JPH01321508A - Oxygen density controller - Google Patents

Oxygen density controller

Info

Publication number
JPH01321508A
JPH01321508A JP63156187A JP15618788A JPH01321508A JP H01321508 A JPH01321508 A JP H01321508A JP 63156187 A JP63156187 A JP 63156187A JP 15618788 A JP15618788 A JP 15618788A JP H01321508 A JPH01321508 A JP H01321508A
Authority
JP
Japan
Prior art keywords
gas
signal
gas line
control
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63156187A
Other languages
Japanese (ja)
Inventor
Yuko Morimoto
森本 雄孝
Hideaki Nagura
名倉 英明
Kenichi Inoue
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Manufacturing Co Ltd
Original Assignee
Kojima Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Manufacturing Co Ltd filed Critical Kojima Manufacturing Co Ltd
Priority to JP63156187A priority Critical patent/JPH01321508A/en
Publication of JPH01321508A publication Critical patent/JPH01321508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To accurately keep the prescribed oxygen density by measuring and monitoring the diluted/mixed gas via an oxygen density sensor and controlling the flow rate of the unmixed gas so as to keep a fixed level of the density signal output. CONSTITUTION:A PID (proportion, integration and differentiation) controller 12 produces a control signal for the optimum control coincident with the overall response speed of a feedback system via a PID arithmetic operation. This control signal is supplied to the flow rate control valves 2 and 5 of an O2 gas line 1 and a diluted gas line 4 respectively as the complementary forward and reverse action signals through a signal converting circuit and a subtraction circuit. Both valves 2 and 5 change competitively the gas flow rates of both lines 1 and 4 with the valve opening amounts corresponding to the control input so that the sum of the gas flow rates of both lines are kept at a fixed level. Thus the density of oxygen is kept at a set level. As a result, the oxygen density value can be optionally set and kept accurately and stably with a fixed flow rate for supply of the oxygen nitritive gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、純酸素ガス又は酸素富化空気を純窒素ガス又
は空気により希釈混合して一定の酸素濃度のガスを発生
するための制御装置に関するものである。より特定すれ
ば、本発明は、希釈混合されたガスを酸素濃度センサに
より測定及び監視し、その濃度信号出力が一定値となる
ようにフィードバックして混合前のガス流量を調節する
自動制御装置に関するものである。
Detailed Description of the Invention Field of the Invention The present invention relates to a control device for diluting and mixing pure oxygen gas or oxygen-enriched air with pure nitrogen gas or air to generate gas with a constant oxygen concentration. It is. More specifically, the present invention relates to an automatic control device that measures and monitors diluted mixed gas with an oxygen concentration sensor, and feeds back the concentration signal output to a constant value to adjust the gas flow rate before mixing. It is something.

従来の技術 近年、種々の製造技術においては、酸素濃度を正確に維
持した酸素富化空気の制御供給装置が要求されるように
なってきた。特に、磁気テープ、フロッピーディスク及
び磁気カード用のフェライト磁性体の焼成等における助
燃ガスやバイオテクノロジーにおける培養槽への通気ガ
スとして、また、医療用機器や健康機器等の使用者吸入
空気としての需要が高まり、その性能も高精度、かつ高
安定度であることが要求されている。
BACKGROUND OF THE INVENTION In recent years, various manufacturing technologies have required a controlled supply system for oxygen-enriched air that accurately maintains the oxygen concentration. In particular, it is in demand as a combustion aid gas in the firing of ferrite magnetic materials for magnetic tapes, floppy disks, and magnetic cards, as ventilation gas for culture tanks in biotechnology, and as intake air for users of medical and health equipment. With the increase in performance, high accuracy and high stability are required.

これに対し、従来までの酸素濃度制御システムにおいて
は、Oo計の信号によってフィードバック制御を行う方
式は技術的に困難とされ、一般には、開放制御システム
であって、しかも、高濃度ガスの流量を固定し、希釈用
ガスとしての窒素や空気などの低濃度ガスの流量のみを
制御するものが主流であった。また、希にO2計の信号
によるフィードバック制御を行う方式であっても、やは
り一方のガス(主として希釈用ガス)のみを制御するも
のであった。
On the other hand, in conventional oxygen concentration control systems, it is technically difficult to perform feedback control based on Oo meter signals. The mainstream was to control only the flow rate of a low concentration gas such as nitrogen or air as a dilution gas. Furthermore, even in rare cases where feedback control is performed using a signal from an O2 meter, only one of the gases (mainly the dilution gas) is controlled.

発明が解決しようとする課題 したがって、従来の酸素濃度制御方式においては、制御
量に応じて酸素濃度制御ガスの流量が異なることになり
、これとフィードバックシステム全体の応答速度や流路
条件等が重なって結局酸素濃度を正確に維持した一定流
量のガスを流通させたいという要求を満たすことができ
なかった。
Problems to be Solved by the Invention Therefore, in the conventional oxygen concentration control method, the flow rate of the oxygen concentration control gas differs depending on the control amount, and this overlaps with the response speed of the entire feedback system, flow path conditions, etc. In the end, it was not possible to satisfy the demand for circulating a constant flow rate of gas while accurately maintaining the oxygen concentration.

すなわち、本発明は、酸素濃度値を任意に設定すること
が可能であって、しかも、その酸素濃度値を周囲温度や
ガス供給条件の変化、流路条件の相違等にかかわらず、
一定の酸素′富化ガス供給流量において、正確、かつ安
定に維持することができる酸素濃度制御装置を提供しよ
うとするものである。
That is, the present invention makes it possible to arbitrarily set the oxygen concentration value, and to set the oxygen concentration value regardless of changes in ambient temperature, gas supply conditions, differences in channel conditions, etc.
The present invention aims to provide an oxygen concentration control device that can accurately and stably maintain a constant supply flow rate of oxygen'-enriched gas.

課題を解決するための手段 本発明は、上記の目的を達するため、 高濃度又は高純度02ガス源に接続されたO2ガスライ
ンと、 空気等の低濃度O2ガスまたは窒素等の不活性ガスから
なる希釈用ガス源に接続された希釈ガスラインと、 前記O2ガスライン及び希釈ガスラインにそれぞれ挿入
された制御信号入力端子を有する実質上同一規格からな
る第1及び第2の流量制御弁と、前記02ガスライン及
び希釈ガスラインの終端に接続された一対のガス入口を
有するミキサーと、前記ミキサーから出た混合ガスのO
2濃度を測定するための02計と、 前記02計による測定信号をPID演算することにより
制御信号を発生するPID調節計と、前記PID制御信
号を所定範囲内の電圧信号に変換するための信号変換回
路と、 前記所定範囲の最大電圧から前記変換された電圧信号を
減じて補数電圧信号を発生する減算回路とを備え、 前記信号変換回路の変換出力を正動作信号として前記0
゜ガスラインに挿入された第1の流量制御弁の制御入力
端子に供給し、前記減算回路の補数出力を逆動作信号と
して前記希釈ガスラインに挿入された第2の流量制御弁
の制御入力端子に供給するようにしたことを特徴とする
酸素濃度制御装置を構成したものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides an O2 gas line connected to a high concentration or high purity O2 gas source, and a low concentration O2 gas such as air or an inert gas such as nitrogen. a dilution gas line connected to a dilution gas source; first and second flow control valves made of substantially the same standard and having control signal input terminals inserted into the O2 gas line and the dilution gas line, respectively; A mixer having a pair of gas inlets connected to the ends of the 02 gas line and the dilution gas line, and an O
2. A 02 meter for measuring concentration; a PID controller that generates a control signal by performing PID calculation on the measurement signal from the 02 meter; and a signal for converting the PID control signal into a voltage signal within a predetermined range. a conversion circuit; and a subtraction circuit that generates a complement voltage signal by subtracting the converted voltage signal from the maximum voltage in the predetermined range, and converts the conversion output of the signal conversion circuit into a positive operation signal as the zero signal.
゜A control input terminal of a second flow control valve inserted in the dilution gas line, which is supplied to a control input terminal of a first flow control valve inserted in the gas line, and uses the complement output of the subtraction circuit as a reverse operation signal. This is an oxygen concentration control device characterized in that the oxygen concentration is supplied to the oxygen concentration.

作     用 上記の構成において、02計、すなわち酸素濃度センサ
の検出応答速度は測定系統(測定用管路の流速及びセン
サの応答速度)によって規制され、フィードバックシス
テム全体の応答速度に関与する。また、上流での高濃度
O2ガス及び希釈ガスのの希釈混合比率の変化は、その
管路の容積や抵抗に応じて遅延してから02計に検出さ
れる。このため、PII]調節計はこのようなフィード
バックシステム全体の応答速度に整合した最適制御のた
めの制御信号を比例、積分及び微分演算(PID演算)
により発生し、これが信号変換回路及び減算回路を通じ
て相補的に正動作信号及び逆動作信号として前記02ガ
スライン及び希釈ガスラインの各流量制御弁に供給され
、これらのバルブは制御入力に対応したバルブ開度にお
いて、両ガスラインのガス流量の和を一定に保つように
各ガス流量を拮抗的に変化させ、酸素濃度を設定値に維
持するものである。
Operation In the above configuration, the detection response speed of the 02 meter, that is, the oxygen concentration sensor, is regulated by the measurement system (the flow rate of the measurement pipe and the response speed of the sensor), and is involved in the response speed of the entire feedback system. Further, changes in the dilution mixing ratio of high concentration O2 gas and diluent gas upstream are detected by the O2 meter after a delay depending on the volume and resistance of the pipe. Therefore, the controller uses proportional, integral, and differential calculations (PID calculations) to generate control signals for optimal control that matches the response speed of the entire feedback system.
These signals are supplied to each flow control valve of the 02 gas line and the dilution gas line as a complementary normal operation signal and reverse operation signal through a signal conversion circuit and a subtraction circuit, and these valves are controlled by the valve corresponding to the control input. In the opening degree, each gas flow rate is competitively changed so that the sum of the gas flow rates of both gas lines is kept constant, and the oxygen concentration is maintained at the set value.

実  施  例 第1図は本発明の流路構成の実施例を示すものであり、
高濃度02ガス源に接続されたO2ガスライン(1)に
は上流より順次圧力調整器(2)、圧力計PCI及び電
気信号により動作する流量制御器PCI(3)が挿入さ
れている。また、空気等の低濃度02ガス又は窒素等の
不活性ガスからなる希釈用ガス源からのびる希釈ガスラ
イン(4)には、上流側より順次圧力調整器(5)、圧
力計PG2及び前記FCI(3)と同様な流量制御器F
C2(6’)が挿入されている。流量制御器PCI(3
)およびFe2(6)の下流側における02ガスライン
(1)及び希釈用ガスライン(4)の下流端は、ガス均
一混合用のミキサー(7)における一対のガス人口(7
a)、(7b)にそれぞれ接続される。ミキサー(7)
の出口流路(8)はバッファタンク(9)を介して酸素
富化ガス供給口(10)に導かれ、この供給口(lO)
は制御酸素を必要とする目的系に接続される。バッファ
タンク(9)の下流側と供給口(10)との間には、0
2計(11)が分岐接続され、このO2信号出力はプロ
セス制御用PID調節計(I2)に接続される。PID
調節計の出力ラインは信号処理回路(13)の入力に接
続され、この信号処理回路(I3)の第1及び第2出力
端子(13a )、(13b)からは、それぞれ02ガ
スラインにおける流量制御器PCI(3)及び希釈ガス
ラインにおける流量制御器FC2(6)の信号入力端子
にそれぞれ正動作信号及び逆動作信号として供給される
ようなっている。
Embodiment FIG. 1 shows an embodiment of the flow path configuration of the present invention.
A pressure regulator (2), a pressure gauge PCI, and a flow rate controller PCI (3) operated by an electric signal are sequentially inserted into the O2 gas line (1) connected to the high concentration O2 gas source from upstream. In addition, a dilution gas line (4) extending from a dilution gas source consisting of a low-concentration 02 gas such as air or an inert gas such as nitrogen is equipped with a pressure regulator (5), a pressure gauge PG2, and the FCI in order from the upstream side. Flow rate controller F similar to (3)
C2 (6') is inserted. Flow controller PCI (3
) and the downstream ends of the 02 gas line (1) and the dilution gas line (4) on the downstream side of the Fe2 (6) are connected to a pair of gas populations (7) in the mixer (7) for uniform gas mixing.
a) and (7b), respectively. Mixer (7)
The outlet flow path (8) is led to the oxygen-enriched gas supply port (10) via the buffer tank (9), and this supply port (lO)
is connected to a target system requiring controlled oxygen. Between the downstream side of the buffer tank (9) and the supply port (10), there is no
Two meters (11) are branch-connected, and this O2 signal output is connected to a process control PID controller (I2). P.I.D.
The output line of the controller is connected to the input of a signal processing circuit (13), and the first and second output terminals (13a) and (13b) of this signal processing circuit (I3) are used to control the flow rate in the 02 gas line, respectively. The normal operation signal and the reverse operation signal are supplied to the signal input terminals of the flow controller PCI (3) and the dilution gas line flow controller FC2 (6), respectively.

上記の流路構成において、02ガスライン(1)を通る
高濃度酸素ガスは、圧力調整器(2)によって適当な圧
力(例えば、1〜3 kg / cd )に調圧され、
その圧力は圧力計PCIにおいて確認される。
In the above flow path configuration, the high concentration oxygen gas passing through the 02 gas line (1) is regulated to an appropriate pressure (for example, 1 to 3 kg/cd) by the pressure regulator (2),
The pressure is checked at pressure gauge PCI.

同様に、希釈用ガスライン(4)を流れる低酸素濃度又
は希釈用ガスは圧力調整器(5)により調圧され、その
圧力は圧力計PG2において確認される。
Similarly, the pressure of the low oxygen concentration or dilution gas flowing through the dilution gas line (4) is regulated by the pressure regulator (5), and the pressure is confirmed by the pressure gauge PG2.

流量制御器PCI(3)、Fe2(6”)は電気信号で
動作する流量制御器であり、少流量の場合には、マスフ
ローコントローラと呼ばれる電子式質量流量制御器を使
用する。流量制御器PCI(3)は正動作信号を受けて
負帰還系における制御操作信号の増減が生じた場合と同
じ働きをする。また、流量制御器FC2(6)は逆動作
信号を受けて上記PCIと逆の動作をする。この場合、
バルブ開度と動作信号とは直線的に対応するようにしで
あるため、これらは相補信号となり、高濃度02ガス流
量と希釈用ガスのガス流量との和は一定に維持される。
The flow rate controllers PCI (3) and Fe2 (6") are flow rate controllers that operate using electrical signals. For small flow rates, an electronic mass flow controller called a mass flow controller is used.Flow rate controller PCI (3) has the same function as when the control operation signal in the negative feedback system increases or decreases in response to a positive operation signal.Furthermore, the flow controller FC2 (6) receives a reverse operation signal and operates in the opposite manner to the above PCI. In this case,
Since the valve opening degree and the operating signal correspond linearly, they become complementary signals, and the sum of the high concentration 02 gas flow rate and the dilution gas flow rate is maintained constant.

これらのガスを受は入れるミキサー(7)は、可動部分
のない分散拡散方式において2種類のガスを均一に混合
するものである。さらに、バッファタンク(9)は混合
ガスを一時的に滞留させ、混合ガスの濃度変化の速度を
02計の応答速度に整合させるものである。バッファタ
ンク(9)の出口管路内のガスの一部は、02計(11
)に導入され、ここで測定された酸素濃度は電気信号と
してPID調節計に送られ、酸素濃度の設定値と比較さ
れ、同時にPID演算されてから制御操作信号として出
力される。制御信号回路(13)は前記制御操作信号を
適当に処理し、正動作信号と逆動作信号に分離した後、
流量制御器FCH3)及びFe2(6)を作動させるも
のである。
The mixer (7) that receives these gases uniformly mixes the two types of gases using a dispersion-diffusion method with no moving parts. Furthermore, the buffer tank (9) temporarily retains the mixed gas and matches the rate of change in concentration of the mixed gas to the response speed of the 02 meter. A part of the gas in the outlet pipe of the buffer tank (9) flows into the 02 meter (11
), and the oxygen concentration measured here is sent as an electrical signal to a PID controller, where it is compared with a set value for oxygen concentration, and simultaneously subjected to PID calculation and output as a control operation signal. The control signal circuit (13) processes the control operation signal appropriately and separates it into a normal operation signal and a reverse operation signal, and then
This operates the flow rate controller FCH3) and Fe2(6).

信号処理回路(13)の構成例は、第2図に示す通りで
ある。すなわち、(14)はPID調節計(12)から
−膜内にDC4〜20mAの電流信号として送られて(
る制御操作信号を受は取り、これをDCO〜5vの電圧
信号に変換する電流−電圧変換回路、(15)は前記電
圧範囲DCO〜5vの最大値である5vを発生する基準
電圧発生回路、(I6)は前記信号変換回路(14)か
らの電圧信号を前記流量制御器PCI(3)の制御信号
端子に供給するためのバッファアンプ、(17)は前記
基準電圧5vから信号変換回路(14)より出力された
O〜5vの変換電圧を差し引き、その変換電圧の補数出
力を発生するための減算器、そして、(18)は減算器
(17〉からの補数出力を流量制御器FC2(6)の制
御信号端子に供給するためのバッファアンプである。
An example of the configuration of the signal processing circuit (13) is as shown in FIG. That is, (14) is sent from the PID controller (12) into the membrane as a DC 4 to 20 mA current signal (
(15) is a reference voltage generation circuit that generates 5V, which is the maximum value of the voltage range DCO~5V; (I6) is a buffer amplifier for supplying the voltage signal from the signal conversion circuit (14) to the control signal terminal of the flow rate controller PCI (3); (17) is a buffer amplifier for supplying the voltage signal from the signal conversion circuit (14) to the control signal terminal of the flow rate controller PCI (3); ) is a subtracter for subtracting the converted voltage of O~5v output from the subtracter (17) and generating a complement output of the converted voltage, and (18) is a subtracter for subtracting the converted voltage of O~5V output from the subtracter (17), and a subtracter for generating the complement output of the converted voltage. ) is a buffer amplifier for supplying the control signal terminal to the control signal terminal.

上記のような信号処理回路(13)の構成において、そ
れぞれ生成された正動作信号及び逆動作信号が完全に相
補関係にあることは、第3図に示す通りである。また、
これに基づいて目的酸素濃度を、例えば100%から1
0%まで段階的に変化した場合の酸素濃度の応答性は、
第4図に示す通りである。この第4図において、1つの
目的濃度設定期間は10分間であり、したがって、その
切換えに伴う立ち下がりからアンダーシュート及びオー
バーシュートを経て設定濃度に集束するまでの時間は、
約2〜3分程度であり、それ以後切換えまで正確に目標
濃度に維持されることがわかる。
As shown in FIG. 3, in the configuration of the signal processing circuit (13) as described above, the generated normal operation signal and reverse operation signal are in a completely complementary relationship. Also,
Based on this, the target oxygen concentration can be adjusted from 100% to 1
The responsiveness of oxygen concentration when changing stepwise up to 0% is:
As shown in FIG. In FIG. 4, one target concentration setting period is 10 minutes, so the time from the falling edge due to switching until convergence at the set concentration through undershoot and overshoot is as follows:
It can be seen that it takes about 2 to 3 minutes and that the target concentration is accurately maintained after that until switching.

第5図は一定酸素濃度(約21%)の空気をコンプレッ
サのみにより目的系に供給する場合、及び本発明の制御
システムにより制御酸素濃度30%とした酸素富化ガス
を目的系に供給する場合の安定度を示すグラフである。
Figure 5 shows a case in which air with a constant oxygen concentration (approximately 21%) is supplied to the target system using only a compressor, and a case in which oxygen-enriched gas with a controlled oxygen concentration of 30% is supplied to the target system by the control system of the present invention. It is a graph showing the stability of.

このグラフから明らかな通り、本発明のシステムを通さ
ない場合には、一定酸素濃度のガスであっても、コンプ
レッサの動作周期に応じて、この場合は1時間に1回程
度の濃度測定値の落ち込みが見られるのに対し、本発明
のシステムを通した場合には、制御濃度がきわめて安定
に維持されることがわかる。
As is clear from this graph, even if gas with a constant oxygen concentration is not passed through the system of the present invention, the concentration value will be measured approximately once every hour, depending on the operating cycle of the compressor. It can be seen that the controlled concentration remains very stable when passed through the system of the present invention, whereas a dip is observed.

発明の効果 本発明は、以上の通り任意の設定酸素濃度値を一定の出
力ガス流量において、種々の測定パラメータに左右され
ることなく正確に維持することが可能であり、これによ
って酸素富化ガスを要求する種々の分野において、きわ
めて有用な酸素濃度制御装置を提供するものである。
Effects of the Invention As described above, the present invention is capable of accurately maintaining an arbitrarily set oxygen concentration value at a constant output gas flow rate without being influenced by various measurement parameters. The present invention provides an extremely useful oxygen concentration control device in various fields requiring oxygen concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流路構成の1例を示す線図、第2図は
信号処理回路の構成例を示すブロック線図、 第3図は本発明の信号処理回路による相補性制御信号を
示すグラフ、 第4図は本発明の装置による濃度切換設定状態を示す記
録ヂャート、 第5図は制御安定度を示す記録チャートである。 (1)・・・・・・・・・・・・・・・・・・02ガス
ライン(2)、(5)・・・・・・・・・圧力調整器(
3)、(6)・・・・・・・・・流量制御器(4)・・
・・・・・・・・・・・・・・・・希釈ガスライン(7
)・・・・・・・・・・・・・・・・・・ミキサー(8
)・・・・・・・・・・・・・・・・・・出口流路(9
)・・・・・・・・・・・・・・・・・・バッファタン
ク(10)・・・・・・・・・・・・・・・・・・酸素
富化ガス供給口(11)・・・・・・・・・・・・・・
・・・・02計(12)・・・・・・・・・・・・・・
・・・・PID調節計(13)・・・・・・・・・・・
・・・・・・・信号処理回路(14)・・・・・・・・
・・・・・・・・・・電流−電圧変換回路(15)・・
・・・・・・・・・・・・・・・・基準電圧発生回路(
16)、(18)・・・・・・・・・バッファアンプ(
17)・・・・・・・・・・・・・・・・・・減算器特
許出顯大  株式会社 小島製作所 代   理   人   新  実  健  部(外1
名) 第3図 [V] 刊にう乍′7色号入力
FIG. 1 is a diagram showing an example of the flow path configuration of the present invention, FIG. 2 is a block diagram showing an example of the configuration of a signal processing circuit, and FIG. 3 is a diagram showing complementary control signals by the signal processing circuit of the present invention. FIG. 4 is a record chart showing the density switching setting state by the apparatus of the present invention, and FIG. 5 is a record chart showing control stability. (1)・・・・・・・・・・・・・・・・・・02 Gas line (2), (5)・・・・・・Pressure regulator (
3), (6)...Flow rate controller (4)...
・・・・・・・・・・・・・・・ Dilution gas line (7
)・・・・・・・・・・・・・・・Mixer (8
)・・・・・・・・・・・・・・・Outlet channel (9
)・・・・・・・・・・・・・・・Buffer tank (10)・・・・・・・・・・・・・・・ Oxygen enriched gas supply port (11 )・・・・・・・・・・・・・・・
・・・02 total (12)・・・・・・・・・・・・・・・
...PID controller (13)...
......Signal processing circuit (14)...
......Current-voltage conversion circuit (15)...
・・・・・・・・・・・・・・・Reference voltage generation circuit (
16), (18)...Buffer amplifier (
17) ・・・・・・・・・・・・・・・ Subtractor patent issued by Kojima Seisakusho Co., Ltd. Managing Director Shinji Ken Department (External 1)
Figure 3 [V] Input the 7th color number in the publication

Claims (1)

【特許請求の範囲】 高濃度又は高純度O_2ガス源に接続されたO_2ガス
ラインと、 空気等の低濃度O_2ガスまたは窒素等の不活性ガスか
らなる希釈用ガス源に接続された希釈ガスラインと、 前記O_2ガスライン及び希釈ガスラインにそれぞれ挿
入された制御信号入力端子を有する実質上同一規格から
なる第1及び第2の流量制御弁と、前記O_2ガスライ
ン及び希釈ガスラインの終端に接続された一対のガス入
口を有するミキサーと、前記ミキサーから出た混合ガス
のO_2濃度を測定するためのO_2計と、 前記O_2計による測定信号をPID演算することによ
り制御信号を発生するPID調節計と、 前記PID制御信号を所定範囲内の電圧信号に変換する
ための信号変換回路と、 前記所定範囲の最大電圧から前記変換された電圧信号を
減じて補数電圧信号を発生する減算回路とを備え、 前記信号変換回路の変換出力を正動作信号として前記O
_2ガスラインに挿入された第1の流量制御弁の制御入
力端子に供給し、前記減算回路の補数出力を逆動作信号
として前記希釈ガスラインに挿入された第2の流量制御
弁の制御入力端子に供給するようにしたことを特徴とす
る酸素濃度制御装置。
[Claims] An O_2 gas line connected to a high concentration or high purity O_2 gas source, and a dilution gas line connected to a dilution gas source consisting of a low concentration O_2 gas such as air or an inert gas such as nitrogen. and first and second flow control valves made of substantially the same standard and having control signal input terminals inserted into the O_2 gas line and the dilution gas line, respectively, and connected to the terminal ends of the O_2 gas line and the dilution gas line. a mixer having a pair of gas inlets, an O_2 meter for measuring the O_2 concentration of the mixed gas discharged from the mixer, and a PID controller that generates a control signal by performing PID calculation on the measurement signal from the O_2 meter. a signal conversion circuit for converting the PID control signal into a voltage signal within a predetermined range; and a subtraction circuit for subtracting the converted voltage signal from the maximum voltage within the predetermined range to generate a complement voltage signal. , the conversion output of the signal conversion circuit is used as a normal operation signal to the O
_2 A control input terminal of a second flow control valve inserted in the dilution gas line, which is supplied to a control input terminal of a first flow control valve inserted in the gas line, and uses the complement output of the subtraction circuit as a reverse operation signal. An oxygen concentration control device characterized in that the oxygen concentration is supplied to the oxygen concentration.
JP63156187A 1988-06-23 1988-06-23 Oxygen density controller Pending JPH01321508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156187A JPH01321508A (en) 1988-06-23 1988-06-23 Oxygen density controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156187A JPH01321508A (en) 1988-06-23 1988-06-23 Oxygen density controller

Publications (1)

Publication Number Publication Date
JPH01321508A true JPH01321508A (en) 1989-12-27

Family

ID=15622270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156187A Pending JPH01321508A (en) 1988-06-23 1988-06-23 Oxygen density controller

Country Status (1)

Country Link
JP (1) JPH01321508A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135415A (en) * 1992-10-27 1994-05-17 Toyo Seikan Kaisha Ltd Method and apparatus for automatically monitoring carbon dioxide gas concentration in control of container internal pressure with mixed gas
JPH11132425A (en) * 1997-10-31 1999-05-21 Sanki Eng Co Ltd Secondary combustion method in refuse incinerator
WO2001062700A3 (en) * 2000-02-24 2002-03-21 Showa Denko Kk Method for adjusting concentration of starting materials in gas phase contact reaction process, method for controlling reaction process by the adjusting method, and process for producing lower fatty acid or lower fatty acid ester using the control method
JP2003010331A (en) * 2001-07-02 2003-01-14 Teijin Ltd Respiratory gas feeding equipment
JP2007190448A (en) * 2006-01-17 2007-08-02 Taiyo Nippon Sanso Corp Mixed gas manufacturing apparatus and method
JP2014514073A (en) * 2011-04-13 2014-06-19 マイケル,クライン Gas delivery method and apparatus
CN105963837A (en) * 2016-06-08 2016-09-28 湖南明康中锦医疗科技发展有限公司 Air-oxygen mixed control breathing machine and control method
JP2018118085A (en) * 2012-04-05 2018-08-02 フィッシャー アンド ペイケル ヘルスケア リミテッド Respiration auxiliary device
US11433210B2 (en) 2014-05-27 2022-09-06 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
US11666720B2 (en) 2015-12-02 2023-06-06 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455143U (en) * 1977-09-26 1979-04-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455143U (en) * 1977-09-26 1979-04-17

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135415A (en) * 1992-10-27 1994-05-17 Toyo Seikan Kaisha Ltd Method and apparatus for automatically monitoring carbon dioxide gas concentration in control of container internal pressure with mixed gas
JPH11132425A (en) * 1997-10-31 1999-05-21 Sanki Eng Co Ltd Secondary combustion method in refuse incinerator
WO2001062700A3 (en) * 2000-02-24 2002-03-21 Showa Denko Kk Method for adjusting concentration of starting materials in gas phase contact reaction process, method for controlling reaction process by the adjusting method, and process for producing lower fatty acid or lower fatty acid ester using the control method
JP2003010331A (en) * 2001-07-02 2003-01-14 Teijin Ltd Respiratory gas feeding equipment
JP4606655B2 (en) * 2001-07-02 2011-01-05 帝人株式会社 Breathing gas supply device
JP2007190448A (en) * 2006-01-17 2007-08-02 Taiyo Nippon Sanso Corp Mixed gas manufacturing apparatus and method
US11464934B2 (en) 2011-04-13 2022-10-11 Thornhill Scientific Inc. Gas delivery method and apparatus
JP2014514073A (en) * 2011-04-13 2014-06-19 マイケル,クライン Gas delivery method and apparatus
JP2018118085A (en) * 2012-04-05 2018-08-02 フィッシャー アンド ペイケル ヘルスケア リミテッド Respiration auxiliary device
US10357629B2 (en) 2012-04-05 2019-07-23 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US10980967B2 (en) 2012-04-05 2021-04-20 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US11918748B2 (en) 2012-04-05 2024-03-05 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
US11433210B2 (en) 2014-05-27 2022-09-06 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
US12053585B2 (en) 2014-05-27 2024-08-06 Fisher & Paykel Healthcare Limited Gases mixing and measuring for a medical device
US11666720B2 (en) 2015-12-02 2023-06-06 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus
CN105963837A (en) * 2016-06-08 2016-09-28 湖南明康中锦医疗科技发展有限公司 Air-oxygen mixed control breathing machine and control method

Similar Documents

Publication Publication Date Title
US4687020A (en) Fluid mass flow controller
US7069944B2 (en) Flow rate control device
US7946751B2 (en) Method for controlled mixing of fluids via temperature
US5141021A (en) Mass flow meter and mass flow controller
EP0147233A2 (en) Engine exhaust gas recirculation control system
JPH01321508A (en) Oxygen density controller
US11225719B2 (en) Concentration controller, gas control system, deposition apparatus, concentration control method, and program recording medium for concentration controller
JP3168217B2 (en) Method and apparatus for supplying gas to ultra-high precision analyzer
CN101829386A (en) Intelligent fresh gas flow and oxygen concentration control device for anesthesia machine
CN201692468U (en) Intelligent fresh gas flow and oxygen concentration control device of anesthetic apparatus
US4031912A (en) Reactants addition and concentration control system
CN111122519A (en) Closed-loop flow control system and control method for atomic fluorescence instrument
KR20120089734A (en) Device and method for controlling an exhaust gas sensor
JP3581250B2 (en) Flow type supply method of target concentration mixed gas by two kinds of gas
JPS61279678A (en) Control device for flow rate
US4493635A (en) Oxygen-enriched air ratio control device for combustion apparatus
JP3230431B2 (en) Gas measurement device
JP3805671B2 (en) Method for analyzing oxygen concentration in gas and oxygen concentration analyzer
CN201135861Y (en) Gases accurate proportioning device
CN1474244A (en) Precision gas proportioning device
CN109612269A (en) For oxygen content autocontrol method in the kiln of lithium battery material sintering
JP2010243180A (en) Gas composition analyzer, gas composition analysis method, and fuel cell system
JPH084101Y2 (en) Gas mixing equipment
JPH079812B2 (en) Fuel cell
WO2022141320A1 (en) Paramagnetic gas measurement device and medical ventilation system