JPS5941787A - Method and device for cooling high-temperature material - Google Patents

Method and device for cooling high-temperature material

Info

Publication number
JPS5941787A
JPS5941787A JP15294282A JP15294282A JPS5941787A JP S5941787 A JPS5941787 A JP S5941787A JP 15294282 A JP15294282 A JP 15294282A JP 15294282 A JP15294282 A JP 15294282A JP S5941787 A JPS5941787 A JP S5941787A
Authority
JP
Japan
Prior art keywords
temperature
temperature material
partition
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15294282A
Other languages
Japanese (ja)
Other versions
JPH0132285B2 (en
Inventor
雅知 中村
崇 石本
健二郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15294282A priority Critical patent/JPS5941787A/en
Publication of JPS5941787A publication Critical patent/JPS5941787A/en
Publication of JPH0132285B2 publication Critical patent/JPH0132285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は高温材の有する頭熱を効率よく奪酪する高温
材の冷却方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for cooling high-temperature materials that efficiently removes the head heat of the high-temperature materials.

従来連続式熱処理煙においては、炉体を平面3学状に折
曲構築して、該炉体の平行な往路側と復路側との対応部
分に互いの短円雰囲気を循環させる連通ダクトを設け、
復路側において高温材の冷却により昇温した算囲気ガス
により往路側の低温相の予熱をおこなう方法がある。し
かし復路側において高温Hを単にガス流中に位置させる
だけでは、対疏熱伝達による伝熱が主であるため熱伝達
率が低く、充分な高l晶材の冷却およびこれに伴う低温
材の予熱ができなかった。
Conventionally, in continuous heat treatment smoke, the furnace body is bent into three planar shapes, and communicating ducts are provided in corresponding parts of the parallel outgoing and returning sides of the furnace body to circulate the short circular atmospheres of each other. ,
There is a method of preheating the low-temperature phase on the outbound side using ambient gas whose temperature has risen by cooling the high-temperature material on the return side. However, if the high temperature H is simply placed in the gas flow on the return path, the heat transfer rate will be low because the heat transfer is mainly due to anti-canal heat transfer. Preheating was not possible.

この発明は上記従来の欠点を解消するもので、高温材の
有する顕熱を効率よく奪熱することができる高温材の冷
却方法および装置を提供しようとするものである。
The present invention solves the above-mentioned conventional drawbacks, and aims to provide a method and apparatus for cooling a high-temperature material, which can efficiently remove the sensible heat of the high-temperature material.

しかしてこの発明は気体の流路内に配INf した高温
材の上流側および下流側の少な(とも一方に通気性固体
を設け、上記気体を上記仕切を通過させることを骨子と
する。
However, the gist of this invention is to provide a gas permeable solid on both the upstream and downstream sides of the high-temperature material INf arranged in the gas flow path, and to allow the gas to pass through the partition.

この発明において通気性固体とは金属や七ラミック等の
耐熱相料から成り、網状、)・ニカム状、せんい伏、多
孔質状などの通気性を有する形成に成形された適宜厚さ
の固体をいう。
In this invention, the term "breathable solid" refers to a solid made of a heat-resistant phase material such as metal or heptadramic, and formed into a shape having air permeability such as a net shape, a nicam shape, a folded shape, or a porous shape and having an appropriate thickness. say.

発明者はこの通気性固体について種々研究の結果、気体
流路内の高温材の近傍に計流路を横切る形で通気性固体
の仕切を設けると、高l晶月のυ(1熱が効率よく奪熱
されることを知見した。この現象を示す実験結果につい
て第1図(8)〜((1)により説明する。
As a result of various studies on this breathable solid, the inventor found that if a partition made of breathable solid is provided near the high-temperature material in the gas flow path across the meter flow path, the high l crystal moon υ (1 heat It was found that heat was removed well.Experimental results showing this phenomenon will be explained with reference to FIGS. 1(8) to (1).

図中、1は炉体、2は580’Cに加熱された重h’r
2000にりのブロック状のmN、8.は通気性固体か
ら成る仕切で、ステンレス金網(紳g 0.51ffl
l!、20メツシユ)を8板積層して角板状に成形した
ものである。第1図(a)は仕切8を設けない場合、同
図(b)は仕切3を鞘材2の上流G11lに設けた場合
、同図(Q)は同しく下流側に設けた場合、同図(d)
は同じく上流側および下流側に設けた場合を示し、t1
=455°Cに加熱された空気を上流側から流速1.6
”/秒で流通させたところ、流通開始後間もない時点に
おける下流側での空気流1晶度t2は図示の通りとなっ
た。す7よりち仕切8を設けないir(+常の場合に比
べて、仕切3を設けることにより空気流温度t2は約1
0〜30°C昇温し、鋼材2の肯1熱が効率、l:<奪
?されることを示している。これはm#A2からの放射
熱により仕切8が先ず加熱され、実質的な表面積および
熱伝達係数の大きい通電性固体から成る仕切3により該
仕切を通i6’bする空電が効率よく加熱さAするだめ
である。
In the figure, 1 is a furnace body, 2 is a heavy h'r heated to 580'C
2000 mN in block form, 8. is a partition made of breathable solid material, made of stainless steel wire mesh (g 0.51ffl)
l! , 20 meshes) were laminated to form a rectangular plate shape. Fig. 1 (a) shows the case where the partition 8 is not provided, Fig. 1 (b) shows the case where the partition 3 is provided upstream G11l of the sheath material 2, and Fig. 1 (Q) shows the case where the partition 3 is provided on the downstream side. Figure (d)
similarly shows the case where it is provided on the upstream side and the downstream side, and t1
= Air heated to 455°C from the upstream side at a flow rate of 1.6
''/second, the air flow 1 crystallinity t2 on the downstream side shortly after the start of circulation was as shown in the figure. Compared to , by providing the partition 3, the air flow temperature t2 is approximately 1
The temperature rises from 0 to 30°C, and the positive heat of steel material 2 is efficient, l:<deprivation? It shows that it will be done. This is because the partition 8 is first heated by the radiant heat from m#A2, and the static electricity flowing through the partition is efficiently heated by the partition 3, which is made of a conductive solid with a substantial surface area and a large heat transfer coefficient. A is no good.

次に第2図によりこの発明の一実加i例を説明する。Next, a practical example of the present invention will be explained with reference to FIG.

図中、5は平面上コ字状に措築した熱処fJl炉の炉体
で、6は往路側・炉体、7は復路側炉体、8は被熱物搬
送用のローラである。9は装入口から装入された低温材
10が通過する低温材収容室で、往路側炉体6内に形成
され、また11は図示しないラジアントチューブなどの
加熱装置により加熱された高温相12が通過する高温材
収容室で、復路側炉体7内に形成されている。18は低
温相収容室9と高温材収容室11の上部を連結する低を
晶側連通路、14は同じく各収容室の下部を連結する高
温側連通路、15は低温材収容室9の天井16に設けた
吸気口、17はモータ18により駆動されるファンであ
る。また19は通気性固体から成る仕切で、第1図にお
ける仕切3と同材料から成り、高温材12の下方におい
て雰囲気ガスの循環流(後述)を横切る形で高温材収容
室ll内に取付けである。
In the figure, 5 is a furnace body of a heat treatment fJl furnace constructed in a U-shape in plan, 6 is an outgoing side furnace body, 7 is a return side furnace body, and 8 is a roller for conveying the heated object. Reference numeral 9 denotes a low-temperature material storage chamber through which the low-temperature material 10 charged from the charging port passes, and is formed in the forward-side furnace body 6. Reference numeral 11 denotes a high-temperature phase 12 heated by a heating device such as a radiant tube (not shown). This is a high-temperature material storage chamber through which the material passes, and is formed within the return-side furnace body 7. 18 is a low-temperature side communication path connecting the upper part of the low-temperature phase storage chamber 9 and the high-temperature material storage chamber 11; 14 is a high-temperature side communication path connecting the lower part of each storage chamber; and 15 is the ceiling of the low-temperature material storage chamber 9. An intake port 16 is provided, and 17 is a fan driven by a motor 18. Further, reference numeral 19 denotes a partition made of a breathable solid material, which is made of the same material as the partition 3 in FIG. be.

上記構成の熱処理炉において低温材10および高温材1
2を炉内搬送しつつファン17を駆動して、図中矢印2
0で示すように低温材収容室9と高温材収容室11との
間に雰囲気ガスの循環流況。
In the heat treatment furnace with the above configuration, a low temperature material 10 and a high temperature material 1
The fan 17 is driven while conveying 2 into the furnace, and the arrow 2 in the figure
As indicated by 0, there is a circulating flow situation of atmospheric gas between the low temperature material storage chamber 9 and the high temperature material storage chamber 11.

形成させれは、この循環流により高7晶拐12は冷却さ
れ、この冷却に伴って昇温しだ雰囲気カスは低lIA月
lOを予熱する。このとき高rM4’J12よりの放射
熱により加熱され高温となった仕切19によって、この
仕切を通過する雰囲気ガスが主として対流熱伝達により
加熱され、高温相12と雰囲気ガスとの対流熱伝達によ
る奪熱量に加算されるので、雰囲気カスは高温となって
低温材収容室9に流入するのである。
As a result of the formation, the high-7 crystal grain 12 is cooled by this circulating flow, and the temperature rises as a result of this cooling, and the atmospheric scum preheats the low-lIA moon lO. At this time, the atmospheric gas passing through this partition is heated mainly by convective heat transfer due to the partition 19 heated to a high temperature by the radiant heat from the high rM4'J12. Since it is added to the amount of heat, the atmospheric debris becomes high temperature and flows into the low temperature material storage chamber 9.

上記の熱処理炉において、仕切19を図示通り取(=I
けた場合とこれを取外した場合の実験結果を第1表に示
す。被熱4=Aは鋼材であり、高温材12の初期温度は
580°C1低温材IOの初期温ル゛ば325℃で、ロ
ーラ8は停止状態とし、雰囲気ガス循環開始後の経過時
間に対応して被熱側の温度を測定したものである。
In the above heat treatment furnace, the partition 19 is arranged as shown (=I
Table 1 shows the experimental results for the cases in which the beam was attached and the case in which it was removed. The heated material 4 = A is a steel material, the initial temperature of the high temperature material 12 is 580°C, the initial temperature of the low temperature material IO is 325°C, the roller 8 is in a stopped state, and it corresponds to the elapsed time after the start of atmospheric gas circulation. The temperature on the heated side was measured.

表から明らかなように仕切19なしの+Jil+今に比
べて仕切19有りの揚台は、高温材12の温度降十量お
よび低温az i oの温度上昇紙は共に大きい。
As is clear from the table, compared to +Jil+without the partition 19, in the platform with the partition 19, both the temperature drop of the high temperature material 12 and the temperature rise of the low temperature az io paper are larger.

上記実施例においては尚温材12の下流側(気体流ト流
側)にのみ仕切19を設けたが、この仕切は図中鎖線2
1で示すように高温材12の上流側(気体流上流([1
11)に設けてもよ(、さらに上流側および下流側の両
方に設けれはさらに大きな効果が得られることは第1図
の実験例からも明らかである。
In the above embodiment, the partition 19 was provided only on the downstream side (gas flow side) of the still-temperature material 12, but this partition is indicated by the chain line 2 in the figure.
1, the upstream side of the high temperature material 12 (gas flow upstream ([1
11) (and it is clear from the experimental example shown in FIG. 1 that even greater effects can be obtained by providing it on both the upstream and downstream sides).

以上はこの発明を連杷・式熱処fJpiに適用し、た場
合について説明したが、この仙fこ各種加熱・5iや、
バッチ炉、あるいは高温材の冷却のみをおこなう場合に
も本発明は適用できるものである。
Above, we have explained the case where this invention is applied to continuous loquat/type heat treatment fJpi, but this invention is applicable to various types of heat treatment/5i,
The present invention is also applicable to batch furnaces or cases where only high temperature materials are cooled.

以上説明したようにこの発明によれば、気体の流路内の
高温材の上流側および1・流側の少なくとも一方に通気
性同体から成る仕切を設け、高温ネ(の放射熱を吸収し
た仕切による気体の加熱を付加するようしたので、高温
材の有する顕熱を効率よく奪熱することができる。
As explained above, according to the present invention, a partition made of a breathable material is provided on at least one of the upstream side and the downstream side of the high-temperature material in the gas flow path, and the partition absorbs the radiant heat of the high-temperature material. Since the heating of the gas is added, the sensible heat of the high-temperature material can be efficiently removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(R)〜(d)はこの発明における】IB気性固
体の特性実験用装置1イの縦断面図、第2181はこの
発明の一実施例を示す熱処理炉の6〔断面図である。 8・・・仕切、9・・・低温相収容室、10・・・低温
相、11・・・高温月収容室、12・・・篩温利、1B
・・・低rfiA側連通路、14・・・高温側連通路、
17・・ファン、19・・・仕切。 出yt1人 大同特殊汗i株式会社 代即人   乾   Ak、イト
FIGS. 1(R) to (d) are longitudinal sectional views of IB gaseous solid property experiment apparatus 1A according to the present invention, and FIG. 2181 is a sectional view of a heat treatment furnace showing an embodiment of the present invention. . 8... Partition, 9... Low temperature phase storage chamber, 10... Low temperature phase, 11... High temperature phase storage chamber, 12... Sieve temperature storage, 1B
...low rfi A side communication path, 14...high temperature side communication path,
17...Fan, 19...Partition. 1 person from Daido Special Sweat Co., Ltd. Inui Ak, Ito

Claims (1)

【特許請求の範囲】 1 気体の流路内に高温材を配置し、上記気体により上
記高温材を冷却するとともに該冷却に伴って上記気体を
昇温させる高温材の冷却方法において、上記流路内の上
記高温材の上流側および一ト流側の少なくとも一方に通
気性固体から成る仕切を設け、上記気体を上記仕切を通
過させることを特徴とする高温材の冷却方法。 2 高温材収容室と低温材収容室とを高温側連通路と低
温側連通路で連結して、上記両速通路を介して上記両収
容室間に気体の強制循環流を形成させ、と起重温材の冷
却と同時に上記低温材の加熱をおこなう材料の冷却加熱
装置において、上記高温和収容室内の上記高温口の上流
側および下流側の少なくとも一方に通気性固体から成る
仕切を設け、上記気体が上記仕切を通過するようにした
ことを特徴とする材料の冷却加熱装置。
[Scope of Claims] 1. A method for cooling a high-temperature material, in which a high-temperature material is disposed in a gas flow path, the high-temperature material is cooled by the gas, and the temperature of the gas is increased along with the cooling, the method comprising: A method for cooling high-temperature material, characterized in that a partition made of a breathable solid is provided on at least one of an upstream side and a downstream side of the high-temperature material in the container, and the gas is allowed to pass through the partition. 2. The high temperature material storage chamber and the low temperature material storage chamber are connected by a high temperature side communication path and a low temperature side communication path, and a forced circulation flow of gas is formed between the two storage chambers via the dual speed path. In the material cooling/heating device that cools the heavy temperature material and simultaneously heats the low temperature material, a partition made of a breathable solid is provided on at least one of the upstream side and the downstream side of the high temperature port in the high temperature storage chamber; A cooling/heating device for materials, characterized in that gas passes through the partition.
JP15294282A 1982-09-01 1982-09-01 Method and device for cooling high-temperature material Granted JPS5941787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15294282A JPS5941787A (en) 1982-09-01 1982-09-01 Method and device for cooling high-temperature material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15294282A JPS5941787A (en) 1982-09-01 1982-09-01 Method and device for cooling high-temperature material

Publications (2)

Publication Number Publication Date
JPS5941787A true JPS5941787A (en) 1984-03-08
JPH0132285B2 JPH0132285B2 (en) 1989-06-30

Family

ID=15551518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15294282A Granted JPS5941787A (en) 1982-09-01 1982-09-01 Method and device for cooling high-temperature material

Country Status (1)

Country Link
JP (1) JPS5941787A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266615A (en) * 2005-03-24 2006-10-05 Daido Steel Co Ltd Heat treatment furnace

Also Published As

Publication number Publication date
JPH0132285B2 (en) 1989-06-30

Similar Documents

Publication Publication Date Title
GB2134240B (en) Heat exchanger for cooling hot gas
FR2419479A1 (en) Heat pump for air conditioning system - has thermal semi-conductor units in contact with electrically conducting heat exchanger bodies
UA5940A1 (en) System of air cooling
FR2348460A1 (en) THERMAL EXCHANGE ELEMENT AND ROTARY REGENERATOR HEAT EXCHANGER PROVIDED WITH SUCH ELEMENTS
DK568175A (en) HEAT EXCHANGERS AND PROCEDURES FOR COOLING HOT GASES
FR2316557A1 (en) Thermoelectric equipment heat exchanger - has elements each with two rigid walls enclosing heat exchange surfaces
JPS5941787A (en) Method and device for cooling high-temperature material
SE7907005L (en) HEATING AND COOLING SYSTEM WITH THERMAL STORAGE FOR FLOWING MEDIA
IT8220350A0 (en) HEAT EXCHANGER FOR COOLING HOT GASES.
ES455276A1 (en) Heat exchanger for a convector heater
ZA752641B (en) Heat exchanger and method for cooling hot gases
JPS53136749A (en) Heat pipe connector
SE8101048L (en) REAR OVEN WITH WALKING HARD
JPS57108590A (en) Apparatus for guaranteeing heat exchange between gas flow and heat exchanger
JPS5320146A (en) Heat exchanger
FR2521275B1 (en)
JPS5318431A (en) Descaling device utilizing exhaust heat from heating furnace
JPS5246656A (en) Gas heater of a regenerative type
JPS52145311A (en) Heat control in homogeneous heating furnace
Crompvoets The Use of Gas-Fired Fluidized-Bed Furnaces in Heat Treatment and Metalworking
BE900853A (en) BENCH FOR GREENHOUSE CULTIVATION ALLOWING DAILY THERMAL REGULATION.
ES171207U (en) Thermal exchanger for heaters. (Machine-translation by Google Translate, not legally binding)
SPARROW Recent studies relating to mass transfer cooling(Thermal diffusion and diffusion thermoeffects on heat and mass transfer in transpiration-cooled boundary layer)
DK190984A (en) HEAT EXCHANGERS AND CENTRAL HEAT BOILER WITH SUCH HEAT EXCHANGES
IT1085441B (en) Tubular heat changer for engine radiator - has pipes retained by heat-transfer fins in zigzag configuration