JPH01320257A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01320257A
JPH01320257A JP63152987A JP15298788A JPH01320257A JP H01320257 A JPH01320257 A JP H01320257A JP 63152987 A JP63152987 A JP 63152987A JP 15298788 A JP15298788 A JP 15298788A JP H01320257 A JPH01320257 A JP H01320257A
Authority
JP
Japan
Prior art keywords
powder
particle size
type
density
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63152987A
Other languages
Japanese (ja)
Inventor
Akito Kurosaka
昭人 黒坂
Teruyuki Takayama
高山 輝之
Haruo Tominaga
晴夫 冨永
Kazuhiko Tomomatsu
友松 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63152987A priority Critical patent/JPH01320257A/en
Publication of JPH01320257A publication Critical patent/JPH01320257A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To ensure superior fillability, to obtain a high density molded body and to increase the critical current density of an oxide superconductor by classifying powdery starting material for a BSCCO superconductor into three kinds of powders having different prescribed particle sizes, mixing the powders in a prescribed ratio and press-molding this mixture. CONSTITUTION:Powdery starting material for a Bi-Sr-Ca-Cu oxide (BSCCO) superconducting material is classified into first powder having 8-10mum particle size, second powder having 2-3mum particle size and third powder having <=0.5mum particle size. The powders are mixed in (30-34):(7-9):1 weight ratio of first powder-second powder:third powder and this mixture is press-molded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はビスマス(Bi)−ストロンチウム(Sr)−
カルシウム(Ca)−銅(Cu)−酸化物(0)(以下
、B5CC0という)系超電導材料の線材等の酸化物超
電導体の製造方法に関し、特にその密度を高めて臨界電
流密度を向上させた酸化物超電導体の製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to bismuth (Bi)-strontium (Sr)-
Regarding a method for manufacturing oxide superconductors such as wires of calcium (Ca)-copper (Cu)-oxide (0) (hereinafter referred to as B5CC0) based superconducting materials, the critical current density is improved by particularly increasing the density. The present invention relates to a method for producing an oxide superconductor.

[従来の技術] B5CC0系超電導材料を線材に加工するプロセスにお
いては、通常、先ずBi、Sr、Ca。
[Prior Art] In the process of processing a B5CC0-based superconducting material into a wire rod, Bi, Sr, and Ca are usually first processed.

Cuの酸化物又は炭酸塩を出発原料とし、この各原料を
所定の配合量で混合した後、この混合粉末を約900°
Cの温度で仮焼きし、B5CC0系粉末粒子の焼結体を
得る。次いで、この焼結体を所定の粒度の粉末に粉砕し
、得られたB5CC0系粉末を所望の大きさ及び形状の
成形体に加圧成形する。
Cu oxide or carbonate is used as a starting material, and after mixing each raw material in a predetermined amount, the mixed powder is heated at approximately 900°.
The mixture is calcined at a temperature of C to obtain a sintered body of B5CC0 powder particles. Next, this sintered body is pulverized into a powder having a predetermined particle size, and the obtained B5CC0-based powder is pressure-molded into a compact having a desired size and shape.

その後、上記加圧成形工程で作製した成形体を金属パイ
プ等に充填した後、パイプと共にスウェージング加工し
、又は伸線加工することにより、所望の線径の線材を得
る。
Thereafter, a metal pipe or the like is filled with the molded body produced in the pressure forming step, and then swaged or wire drawn together with the pipe to obtain a wire rod of a desired wire diameter.

次いで、この線材を、所望の特性(臨界温度Tc又は臨
界電流密度Jc)が得られるように、酸化雰囲気中で約
850乃至900℃に加熱して焼成処理する。
Next, this wire is fired by heating to about 850 to 900° C. in an oxidizing atmosphere so as to obtain desired characteristics (critical temperature Tc or critical current density Jc).

この場合に、加圧成形される粉末は、従来、第1図に示
すような粒度分布を有している。第1図は横軸に粒子径
をとり、縦軸に積算フルイ下をとってB5CC0系酸化
物の粒度分布を示すグラフ図である。この第1図から明
らかなように、原料粉末は平均粒子径が4乃至5μmで
あり、粒子径が20μm以下の粒子が連続的に分布して
いる。
In this case, the powder to be pressure-molded conventionally has a particle size distribution as shown in FIG. FIG. 1 is a graph showing the particle size distribution of B5CC0-based oxides, with the horizontal axis representing the particle diameter and the vertical axis representing the integrated sieve depth. As is clear from FIG. 1, the raw material powder has an average particle size of 4 to 5 μm, and particles having a particle size of 20 μm or less are continuously distributed.

[発明が解決しようとする課題] しかしながら、このような粒度分布を有する粉末を加圧
成形した成形体は必ずしも高い密度を有するものではな
かった。また、この成形体の密度を高めるべく粉砕方法
を変更して平均粒子径を小さくし、又は大きくしても、
第1図に示す場合と同様に所定粒子径以下の粒子が連続
的に分布するという事情は変わらない、従って、同一の
加圧条件では、粉砕方法を変更しても、成形体の密度を
著しく高める迄には至らない。
[Problems to be Solved by the Invention] However, a compact formed by pressure-molding a powder having such a particle size distribution does not necessarily have a high density. Furthermore, even if the pulverization method is changed to increase or decrease the average particle size in order to increase the density of the compact,
As in the case shown in Figure 1, the fact that particles with a predetermined particle size or less are continuously distributed remains the same. Therefore, under the same pressure conditions, even if the crushing method is changed, the density of the compact will significantly decrease. I can't go so far as to raise it.

このように、従来の製造方法においては、加圧成形体の
密度を高めることができないため、後工程の伸線加工及
び焼成処理により得られたB5CC0系超電導体は臨界
電流密度が低いという欠点を有する。
In this way, in the conventional manufacturing method, it is not possible to increase the density of the pressed compact, so the B5CC0-based superconductor obtained by the post-process wire drawing and sintering treatment has the drawback of low critical current density. have

本発明はかかる問題点に鑑みてなされたものであって、
加圧成形体の密度を十分高めることができ、これにより
、臨界電流密度を著しく高くすることができる酸化物超
電導体の製造方法を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for producing an oxide superconductor that can sufficiently increase the density of a press-molded body, thereby significantly increasing the critical current density.

[課題を解決するための手段] 本発明に係る酸化物超電導体の製造方法は、ビスマス−
ストロンチウム−カルシウム−銅−酸化物系超電導材の
原料粉末のうち、粒子径が8乃至10μmの第1種粉末
と、粒子径が2乃至3μmの第2種粉末と、粒子径が0
.5μm以下の第3種粉末とを、(第1種粉末):(第
2種粉末):(第3種粉末)=(30乃至34): (
7乃至9):1の配合重量比で混合し、この混合粉末を
加圧成形することを特徴とする。
[Means for Solving the Problems] A method for producing an oxide superconductor according to the present invention includes bismuth-
Among the raw material powders of the strontium-calcium-copper-oxide superconducting material, the first type powder has a particle size of 8 to 10 μm, the second type powder has a particle size of 2 to 3 μm, and the second type powder has a particle size of 0 μm.
.. Type 3 powder of 5 μm or less and (Type 1 powder): (Type 2 powder): (Type 3 powder) = (30 to 34): (
The powder mixture is characterized by being mixed at a blending weight ratio of 7 to 9):1, and then press-molding the mixed powder.

[作用] 本願発明者等はB5CC0系超電導材料粉末について、
風篩分級等によって種々の粒子径の粉末粒子を採取し、
この粒子径に応じて原料粉末を数種類に分類した。そし
て、この各分類に属する粉末の配合重量を種々変更して
混合し、この混合粉末を同一加圧条件で成形してその粒
子径及び配合重量比と成形体の密度との関係を求めた。
[Function] Regarding the B5CC0-based superconducting material powder, the inventors of the present application
Powder particles of various particle sizes are collected by wind sieve classification, etc.
The raw material powder was classified into several types according to the particle size. Then, the blended weights of the powders belonging to each category were varied and mixed, and the mixed powders were molded under the same pressure conditions to determine the relationship between the particle diameter and blended weight ratio and the density of the molded body.

その結果、粒子径とその配合重量比とを適切な関係に設
定することにより、成形体の密度を十分に高めることが
できることを見い出した。
As a result, it was found that the density of the molded article could be sufficiently increased by setting the particle diameter and its blending weight ratio in an appropriate relationship.

本発明はこのような観点に立つそなされたものであり、
このような最適の粉末配合条件は以下のとおりである。
The present invention has been made from this perspective,
Such optimal powder blending conditions are as follows.

つまり、粒子径が8乃至10μmのものを第1種粉末、
粒子径が2乃至3μmのものを第2種粉末、粒子径が0
.5μm以下のものを第3種粉末として、原料粉末を3
種類に分類し、この粉末を第3種粉末の配合重量を1と
した場合、第1種粉末の配合重量が30乃至34、第2
種粉末の配合重量が7乃至9となるように混合する。
In other words, those with a particle size of 8 to 10 μm are classified as type 1 powder.
Type 2 powder has a particle size of 2 to 3 μm, and the particle size is 0.
.. The raw material powder is 3.
If the blended weight of the third type powder is 1, the blended weight of the first type powder is 30 to 34, and the blended weight of the second type powder is 30 to 34.
Mix so that the weight of the seed powder is 7 to 9.

この配合重量比で均一に混合したものは、優れた充填性
を示し、高密度の成形体を得ることができる。これに対
し、この粒子径の範囲及びその配合重量比の範囲から外
れるものは、十分に高い密度を得ることができない。こ
のため、本発明は粒子径範囲及び配合重量比範囲が前述
の範囲に入る粉末を使用して加圧成形する。
A product uniformly mixed at this blending weight ratio exhibits excellent filling properties and can yield a high-density molded product. On the other hand, if the particle size falls outside this range and the blending weight ratio falls within this range, a sufficiently high density cannot be obtained. Therefore, in the present invention, a powder having a particle size range and a blending weight ratio range falling within the above-mentioned range is used for pressure molding.

そして、線材に加工する場合は、通常、加圧成形後伸線
加工し、次いで焼成処理して超電導体を得る。この超電
導体は成形密度が高いので得られる臨界電流密度は著し
く上昇する。
When processed into a wire rod, the superconductor is usually obtained by pressure forming, wire drawing, and then firing. Since this superconductor has a high compaction density, the obtained critical current density increases significantly.

なお、実際上、各原料粉末は鱗片状等種々の形状をなし
ているが、本発明において規定した粉末の粒子径は、こ
の粉末粒子の最長径である。
Note that, in practice, each raw material powder has various shapes such as scaly shape, but the particle size of the powder specified in the present invention is the longest diameter of this powder particle.

[実施例] 次に、本発明の実施例について具体的に説明する。[Example] Next, examples of the present invention will be specifically described.

先ず、第1図に示すような平均粒子径が5μmのB i
2 Sr2 Ca2 Cu30.の粉末を作製し、この
粉末を出発原料粉末として、風篩によって種々の粒子径
に分級した。その後、下記第1表に示す配合重量比の粉
末となるように混合した後、加圧成形した。なお、実施
例1乃至5は本願特許請求の範囲にて規定した範囲内の
もの、比鮫例1乃至9はこの範囲から外れるものである
。また、従来例は連続的な粒度分布を有する出発原料粉
末自体を使用して成形したものである。
First, B i with an average particle diameter of 5 μm as shown in FIG.
2 Sr2 Ca2 Cu30. This powder was used as a starting material powder and was classified into various particle sizes using a wind sieve. Thereafter, the powders were mixed to obtain a powder having a blending weight ratio shown in Table 1 below, and then pressure molded. Note that Examples 1 to 5 are within the range defined in the claims of the present application, and Examples 1 to 9 are outside this range. Furthermore, in the conventional example, the starting raw material powder itself having a continuous particle size distribution was used for molding.

各試料における加圧成形体のサイズは直径が7關、長さ
が100市であり、加圧力は2.5トンとしてラバープ
レス法により成形した。この成形体の密度は、先ず、水
銀ポロシメーターを使用して成形体の空隙率を測定し、
この空隙率から算出しな。この成形体の見かけ密度の測
定結果を前記第1表に併せて示す。
The size of the pressure-molded body in each sample was 7 mm in diameter and 100 mm in length, and was molded by a rubber press method with a pressing force of 2.5 tons. The density of this molded body is determined by first measuring the porosity of the molded body using a mercury porosimeter.
Calculate from this porosity. The measurement results of the apparent density of this molded body are also shown in Table 1 above.

上記方法で作製した成形体を肉厚がImmの銀パイプに
充填封入した後、スウエージング加工によって2.0m
mの直径まで縮径加工して線材化した。
After filling and enclosing the molded body produced by the above method into a silver pipe with a wall thickness of Imm, 2.0 m by swaging processing was performed.
The wire was reduced to a diameter of m.

その後、表層の銀シースを硝酸メタノールで溶解した後
、900℃の酸化雰囲気で10時間熱処理した。このよ
うにして製造した各超電導材について、液体窒素中で臨
界電流密度を測定した。その結果も第1表に示す。なお
、この臨界電流密度は出発原料粉末の臨界電流密度を1
とした場合の指数表示である。
Thereafter, the surface silver sheath was dissolved in methanol nitric acid, and then heat treated in an oxidizing atmosphere at 900° C. for 10 hours. The critical current density of each superconducting material produced in this way was measured in liquid nitrogen. The results are also shown in Table 1. Note that this critical current density is equal to the critical current density of the starting material powder by 1.
This is an index display when .

この第1表から明らかなように、実施例1乃至5のBi
2 Sr2 Ca2 Cu30y超電導体は比較例方法
又は従来方法で製造した超電導体に比較して、見かけ密
度及び臨界電流密度の双方の著しい向上が認められる。
As is clear from Table 1, the Bi of Examples 1 to 5
The 2 Sr2 Ca2 Cu30y superconductor shows significant improvements in both apparent density and critical current density compared to superconductors produced by the comparative method or the conventional method.

[発明の効果] 以上説明したように本発明によれば、B5CC0系超電
導材の粉末を加圧成形する際に、粉末粒子径に基いて、
原料粉末を8乃至10μm(第1種)、2乃至3μm(
第2種)及び0.5μm以下(第3種)の3種類のもの
に分類し、その配合重量比を(第1種);(第2種):
(第3種)=(30乃至34): (7乃至9):1と
なるように混合、した後、加圧成形するから、高密度の
成形体を得ることができ、これにより臨界電流密度を高
くすることができる。
[Effects of the Invention] As explained above, according to the present invention, when press-molding powder of B5CC0-based superconducting material, based on the powder particle diameter,
The raw material powder is 8 to 10 μm (first type), 2 to 3 μm (
Classified into three types: (Type 2) and 0.5 μm or less (Type 3), and their blending weight ratios are (Type 1); (Type 2):
(Type 3) = (30 to 34): (7 to 9): Because it is mixed so that it becomes 1 and then pressure molded, a high-density molded product can be obtained, which makes it possible to obtain a critical current density can be made higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粒子径分布を示すグラフ図である。 FIG. 1 is a graph showing particle size distribution.

Claims (1)

【特許請求の範囲】[Claims] (1)ビスマス−ストロンチウム−カルシウム−銅−酸
化物系超電導材の原料粉末のうち、粒子径が8乃至10
μmの第1種粉末と、粒子径が2乃至3μmの第2種粉
末と、粒子径が0.5μm以下の第3種粉末とを、(第
1種粉末):(第2種粉末):(第3種粉末)=(30
乃至34):(7乃至9):1の配合重量比で混合し、
この混合粉末を加圧成形することを特徴とする酸化物超
電導体の製造方法。
(1) The particle size of the raw material powder of bismuth-strontium-calcium-copper-oxide superconducting material is 8 to 10
(1st type powder): (2nd type powder): (1st type powder): (2nd type powder): (Type 3 powder) = (30
Mixed at a blending weight ratio of 34):(7 to 9):1,
A method for producing an oxide superconductor, which comprises pressurizing this mixed powder.
JP63152987A 1988-06-21 1988-06-21 Production of oxide superconductor Pending JPH01320257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152987A JPH01320257A (en) 1988-06-21 1988-06-21 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152987A JPH01320257A (en) 1988-06-21 1988-06-21 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01320257A true JPH01320257A (en) 1989-12-26

Family

ID=15552484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152987A Pending JPH01320257A (en) 1988-06-21 1988-06-21 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01320257A (en)

Similar Documents

Publication Publication Date Title
JPH0692603B2 (en) METAL POWDER FOR PRODUCTION OF METAL SINTERED BODY AND METHOD FOR PRODUCING METAL SINTERED BODY PRODUCT USING THE SAME
JPH01136094A (en) Manufacture of ceramic nuclear fuel pellet
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
JPH01320257A (en) Production of oxide superconductor
JPH01320258A (en) Production of oxide superconductor
JPH01320256A (en) Production of oxide superconductor
JPH01261263A (en) Production of oxide superconducting material
JP2587652B2 (en) Production method of superconducting material
JP2866484B2 (en) Manufacturing method of oxide superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JPH0784341B2 (en) Method for producing oxide-based superconducting compact
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH07300314A (en) Preform of oxide superconductor powder and production of oxide superconducting material using said preform
JPH03114112A (en) Manufacture of bi oxide filling superconductive wire rod having high critical current density
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2881423B2 (en) Oxide superconductor and manufacturing method thereof
JP2654460B2 (en) Production method of superconducting material
JP3568657B2 (en) Manufacturing method of oxide superconductor
JP3285636B2 (en) Manufacturing method of oxide superconductor
JPH06263520A (en) Production of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH0465343A (en) Production of oxide superconducting wire
JP2677830B2 (en) Method for producing bismuth oxide superconductor
JPH02145470A (en) Production of tlbacacuo superconductor
JPH01176270A (en) Production of oxide superconducting molding