JPS5811723A - Heating furnace - Google Patents

Heating furnace

Info

Publication number
JPS5811723A
JPS5811723A JP10917881A JP10917881A JPS5811723A JP S5811723 A JPS5811723 A JP S5811723A JP 10917881 A JP10917881 A JP 10917881A JP 10917881 A JP10917881 A JP 10917881A JP S5811723 A JPS5811723 A JP S5811723A
Authority
JP
Japan
Prior art keywords
heating chamber
heating
chamber
gas
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10917881A
Other languages
Japanese (ja)
Other versions
JPH0123523B2 (en
Inventor
Ryozo Echigo
越後 亮三
Masatomo Nakamura
雅知 中村
Kenjiro Sato
佐藤 建二郎
Kenichi Takeuchi
武内 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10917881A priority Critical patent/JPS5811723A/en
Publication of JPS5811723A publication Critical patent/JPS5811723A/en
Publication of JPH0123523B2 publication Critical patent/JPH0123523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To reduce thermal loss and to economize energy by forming gas circulating flow between a heating chamber and a circulating line by means of a circulating fan, and recovering the sensible heat of the gas flowing out from the heating chamber and heating the gas flowing into the heating chamber by means of air permeable solids. CONSTITUTION:An upper vent port 9 and a lower vent port 7 partitioned respectively with air permeable solids 8 are provided in the upper and lower part of a heating chamber 5, and a circulating pipeline 13 communicating the port 9 and the port 7 is provided. A circulating fan 14 is provided in the pipeline 13 to circulate the gas in the chamber 5 through the port 9 then through the line 13 and the port 7 into the chamber 5. Therefore, the high-temp. gaseous flow is generated in the chamber 5, by which the soaking of objects to be heated and the heat transfer to said objects are accelerated.

Description

【発明の詳細な説明】 この発明はたとえば鋼片、鋼板などの被熱物の加熱また
は熱処理をおこなう加熱炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating furnace for heating or heat treating objects to be heated, such as steel pieces and plates.

バーナあるいはヒータなどの加熱装置をそなえた加熱室
内において被熱物の加熱または熱処理をおこなう加熱炉
においては、加熱室内の上部温度が下部温度より高温と
なる傾向があり、50°C以上の温度差が生じる場合も
多い。この場合被熱物にも温度差が生じ、均一加熱が困
難となる。そこで均一加熱を必要とする熱処理炉等にお
いては、炉内にファンを設置し、炉内ガスを攪拌して炉
内温度の均一化および対流熱伝達の促進をはかることが
おこなわれている。しかしこの方法によると高速回転す
るファンの羽根車部分の高温強度の関係等から、適用炉
内温度は800〜900°C稈度が上限である。
In a heating furnace, which heats or heat-treats the object to be heated in a heating chamber equipped with a heating device such as a burner or heater, the temperature at the top of the heating chamber tends to be higher than the temperature at the bottom, resulting in a temperature difference of 50°C or more. often occurs. In this case, a temperature difference also occurs in the object to be heated, making uniform heating difficult. Therefore, in heat treatment furnaces and the like that require uniform heating, a fan is installed in the furnace to stir the gas in the furnace in order to equalize the temperature in the furnace and promote convective heat transfer. However, according to this method, the upper limit of the applicable furnace temperature is 800 to 900° C. due to the high temperature strength of the impeller portion of the fan that rotates at high speed.

この発明は上記の点にかんがみてなされたもので、炉内
の被熱物温度の均熱化および被熱物への熱伝達の促進を
はかることができ、炉内温度が高温の場合にも適用でき
る加熱炉を提供しようとするものである。
This invention was made in view of the above points, and it is possible to equalize the temperature of the heated object in the furnace and promote heat transfer to the heated object, even when the temperature inside the furnace is high. The purpose is to provide an applicable heating furnace.

しかしてこの発明の要旨は、加熱装置をそなえた加熱室
内において被熱物の加熱をおこなう加熱炉において、上
記加熱室の上部および下部にそれぞれ通気性固体で仕切
った上部通気口および下部通気口を設け、上記上部通気
口と上記下部通気口とを連通ずる循環路を設けるととも
に、上記循環路中に上記加熱室内のガスを上記上部通気
口から」−記循環路、上記下部通気口を経て上記加熱室
内に循環させる循環ファンを設置したことを特徴とする
加熱炉にある。
However, the gist of the present invention is to provide a heating furnace that heats objects to be heated in a heating chamber equipped with a heating device, in which upper and lower vents are provided at the upper and lower parts of the heating chamber, respectively, and are partitioned by air-permeable solid material. A circulation path is provided that communicates the upper vent and the lower vent, and the gas in the heating chamber is introduced into the circulation path from the upper vent through the lower vent. The heating furnace is characterized by being equipped with a circulation fan that circulates the air within the heating chamber.

この発明において通気性固体とは、金属やセラミック等
の耐熱材料から成り、網状、ハニカム状、せんい伏、多
孔質状などの通気性を有する形状に成形された適宜厚さ
の固体をいう。この通気性固体は小球あるいは小径線が
多数集合したものと等価と考也られるので、実質的な表
面積がきわめて大きく、この通気性固体にガスを流通さ
せた場合には、対流熱伝達係数が著しく大きい。
In the present invention, the term "breathable solid" refers to a solid made of a heat-resistant material such as metal or ceramic, and formed into a shape having air permeability such as a net shape, a honeycomb shape, a folded shape, a porous shape, etc., and having an appropriate thickness. This air-permeable solid is considered to be equivalent to a large number of small spheres or small diameter wires, so its effective surface area is extremely large, and when gas is passed through this air-permeable solid, the convective heat transfer coefficient is significantly larger.

以下第1図乃至第4図)こよりこの発明の一実施例を説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

図中、1はバッチ式の加熱炉で、2は箱状の炉本体、3
は炉蓋である。4は炉側壁、5は炉側壁4により四周を
囲繞されて形成された加熱室であり、6はこの加熱室を
貫通して取付けたラジアントチューブである。7は加熱
室5の底部の下部通気口、8はこの下部通気口に取付け
た仕切板状の通気性固体で、ステンレス金網(線径0.
5jIjI。
In the figure, 1 is a batch-type heating furnace, 2 is a box-shaped furnace body, and 3 is a batch-type heating furnace.
is the hearth. 4 is a furnace side wall, 5 is a heating chamber formed by being surrounded on all sides by the furnace side wall 4, and 6 is a radiant tube attached to penetrate this heating chamber. 7 is a lower vent at the bottom of the heating chamber 5, and 8 is a partition plate-like breathable solid piece attached to this lower vent, which is made of stainless steel wire mesh (wire diameter 0.
5jIjI.

14メツシユ)を15層積層して厚さ13MMとし、縁
部をステンレス枠で補強したものであり、炉側壁4によ
り四周を保持されている。また9は加熱室5の上部通気
口、10はこの上部通気口に着脱自在に取付けた仕切板
状の通気性固体で、前記通気性固体8と同じ構造を有す
るものである。11は通気性固体10と炉蓋3との間に
形成された上部室、12は通気性固体8と炉底との間に
形成された下部室で、18は上部室11および下部室1
2に両端が開口する循環管路であり、14はこの循環管
路の途中に設けた循環ファンである。循環ファン14は
高温ファンから成り、その吐出口は下部室12側に接続
されている。なお加熱室5内には被熱物載置用の火格子
を設けであるが、図示を省略した。
14 meshes) were laminated in 15 layers to a thickness of 13 mm, the edges were reinforced with a stainless steel frame, and the four peripheries were held by the furnace side wall 4. Reference numeral 9 denotes an upper vent of the heating chamber 5, and 10 denotes a partition plate-like breathable solid that is detachably attached to the upper vent and has the same structure as the breathable solid 8. 11 is an upper chamber formed between the breathable solid 10 and the furnace lid 3; 12 is a lower chamber formed between the breathable solid 8 and the furnace bottom; 18 is the upper chamber 11 and the lower chamber 1;
2 is a circulation pipe whose both ends are open, and 14 is a circulation fan provided in the middle of this circulation pipe. The circulation fan 14 is composed of a high temperature fan, and its discharge port is connected to the lower chamber 12 side. Note that a grate for placing objects to be heated is provided in the heating chamber 5, but its illustration is omitted.

上記構成の加熱炉lにおいて、加熱室5内に被熱物を装
入してラジアントチューブ6により加熱室内の加熱をお
こなえば、ラジアントチューブ6からのふく射熱伝達に
。より被熱物は加熱される。
In the heating furnace I having the above configuration, if the object to be heated is charged into the heating chamber 5 and the heating chamber is heated by the radiant tube 6, radiation heat transfer from the radiant tube 6 is achieved. The object to be heated is heated.

またラジアントチューブ6からのふく射および対流熱伝
達により加熱室5内の雰囲気ガス(以下単にガスと称す
る)が1000〜1200°Cに昇温し、このガスから
の対流熱伝達により被熱物が加熱されるとともに昇温し
たガスは比重量の減少iこ伴うドラフト作用と、さらに
これより強力な循環ファン14の吸引作用とにより上部
通気口9から上方へ流出する。この際通気性固体lOは
表面積が大きいため対流熱伝達により高温(約1000
°C)に加熱され、ガスは200〜400°C温度低下
した状態で上部室11、循環管路18、下部室12、下
部通気ロアを経て、前記ドラフト作用と循環ファン14
の押込作用により再び加熱室5内に循環流入する。この
際通気性固体8はラジアントチューブ6よりのふく射熱
伝達により高温となっているため、低温のガスは表面積
の大きい通気性固体8を通過する際に対流熱伝達により
200〜400°C昇温させら−れ、高温ガスとして加
熱室5内に流入し被熱物を対流熱伝達により加熱するの
である。
In addition, the atmospheric gas (hereinafter simply referred to as gas) in the heating chamber 5 is heated to 1000 to 1200°C by radiation and convective heat transfer from the radiant tube 6, and the object to be heated is heated by convective heat transfer from this gas. The gas, whose temperature has risen as it is heated, flows upward from the upper vent 9 due to the draft effect caused by the decrease in specific weight, and the suction effect of the circulation fan 14, which is more powerful than the draft effect. At this time, since the air-permeable solid IO has a large surface area, convective heat transfer causes high temperatures (approximately 1000
°C), and the gas passes through the upper chamber 11, the circulation pipe 18, the lower chamber 12, and the lower ventilation lower in a state where the temperature has decreased by 200 to 400 °C.
Due to the pushing action of , it circulates and flows into the heating chamber 5 again. At this time, the air-permeable solid 8 is at a high temperature due to radiation heat transfer from the radiant tube 6, so when the low-temperature gas passes through the air-permeable solid 8, which has a large surface area, its temperature is raised by 200 to 400°C due to convective heat transfer. It flows into the heating chamber 5 as a high-temperature gas and heats the object to be heated by convection heat transfer.

通気性固体10部におけるふく射エネルギ射出状態につ
いて第3図の模式図により説明すると、通気性固体10
はガス流通方向に厚さXを有するため、その層内には通
過するガスとの対流熱伝達により曲線15で示す温度勾
配を生じる。そして各層Xi 、 !2 、・・・・・
・x6においてガスの上流側(1)および下流側(4に
射出するふく射エネルギは矢印y1、y2、・・・・・
・y5、およびZl 、 Z2 、・−・・・・Z5で
あるが、このうちふく射エネルギz1、Z2.74 、
y6は通気性固体の遮蔽効果により減衰されるので、結
局ふく射エネルギの主要部16はガスの上流側■方向に
向き、被熱物の加熱やガスに吸収されて温度降下を防ぎ
有効に利用されるのである。通気性固体8部においても
同様な現象により(但し第3図とガス流方向は逆)ふく
射エネルギの主要部は加熱室5の内方に向かい、被熱物
の加熱等に有効に利用される。
The radiant energy emission state in 10 parts of the breathable solid will be explained using the schematic diagram in FIG.
Since the layer has a thickness X in the gas flow direction, a temperature gradient shown by a curve 15 is generated within the layer due to convective heat transfer with the passing gas. And each layer Xi,! 2,...
・At x6, the radiant energy emitted to the upstream side (1) and downstream side (4) of the gas is indicated by arrows y1, y2, etc.
・y5, and Zl, Z2, ... Z5, but among these, the radiant energy z1, Z2.74,
Since y6 is attenuated by the shielding effect of the breathable solid, the main part of the radiant energy 16 is directed toward the upstream side of the gas in the ■ direction, and is effectively used to prevent temperature drop by heating the heated object and being absorbed by the gas. It is. Due to the same phenomenon in 8 parts of the breathable solid (however, the gas flow direction is opposite to that in Figure 3), the main part of the radiant energy is directed inward to the heating chamber 5, and is effectively used for heating the object to be heated, etc. .

このように加熱室5と、上部室11および循環管路18
および下部室12から成る循環路との間にドラフト作用
と、これより強力な循環ファン14の圧送作用とによる
ガスの循環流が形成され、加熱室5内を高温のガスが上
昇流として流れるため、加熱室5内の温度分布が均一と
なり、さらに被熱物への対流熱伝達が促進される。また
通気性固体8.10はその前後に著るしい温度差を生じ
一種の断熱材として機能するため、加熱室外部のガス温
度は低温となり、循環ファン14の耐熱限度は加熱室5
内のガス温度より200〜400°C低いものでよく、
また炉底や炉蓋3、循環管路13等からの熱損失が減少
するのである。
In this way, the heating chamber 5, the upper chamber 11 and the circulation pipe 18
A circulating flow of gas is formed between the upper and lower chambers 12 by the draft action and the pumping action of the circulation fan 14, which is more powerful than this, and the high temperature gas flows in the heating chamber 5 as an upward flow. , the temperature distribution within the heating chamber 5 becomes uniform, and convective heat transfer to the object to be heated is further promoted. In addition, since the breathable solid 8.10 creates a significant temperature difference before and after it and functions as a kind of heat insulating material, the gas temperature outside the heating chamber becomes low, and the heat resistance limit of the circulation fan 14 is
The temperature may be 200 to 400°C lower than the gas temperature inside.
Furthermore, heat loss from the furnace bottom, furnace lid 3, circulation pipe 13, etc. is reduced.

次に上記構成の加熱炉1(加熱室内長さ1900’朋、
間中950f11同高さ1000111f)を用いた発
明者の実験結果を示す。ラジアントチューブ6の燃焼量
を毎時85000 kcalとし、第1図および第2図
に示す位置に置いた被熱物W11W2 (いずれも−辺
1100tの立方体状の普通鋼材)を加熱したところ、
第4図に実線で示すような被熱物昇温曲線が得られた。
Next, the heating furnace 1 with the above configuration (heating chamber length 1900',
The results of the inventor's experiment using the same height (950f11, 1000111f) are shown below. When the combustion amount of the radiant tube 6 was set to 85,000 kcal per hour, and the object to be heated W11W2 (both cube-shaped ordinary steel materials with a − side of 1100 t) placed at the positions shown in FIGS. 1 and 2 was heated,
A temperature rise curve of the heated object as shown by the solid line in FIG. 4 was obtained.

また同図中破線で示したのは比較例として第1図におい
て循環ファン14を用いずに、上部室11と下部室12
を循環管路20により直接接続した場合(他の条件は前
記と同じ)の、被熱物昇温曲線である。第4図から判る
ように本発明装置によれば、加熱室5の上部および下部
に配置した被熱物W1、W2の温度差は、比較例のドラ
フト作用のみによりガスを自然循環させる場合の9°C
に対し5°Cに減少し、被熱物の到達温度も比較例に対
し約40°C高温(いずれも3時間経過時)となり、本
発明tこよる加熱室内の均熱化および加熱性能の向上、
熱損失の減少傾向が明示されている。
In addition, as a comparative example, the broken line in the figure shows the upper chamber 11 and lower chamber 12 in which the circulation fan 14 is not used in FIG.
This is a temperature rise curve of the heated object in the case of directly connecting through the circulation pipe 20 (other conditions are the same as above). As can be seen from FIG. 4, according to the apparatus of the present invention, the temperature difference between the heated objects W1 and W2 placed in the upper and lower parts of the heating chamber 5 is 9. °C
The temperature reached by the object to be heated was also about 40°C higher than that of the comparative example (both after 3 hours), and the temperature uniformity in the heating chamber and heating performance due to the present invention were improved. improvement,
A decreasing trend in heat loss is clearly demonstrated.

なお以上はバッチ式加熱炉の°場合について説明したが
、この発明は連続式加熱炉にも適用でき、また被熱物の
加熱装置は直焔式のバーナや電気ヒータなどラジアント
チューブ以外の加熱装置を用いてもよい。
Although the above description has been made for a batch-type heating furnace, this invention can also be applied to a continuous-type heating furnace, and the heating device for the object to be heated can be a heating device other than a radiant tube, such as a direct flame burner or an electric heater. may also be used.

以上説明したようにこの発明によれば、加熱室と循環路
との間に循環ファンによりガスの循環流を形成させ、通
気性固体により加熱室を流出するガスの顕熱の回収およ
び加熱室へ流入するガスの昇温をおこなうようにしたの
で、加熱室内には高温ガス流が生じて被熱物の均熱化お
よび被熱物への熱伝達の促進をはかることができる。ま
た加熱室外の循環ガスは加熱室内のガスより低温となる
ため、熱損失が減少し省エネルギ化を達成できるととも
に、加熱室内温度が循環ファンの耐熱限度を越える場合
にも本発明は支障なく適用できるのである。
As explained above, according to the present invention, a circulating flow of gas is formed between the heating chamber and the circulation path by the circulation fan, and the sensible heat of the gas flowing out of the heating chamber is recovered by the air-permeable solid and transferred to the heating chamber. Since the temperature of the inflowing gas is raised, a high-temperature gas flow is generated in the heating chamber, and it is possible to equalize the temperature of the object to be heated and promote heat transfer to the object. In addition, since the circulating gas outside the heating chamber is lower temperature than the gas inside the heating chamber, heat loss is reduced and energy savings can be achieved, and the present invention can be applied without problems even when the temperature in the heating chamber exceeds the heat resistance limit of the circulation fan. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す加熱炉の縦断面図、
第2図は第1図のA−A線断面”図、第3図は第1図の
通気性固体のふく射射出状態を示す模式説明図、第4図
はこの発明の一実施例を示す被熱物昇温線図である。 1・・・加熱炉、5・・・加熱室、6・・・ラジアント
チューブ、7・・・下部通気口、8・・・通気性固体、
9・・・上部通気口、10・・・通気性固体、11・・
・上部室、12・・・下部室、13・・・循環管路、1
4・・・循環ファン。 出願人 大同特殊鋼株式会社 越後亮三 代理人  乾   昌 雄
FIG. 1 is a longitudinal sectional view of a heating furnace showing an embodiment of the present invention;
2 is a cross-sectional view taken along the line A-A in FIG. It is a temperature rise diagram of a hot substance. 1... Heating furnace, 5... Heating chamber, 6... Radiant tube, 7... Lower vent, 8... Breathable solid,
9...Top vent, 10...Breathable solid, 11...
・Upper chamber, 12...Lower chamber, 13...Circulation pipe, 1
4... Circulation fan. Applicant: Ryozo Echigo, Daido Steel Co., Ltd. Agent: Masao Inui

Claims (1)

【特許請求の範囲】[Claims] 加熱装置をそなえた加熱室内において被熱物の加熱をお
こなう加熱炉において、上記加熱室の上部および下部に
それぞれ通気性固体で仕切った上部通気巨および下部通
気口を設け、上記上部通気口と上記下部通気口とを連通
ずる循環路を設けるとともに、上記循環路中に上記加熱
室内のガスを上記上部通気口から上記循環路、上記下部
通気口を経て上記加熱室内に循環させる循環ファンを設
置したことを特徴とする加熱炉。
In a heating furnace that heats an object to be heated in a heating chamber equipped with a heating device, upper and lower ventilation holes are provided at the upper and lower parts of the heating chamber, respectively, and are partitioned by a breathable solid material. A circulation path communicating with the lower vent is provided, and a circulation fan is installed in the circulation path to circulate gas in the heating chamber from the upper vent, through the circulation path, the lower vent, and into the heating chamber. A heating furnace characterized by:
JP10917881A 1981-07-13 1981-07-13 Heating furnace Granted JPS5811723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10917881A JPS5811723A (en) 1981-07-13 1981-07-13 Heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10917881A JPS5811723A (en) 1981-07-13 1981-07-13 Heating furnace

Publications (2)

Publication Number Publication Date
JPS5811723A true JPS5811723A (en) 1983-01-22
JPH0123523B2 JPH0123523B2 (en) 1989-05-02

Family

ID=14503627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10917881A Granted JPS5811723A (en) 1981-07-13 1981-07-13 Heating furnace

Country Status (1)

Country Link
JP (1) JPS5811723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213996U (en) * 1988-07-12 1990-01-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111941A (en) * 1975-03-27 1976-10-02 Daiichi Netsukou Kk Utilization method of exhaust heat of heating furnace & heating furnac e structured to utilize exhaust heat
JPS51141839U (en) * 1975-05-08 1976-11-15
JPS54123509A (en) * 1978-03-20 1979-09-25 Kawasaki Steel Co Heating furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111941A (en) * 1975-03-27 1976-10-02 Daiichi Netsukou Kk Utilization method of exhaust heat of heating furnace & heating furnac e structured to utilize exhaust heat
JPS51141839U (en) * 1975-05-08 1976-11-15
JPS54123509A (en) * 1978-03-20 1979-09-25 Kawasaki Steel Co Heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213996U (en) * 1988-07-12 1990-01-29

Also Published As

Publication number Publication date
JPH0123523B2 (en) 1989-05-02

Similar Documents

Publication Publication Date Title
EP0071073A2 (en) Radiant tube
JPS5811723A (en) Heating furnace
JPS5735613A (en) Radiant tube type continuous heat treatment furnace
JPH0159520B2 (en)
JPS59113117A (en) Continuous heating furnace
JPS57131939A (en) Heat cooking apparatus
JPH07100422A (en) Coating and drying furnace
JP2774385B2 (en) Heat treatment equipment
JPS5569224A (en) Annealing method for wire rod
KR101153657B1 (en) Plate Type Heating Apparatus for Continuous Annealing Furnace having The Same
JP2001255020A (en) Hot air generating furnace
JPH0132285B2 (en)
JPH0222318B2 (en)
JPH0222317B2 (en)
JPS5818085A (en) Preheater for material to be heated
JPS575825A (en) Heat treatment furnace for long material
JPS5827924A (en) Heating method of material to be heated
TWM591609U (en) Kiln burning device structure
JPS6244985Y2 (en)
JPH10273735A (en) Operation of bell type annealing furnace using regenerative combustion device
JPH0484420A (en) Heat treatment equipment
SU651184A1 (en) Continuous-action resistance furnace
JPS5937678Y2 (en) Vertical heating furnace
RU2132528C1 (en) Method of forming thermal field
JPH0221702Y2 (en)