 are transported inside the furnace, and an atmosphere is created between the low-temperature material storage chamber 9 and the high-temperature material storage chamber 11 as shown by the arrow 20 in the figure. If a circulating flow of gas is formed, the high temperature material 12 is cooled by this circulating flow, and the atmospheric gas whose temperature has increased due to this cooling preheats the low temperature material 10. At this time, the partition 19 was heated by the radiant heat from the high temperature material 12 and became high temperature.
As a result, the atmospheric gas passing through this partition is heated mainly by convective heat transfer, and this is added to the amount of heat removed by convective heat transfer between the high-temperature material 12 and the atmospheric gas, so that the atmospheric gas becomes high temperature and the low-temperature material is accommodated. It flows into chamber 9. Table 1 shows the experimental results when the partition 19 was attached as shown in the figure and when it was removed in the above heat treatment furnace. The material to be heated is steel, and the high temperature material 12
The initial temperature of is 580℃, and the initial temperature of low temperature material 10 is 325℃.
℃, the roller 8 was stopped, and the temperature of the heated material was measured corresponding to the elapsed time after the start of atmospheric gas circulation.

【表】 表から明らかなように仕切19なしの場合に比
べて仕切19有りの場合は、高温材12の温度降
下量および低温材10の温度上昇量は共に大き
い。 上記実施例においては高温材12の下流側(気
体流下流側)にのみ仕切19を設けたが、この仕
切は図中鎖線21で示すように高温材12の上流
側(気体流上流側)に設けてもよく、さらに上流
側および下流側の両方に設ければさらに大きな効
果が得られることは第1図の実験例からも明らか
である。 以下はこの発明を連続式熱処理炉に適用した場
合について説明したが、この他に各種加熱炉や、
バツチ炉にも本発明は適用できるものである。 以上説明したようにこの発明によれば、気体の
流路内の高温材の上流側および下流側の少なくと
も一方に通気性固体から成る仕切を設け、高温材
の放射熱を吸収した仕切による気体の加熱を付加
するようにしたので、高温材の有する顕熱を効率
よく気体に伝熱して低温材を効率よく加熱するこ
とができる。
[Table] As is clear from the table, the amount of temperature drop in the high temperature material 12 and the amount of temperature rise in the low temperature material 10 are both larger in the case with the partition 19 than in the case without the partition 19. In the above embodiment, the partition 19 was provided only on the downstream side of the high temperature material 12 (downstream side of the gas flow), but this partition is provided on the upstream side of the high temperature material 12 (upstream side of the gas flow) as shown by the chain line 21 in the figure. It is also clear from the experimental example shown in FIG. 1 that it may be provided, and that even greater effects can be obtained by providing it on both the upstream and downstream sides. The following describes the case where this invention is applied to a continuous heat treatment furnace, but it can also be applied to various heating furnaces,
The present invention can also be applied to batch furnaces. As explained above, according to the present invention, a partition made of a breathable solid is provided on at least one of the upstream and downstream sides of the high-temperature material in the gas flow path, and the partition absorbs the radiant heat of the high-temperature material. Since heating is applied, the sensible heat of the high-temperature material can be efficiently transferred to the gas, and the low-temperature material can be efficiently heated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dはこの発明における通気性固体の
特性実験用装置の縦断面図、第2図はこの発明の
一実施例を示す熱処理炉の縦断面図である。 3……仕切、9……低温材収容室、10……低
温材、11……高温材収容室、12……高温材、
13……低温側連通路、14……高温側連通路、
17……フアン、19……仕切。
1A to 1D are longitudinal cross-sectional views of an apparatus for testing the properties of air-permeable solids according to the present invention, and FIG. 2 is a longitudinal cross-sectional view of a heat treatment furnace showing an embodiment of the present invention. 3... Partition, 9... Low temperature material storage chamber, 10... Low temperature material, 11... High temperature material storage chamber, 12... High temperature material,
13... Low temperature side communication path, 14... High temperature side communication path,
17... Juan, 19... Partition.

Claims (1)

【特許請求の範囲】[Claims] 1 高温材収容室と低温材収容室とを高温側連通
路と低温側連通路で連結して、上記両連通路を介
して上記両収容室間に気体の強制循環流を形成さ
せ、上記高温材の冷却と同時に上記低温材の加熱
をおこなう材料の冷却加熱装置において、上記高
温材収容室内の上記高温材の上流側および下流側
の少なくとも一方に通気性固体から成る仕切を設
け、上記気体が上記仕切を通過するようにしたこ
とを特徴とする材料の冷却加熱装置。
1 The high temperature material storage chamber and the low temperature material storage chamber are connected by a high temperature side communication path and a low temperature side communication path, and a forced circulation flow of gas is formed between the two storage chambers via the communication path, so that the high temperature material storage chamber is In the material cooling/heating device that heats the low-temperature material at the same time as cooling the material, a partition made of a breathable solid is provided on at least one of the upstream and downstream sides of the high-temperature material in the high-temperature material storage chamber, and the gas is A cooling/heating device for materials, characterized in that the material passes through the partition.
JP15294282A 1982-09-01 1982-09-01 Method and device for cooling high-temperature material Granted JPS5941787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15294282A JPS5941787A (en) 1982-09-01 1982-09-01 Method and device for cooling high-temperature material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15294282A JPS5941787A (en) 1982-09-01 1982-09-01 Method and device for cooling high-temperature material

Publications (2)

Publication Number Publication Date
JPS5941787A JPS5941787A (en) 1984-03-08
JPH0132285B2 true JPH0132285B2 (en) 1989-06-30

Family

ID=15551518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15294282A Granted JPS5941787A (en) 1982-09-01 1982-09-01 Method and device for cooling high-temperature material

Country Status (1)

Country Link
JP (1) JPS5941787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266615A (en) * 2005-03-24 2006-10-05 Daido Steel Co Ltd Heat treatment furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266615A (en) * 2005-03-24 2006-10-05 Daido Steel Co Ltd Heat treatment furnace

Also Published As

Publication number Publication date
JPS5941787A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
JPH0442113B2 (en)
RU73665U1 (en) DEVICE FOR HEATING GLASS PANELS
JP2000128346A (en) Floating device, floating carrier and heat treatment device
GB2015317A (en) Apparatus for curing tobacco
US3314666A (en) Fast fire tunnel kiln
JPH0132285B2 (en)
JPS62158983A (en) Continuous type microwave heating furnace
JP3340044B2 (en) Heating equipment
JPH0250166B2 (en)
US1809628A (en) Means for utilizing the waste gases from furnaces
SE8101048L (en) REAR OVEN WITH WALKING HARD
JPH0526580A (en) Continuous baking furnace
JPS5811723A (en) Heating furnace
US4597735A (en) High-efficiency porcelain enameling furnace
JPS5827924A (en) Heating method of material to be heated
JPS635815Y2 (en)
JPS58133315A (en) Thermostatic annealing apparatus
KR20240006731A (en) Foam pad dry unit
JPS5818085A (en) Preheater for material to be heated
JPS6325484A (en) Heat treating furnace
JPS5935541Y2 (en) Continuous heat treatment furnace for glass products
JP2004069183A (en) Temperature control method for heating furnace
SU881487A1 (en) Unit for contact drying of band fibrous materials
US3445098A (en) Method and device for improving the temperature equalization of gases in tunnel furnaces and ovens
JPS58101488A (en) Method of drying printed resistor