JPH01319682A - Formation of aluminum nitride film - Google Patents

Formation of aluminum nitride film

Info

Publication number
JPH01319682A
JPH01319682A JP15174288A JP15174288A JPH01319682A JP H01319682 A JPH01319682 A JP H01319682A JP 15174288 A JP15174288 A JP 15174288A JP 15174288 A JP15174288 A JP 15174288A JP H01319682 A JPH01319682 A JP H01319682A
Authority
JP
Japan
Prior art keywords
soln
film
base
contg
metal alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15174288A
Other languages
Japanese (ja)
Inventor
Seiji Nishikawa
誠司 西川
Kenichi Shibata
賢一 柴田
Kosuke Takeuchi
孝介 竹内
Toshiharu Tanaka
敏晴 田中
Shoichi Nakano
中野 昭一
Kazuhiko Kuroki
黒木 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15174288A priority Critical patent/JPH01319682A/en
Publication of JPH01319682A publication Critical patent/JPH01319682A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To easily form an AlN film at a low cost in a short period of time by adding water to an org. solvent soln. of metal alkoxide contg. Al to hydrolyze soln., coating the soln. on a base and heat treating the coating in a nitrogen atmosphere. CONSTITUTION:The metal alikoxide such as Al(OC4H9)3 contg. Al is dissolved into an org. solvent such as benzene to prepare the soln. The water is then added to this soln. to hydrolyze the above-mentioned metal alkoxide. The soln. contg. the Al(OH)3 formed in such a manner is coated to a prescribed thickness by a dipping method, etc., on the base. The base is thereafter disposed in a heater and is heated to about 600-1,000 deg.C in a nitrogen atmosphere. The polycrystalline Al film having the desired thickness is formed on the base in this way. The above-mentioned heating temp. is set at about 1,000 deg.C at this time, by which the AlN film having the crystal structure of the hexagonal type in which the C-axis is perpendicular to the substrate surface is obtd.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は窒化アルミニウム膜の形成方法に関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a method for forming an aluminum nitride film.

(ロ)従来の技術 窒化アルミニウム(AJN)は高電気抵抗、高絶縁耐圧
、低誘電率、高熱伝導率、低熱膨張率などの%徴を持つ
素材で、放熱性の高い半導体用基板等に開発が進められ
ている。斯るAJN膜の形成方法は、F@和62年窒業
協会年会講演予稿集、3AO4、P、 705〜706
に開示されている如く周知の減圧CVD装置を用いてい
る。即ち、減圧した反応炉内に原料ガスのAj?Cj?
5、NH5を導入し、これを熱分解することによって、
基板上にAJN膜を堆積するものである。
(b) Conventional technology Aluminum nitride (AJN) is a material with characteristics such as high electrical resistance, high dielectric strength, low dielectric constant, high thermal conductivity, and low coefficient of thermal expansion, and has been developed as a substrate for semiconductors with high heat dissipation. is in progress. The method for forming such an AJN film is described in F@ Proceedings of the 1962 Annual Meeting of the Japan Nitrogen Industry Association, 3AO4, P, 705-706.
A well-known low pressure CVD apparatus is used as disclosed in . That is, the raw material gas Aj? Cj?
5. By introducing NH5 and thermally decomposing it,
An AJN film is deposited on a substrate.

eウ  発明が解決しようとする課題 しかし乍ら、斯る先行技術では反応炉内を減圧するため
の減圧手段が必要であるため、装置が大がかシなものに
なってしまい、製造コストが高くなる。さらにAI!N
膜の形成前に反応炉内を一度高真空にするため、時間的
な損失が大きいという欠点を有している。
eC Problems to be Solved by the Invention However, such prior art requires a pressure reduction means to reduce the pressure inside the reactor, which results in a large and bulky device, resulting in high manufacturing costs. It gets expensive. Even more AI! N
Since the inside of the reactor is once brought to a high vacuum before the film is formed, it has the disadvantage of a large time loss.

したがって、本発明は簡単な装置を用いることができ、
しかも形成時間の短いAJN膜の形成方法を提供するも
のである。
Therefore, the present invention can use simple equipment,
Moreover, it provides a method for forming an AJN film that takes a short time to form.

に)課題を解決するための手段 本発明は、支持体上に窒化アルミニウム膜を形成する方
法であって、アルミニウムを含有した金属アルコキシド
を有機溶媒に溶かして溶液とし、該溶液に水を加えて上
記金属アルコキシドを加水分解させ、これを支持体に塗
布した後、窒素雰囲気中で熱処理することを特徴とする
B) Means for Solving the Problems The present invention is a method for forming an aluminum nitride film on a support, the method comprising dissolving aluminum-containing metal alkoxide in an organic solvent to form a solution, and adding water to the solution. The method is characterized in that the metal alkoxide is hydrolyzed, applied to a support, and then heat-treated in a nitrogen atmosphere.

(ホ)作 用 上述の如く、本発明方法は気相反応を用いないため、反
応炉内を高真空にする必要はなくなる。
(E) Function As mentioned above, since the method of the present invention does not use a gas phase reaction, there is no need to create a high vacuum in the reactor.

(へ)実施例 第1図に本発明形成方法に用いる加熱装置の一実施例を
示す。同図に於いて、(1)は石英等からなる耐熱性の
反応管、(2)及び(3)は夫々対向する反応管tll
の端部に配され、当該反応管(1)に窒素を導入、排気
するガス導入管及びガス排出管で、反応管(1)の端部
に栓体f41(41で夫々接続されている。(5)は上
記反応管(1)の周囲に配さn1反応管は)内部を加熱
する電気ヒータ、(6)は所望のAJN膜を被着する支
持体、(7)は該支持体(6)を反応管はj内に載置す
るアルミナ等からなる載置台である。尚、斯る加熱装置
は何ら特別な構成を持つものではなく、後述するように
、1000°C程度まで耐え得るものであればよい。
(f) Example FIG. 1 shows an example of a heating device used in the forming method of the present invention. In the figure, (1) is a heat-resistant reaction tube made of quartz or the like, (2) and (3) are opposing reaction tubes, respectively.
A gas introduction pipe and a gas exhaust pipe are arranged at the end of the reaction tube (1) to introduce and exhaust nitrogen into the reaction tube (1), and are connected to the end of the reaction tube (1) by a stopper f41 (41). (5) is an electric heater arranged around the reaction tube (1) to heat the inside of the n1 reaction tube, (6) is a support on which the desired AJN film is coated, and (7) is the support ( 6) The reaction tube is a mounting table made of alumina or the like that is placed inside the tube. It should be noted that such a heating device does not have any special configuration, as long as it can withstand up to about 1000° C., as will be described later.

次に、本発明形成方法の一実施例を、化学反応式と共に
詳述する。
Next, an example of the formation method of the present invention will be described in detail along with a chemical reaction formula.

先ず、AJ(OC4H9)s、AJ(OC5H7)5←
、(CHjO)5AJ等で表わされるアルミニウム含有
の金属アルコキシド、例えば人l!(OC4H9) 5
を用意し、これにベンゼン等の有機溶剤を加えて溶かし
溶液状にする。そして、この溶液に水を加えて加水分解
させ、Aj?(OH)3を生成する。この時の化学反応
は次式の通りである。
First, AJ(OC4H9)s, AJ(OC5H7)5←
, (CHjO)5AJ, etc., such as aluminum! (OC4H9) 5
Prepare this and add an organic solvent such as benzene to it to dissolve it and make it into a solution. Then, water is added to this solution to cause hydrolysis, and Aj? (OH)3 is produced. The chemical reaction at this time is as shown in the following equation.

AJ(OC4H9)3+3Hz□→A7(OH)3+5
C4H901−f次に、生成されたAI!(OH〕s溶
液にガラス等の支持体(6)を浸漬して支持体(6)表
面に溶液を塗布する。このように溶液中への支持体(6
)の浸漬を数回繰返すことによって、支持体(6)上に
塗布される溶液の量をある程度まで増やすことができ、
後に形成されるAJN膜の膜厚を100μm程度まで変
えることができる。また、AJ(01−1)a溶液の塗
布法としては他に、スピンオン塗布法あるいはスプレー
法等を用いてもよい。
AJ(OC4H9)3+3Hz□→A7(OH)3+5
C4H901-f Next, the generated AI! A support (6) such as glass is immersed in the (OH)s solution and the solution is applied to the surface of the support (6).In this way, the support (6) is dipped into the solution.
) By repeating dipping several times, the amount of solution applied onto the support (6) can be increased to a certain extent,
The thickness of the AJN film formed later can be varied up to about 100 μm. In addition, as a method for applying the AJ(01-1)a solution, a spin-on coating method, a spray method, or the like may be used.

次いで斯る支持体(6)を第1図に示した加熱装置内に
載置し、窒素雰囲気中で600〜1000°Cの加熱を
行う。これにより、支持体(6)表面に塗布されたkl
cOH)3とN2が反応し、支持体(6)表面に10〜
100μm程度の多結晶窒化アルミニウム(A、gN)
膜が形成される。この時の化学反応は次式に示す通シで
ある。
Next, the support (6) is placed in the heating device shown in FIG. 1, and heated at 600 to 1000°C in a nitrogen atmosphere. As a result, the kl applied to the surface of the support (6)
cOH)3 and N2 react, and 10~
Polycrystalline aluminum nitride (A, gN) about 100μm
A film is formed. The chemical reaction at this time is as shown in the following formula.

4−V(OH) 3+2N2→4Mべ+6H20↑十幻
2↑通常AI!N膜は大方晶形の結晶構造であり、その
C軸が支持体(6)表面に垂直となれば、圧電特性を持
つようになる。即ち、斯るA7N膜表面に電極を設ける
ことによって弾性表面波素子として利用できる。ところ
で本発明者らが本発明形成方法において、加熱温度を変
えて種々実験を行ったところ、加熱温度の違いによって
支持体(6)表面に対するAAN膜結晶のC軸の方向が
変化することがわかった。そして、上述のようにC軸が
支持体(6)表面に垂直なAJN膜は加熱温度が100
0°C@後で得られた。
4-V(OH) 3+2N2→4Mbe+6H20↑Jugen2↑Normal AI! The N film has an orthogonal crystal structure, and if its C axis is perpendicular to the surface of the support (6), it will have piezoelectric properties. That is, by providing electrodes on the surface of such A7N film, it can be used as a surface acoustic wave device. By the way, when the present inventors conducted various experiments by changing the heating temperature in the formation method of the present invention, it was found that the direction of the C axis of the AAN film crystal with respect to the surface of the support (6) changes depending on the difference in heating temperature. Ta. As mentioned above, the heating temperature of the AJN film whose C axis is perpendicular to the surface of the support (6) is 100.
Obtained after 0°C.

さらに、本発明形成方法はAJ(OH)x溶液を支持体
(6)に塗布し、窒素雰囲気中で加熱するだけであるの
で、従来困難であった形状が複雑な支持体+6) Kも
Aj’(OH)s溶液を容易に塗布することができ、所
望のAJN膜を形成することができる。
Furthermore, since the forming method of the present invention only involves applying the AJ(OH) '(OH)s solution can be easily applied and a desired AJN film can be formed.

(ト)発明の効果 上述の説明から明らかな如く、本発明形成方法は、アル
ミニウム含有の金属アルコキシドを溶解及び加水分解し
、この溶液を支持体に塗布して窒素雰囲気中で加熱する
だけで容易KAJN膜が形成できる。即ち、本発明形成
方法で用いる装置は、窒素が導入できる、1000°C
程度までの加熱装置であればよく、したがって装置が複
雑で犬がかシになることはない。また、反応管内を高真
空にすることもないので、全体のAJN膜形成時間も短
縮できる。
(G) Effects of the Invention As is clear from the above explanation, the formation method of the present invention can be easily carried out by simply dissolving and hydrolyzing an aluminum-containing metal alkoxide, applying this solution to a support, and heating it in a nitrogen atmosphere. A KAJN film can be formed. That is, the apparatus used in the formation method of the present invention has a temperature of 1000°C where nitrogen can be introduced.
It is sufficient to use a heating device up to a certain level, so the device will not be complicated and cause the dog to become hungry. Furthermore, since the inside of the reaction tube is not required to be in a high vacuum, the overall AJN film formation time can also be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明形成方法に用いる加熱装置の一実施例を
示す断面図である。 tll・・・反応管、 (2)・・・ガス導入管、 1
3)・・・ガス排出管、 (4)・・・栓体、 (訃・
・電気ヒータ、 (6)・・・支持体、 (7)・・・
載置台。
FIG. 1 is a sectional view showing an embodiment of a heating device used in the forming method of the present invention. tll...Reaction tube, (2)...Gas introduction tube, 1
3)...Gas exhaust pipe, (4)...Blug body, (Death/
・Electric heater, (6)...Support, (7)...
Mounting table.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムを含有した金属アルコキシドを有機
溶媒に溶かして溶液とし、該溶液に水を加えて上記金属
アルコキシドを加水分解させ、これを支持体に塗布した
後、窒素雰囲気中で熱処理することを特徴とする窒化ア
ルミニウム膜の形成方法。
(1) A metal alkoxide containing aluminum is dissolved in an organic solvent to form a solution, water is added to the solution to hydrolyze the metal alkoxide, and this is applied to a support, followed by heat treatment in a nitrogen atmosphere. Characteristic method of forming aluminum nitride film.
JP15174288A 1988-06-20 1988-06-20 Formation of aluminum nitride film Pending JPH01319682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15174288A JPH01319682A (en) 1988-06-20 1988-06-20 Formation of aluminum nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15174288A JPH01319682A (en) 1988-06-20 1988-06-20 Formation of aluminum nitride film

Publications (1)

Publication Number Publication Date
JPH01319682A true JPH01319682A (en) 1989-12-25

Family

ID=15525292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15174288A Pending JPH01319682A (en) 1988-06-20 1988-06-20 Formation of aluminum nitride film

Country Status (1)

Country Link
JP (1) JPH01319682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013853A1 (en) * 1992-12-17 1994-06-23 United Technologies Corporation Metal nitride coated substrates
US5674304A (en) * 1993-10-12 1997-10-07 Semiconductor Energy Laboratory Co., Ltd. Method of heat-treating a glass substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013853A1 (en) * 1992-12-17 1994-06-23 United Technologies Corporation Metal nitride coated substrates
US5674304A (en) * 1993-10-12 1997-10-07 Semiconductor Energy Laboratory Co., Ltd. Method of heat-treating a glass substrate
US5929487A (en) * 1993-10-12 1999-07-27 Semiconductor Energy Laboratory Co., Ltd. Glass substrate assembly, semiconductor device and method of heat-treating glass substrate
US6268631B1 (en) 1993-10-12 2001-07-31 Semiconductor Energy Laboratoty Co., Ltd. Glass substrate assembly, semiconductor device and method of heat-treating glass substrate
US6847097B2 (en) 1993-10-12 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Glass substrate assembly, semiconductor device and method of heat-treating glass substrate
US7038302B2 (en) 1993-10-12 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Glass substrate assembly, semiconductor device and method of heat-treating glass substrate

Similar Documents

Publication Publication Date Title
JP4104676B2 (en) In situ cleaning of native oxide from silicon surface
JPS6450429A (en) Formation of insulating film
JPH01319682A (en) Formation of aluminum nitride film
JPH0329297B2 (en)
JPS63196033A (en) Vapor growth device
JPS5998726A (en) Formation of oxide film
US3926715A (en) Method of epitactic precipitation of inorganic material
KR940007970A (en) Semiconductor substrate processing method
JPH01188678A (en) Plasma vapor growth apparatus
JPH0472727A (en) Gas cleaning process
JP3079535B2 (en) Manufacturing method of semiconductor thin film
RU2117070C1 (en) Shf-plasma deposition of dielectric films on metal surfaces
JPS562636A (en) Inactivation method of surface of semiconductor
JPS5923106B2 (en) Manufacturing method of semiconductor device
JPS6140770Y2 (en)
KR20170121455A (en) cleaning method of amorphous ceramic coating flim for protecting ceramic basic material
JPH06112141A (en) Microwave plasma apparatus
JPS6140640B2 (en)
SU915297A1 (en) Method of treating substrate from polyamide film
JPH058671Y2 (en)
JPS63283031A (en) Semiconductor manufacture apparatus
KR930010087A (en) Method for preparing polyamic acid for semiconductor device coating and method for forming imide pattern using same
JPH02139807A (en) Method for coating with stabilizing metal copper for superconductive material and forming of electrode
JPH0726383A (en) Chemical vapor phase growing method for silicon oxide film
JPS55118649A (en) Manufacture of semiconductor device