JPH0726383A - Chemical vapor phase growing method for silicon oxide film - Google Patents

Chemical vapor phase growing method for silicon oxide film

Info

Publication number
JPH0726383A
JPH0726383A JP22044193A JP22044193A JPH0726383A JP H0726383 A JPH0726383 A JP H0726383A JP 22044193 A JP22044193 A JP 22044193A JP 22044193 A JP22044193 A JP 22044193A JP H0726383 A JPH0726383 A JP H0726383A
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
silicon
source
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22044193A
Other languages
Japanese (ja)
Inventor
Toshiro Maruyama
敏朗 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22044193A priority Critical patent/JPH0726383A/en
Publication of JPH0726383A publication Critical patent/JPH0726383A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a hard coating film excellent in denseness by using tetrakisdiethylaminosilane as the silicon source, adding an oxygen source, and forming a silicon oxide film on the surface of a body to be treated. CONSTITUTION:Tetrakisdiethylaminosilane is used as the silicon source, which is vaporized in a vaporizing device 7 maintained at about 60 deg.C and carried to a nozzle with nitrogen gas from a carrier gas cylinder 1. The silicon vapor in the nozzle is mixed with oxygen gas containing ozone from an oxygen gas cylinder 2 and from an ozone generator 3. The mixed gas is sprayed onto a substrate 8 to form a silicon oxide film under atmospheric pressure. By this method, a hard silcon oxide film which hardly causes cracking can be easily formed on the substrate 8 by using source materials which are easily handled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化珪素膜の形成方法
に関し、さらに詳しくは、たとえば絶縁膜、表面保護膜
として有用な酸化珪素膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon oxide film, and more particularly to a method for forming a silicon oxide film useful as an insulating film or a surface protective film.

【0002】[0002]

【従来の技術】化学気相成長(Chemical Va
por Deposition、CVD)法は、高性能
膜を量産できる方法として広く実用化されている。酸化
珪素膜の化学気相成長法のシリコン源としてシランやテ
トラエトキシシラン(TEOS)が用いられている。し
かし、シランは空気中で発火し、テトラエトキシシラン
は空気中の水分によって加水分解しやすい。また、テト
ラエトキシシラン−オゾン系で得られる膜はひび割れを
起こしやすい。
2. Description of the Related Art Chemical Vapor Deposition (Chemical Vapor)
The Por Deposition (CVD) method has been widely put into practical use as a method capable of mass-producing high-performance films. Silane or tetraethoxysilane (TEOS) is used as a silicon source for a chemical vapor deposition method of a silicon oxide film. However, silane is ignited in air, and tetraethoxysilane is easily hydrolyzed by water in the air. Further, the film obtained by the tetraethoxysilane-ozone system is apt to crack.

【0003】[0003]

【発明が解決しようとする課題】本発明は、取り扱いや
すい原料を用いて、硬くひび割れを起こしにくく、絶縁
膜や表面保護膜として広い用途を持つ酸化珪素の膜を、
容易に合成し得る新たな化学気相成長法の提供にある。
SUMMARY OF THE INVENTION The present invention provides a silicon oxide film that is hard and does not easily crack and has a wide range of uses as an insulating film or a surface protective film by using a raw material that is easy to handle.
It is to provide a new chemical vapor deposition method that can be easily synthesized.

【0004】[0004]

【課題を解決するための手段】テトラキスジエチルアミ
ノシランをシリコン源として用い、酸素源として、オゾ
ンを含んだ酸素ガスをシリコン源ガスに加えることによ
り、200℃以上の基板温度で、ガラス、金属、プラス
チックなどの被処理物表面に硬く緻密でひび割れを起こ
しにくい酸化珪素の膜を成長させることを特徴とする化
学気相成長方法。
[Means for Solving the Problems] Tetrakisdiethylaminosilane is used as a silicon source, and an oxygen gas containing ozone is added to the silicon source gas as an oxygen source to obtain glass, metal, or plastic at a substrate temperature of 200 ° C. or higher. A chemical vapor deposition method characterized by growing a film of silicon oxide that is hard, dense, and is resistant to cracking on the surface of an object to be processed such as.

【0005】[0005]

【作用】本発明方法によるときは、取り扱い上も安全な
原料を用いて、少ない工程で、低温で、したがって、プ
ラスチックを含むの被処理物表面に、酸化珪素の膜を容
易に成長させることができる。
According to the method of the present invention, it is possible to easily grow a film of silicon oxide on a surface of an object to be treated containing plastic, using a raw material which is safe in handling, in a small number of steps and at a low temperature. it can.

【0006】[0006]

【実施例】以下、本発明の実施例について説明する。図
1に成膜装置の模式図を示す。シリコン源としてテトラ
キスジエチルアミノシランを用い、これを60℃に保っ
た気化器内(7)で気化し、窒素ガス(流量300cm
/min)(1)をキャリアガスとしてノズルに輸送
した。ノズル中で、酸素源としてオゾンを463ppm
を含んだ酸素ガス(流量100cm/min)と混合
し、混合ガスを基板(8)上に吹き付け大気圧下で成膜
した。基板(8)として、硼珪酸ガラスを用いた。基板
温度200℃以上で反応させたところ、基板に対する密
着性の良い酸化珪素の透明膜が得られた。図2に成膜速
度のアレニウスプロットを示す。形成された酸化珪素膜
の評価は以下のようにして行なった。赤外吸収スペクト
ルは高速フーリエ変換赤外分光光度計により測定した。
図3に基板温度、200℃、300℃および400℃で
合成された薄膜の赤外吸収スペクトルを示す。波数10
80cm−1、800cm−1および460cm−1
近の吸収ピークはSi−O結合に基づくものである。膜
の硬度は動的押し込み硬度は超微少硬度計により測定し
た。結果を図4に示す。膜のエッチング速度は、HF:
HNO:HOを重量比で3:2:69で混合したエ
ッチング溶液を用いて測定した。結果を図5に示す。 比較例 テトラキスジエチルアミノシランの代わりにテトラエト
キシシランを用い、酸化珪素膜を形成した。成膜速度の
アレニウスプロットを図2に示す。基板温度200℃、
300℃、400℃で合成された薄膜の赤外吸収スペク
トルを図6示す。動的押し込み硬度を図4に示す。エッ
チング速度を図5に示す。図3と図6の赤外吸収スペク
トルから理解されるように、本発明の方法により形成さ
れた酸化珪素膜はテトラエトキシシランから形成された
酸化珪素膜と膜質が似ていることがわかる。図4の動的
押し込み硬度および図5のエッチング速度から理解され
るように、本発明の方法により形成された酸化珪素膜は
テトラエトキシシランより形成された酸化珪素膜より硬
く、エッチング速度が小さく、膜の緻密性に優れている
ことがわかる。以上本発明につき好適な実施例を挙げて
種々説明したが、本発明はこの実施例に限定されるもの
ではなく、発明の精神を逸脱しない範囲内で多くの改変
を施し得るのはもちろんのことである。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows a schematic diagram of a film forming apparatus. Using tetrakisdiethylaminosilane as a silicon source, this was vaporized in a vaporizer (7) kept at 60 ° C., and nitrogen gas (flow rate 300 cm
3 / min) (1) was transported to the nozzle as a carrier gas. 463ppm of ozone as an oxygen source in the nozzle
Was mixed with an oxygen gas containing oxygen (flow rate 100 cm 3 / min), and the mixed gas was sprayed onto the substrate (8) to form a film under atmospheric pressure. Borosilicate glass was used as the substrate (8). When the reaction was carried out at a substrate temperature of 200 ° C. or higher, a transparent film of silicon oxide having good adhesion to the substrate was obtained. FIG. 2 shows an Arrhenius plot of the film formation rate. The formed silicon oxide film was evaluated as follows. The infrared absorption spectrum was measured by a fast Fourier transform infrared spectrophotometer.
FIG. 3 shows infrared absorption spectra of the thin films synthesized at the substrate temperature, 200 ° C., 300 ° C. and 400 ° C. Wave number 10
80 cm -1, the absorption peak around 800 cm -1 and 460 cm -1 is based on Si-O bonds. The hardness of the film was measured by dynamic indentation hardness using an ultra-fine hardness meter. The results are shown in Fig. 4. The etching rate of the film is HF:
The measurement was performed using an etching solution in which HNO 3 : H 2 O was mixed in a weight ratio of 3: 2: 69. Results are shown in FIG. Comparative Example A silicon oxide film was formed by using tetraethoxysilane instead of tetrakisdiethylaminosilane. An Arrhenius plot of the film formation rate is shown in FIG. Substrate temperature 200 ℃,
The infrared absorption spectrum of the thin film synthesized at 300 ° C. and 400 ° C. is shown in FIG. The dynamic indentation hardness is shown in FIG. The etching rate is shown in FIG. As can be understood from the infrared absorption spectra of FIGS. 3 and 6, it can be seen that the silicon oxide film formed by the method of the present invention is similar in film quality to the silicon oxide film formed of tetraethoxysilane. As understood from the dynamic indentation hardness of FIG. 4 and the etching rate of FIG. 5, the silicon oxide film formed by the method of the present invention is harder than the silicon oxide film formed of tetraethoxysilane and has a smaller etching rate. It can be seen that the denseness of the film is excellent. Although the present invention has been variously described with reference to the preferred embodiments, the present invention is not limited to the embodiments and many modifications can be made without departing from the spirit of the invention. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】装置の概略図である。FIG. 1 is a schematic diagram of an apparatus.

【図2】成膜速度のアレニウスプロットを示す図であ
る。
FIG. 2 is a diagram showing an Arrhenius plot of film formation rate.

【図3】テトラキスジエチルアミノシランを用いて3種
類の基板温度で合成された膜の赤外線透過スペクトルの
例を示す図である。
FIG. 3 is a diagram showing an example of an infrared transmission spectrum of a film synthesized using tetrakisdiethylaminosilane at three kinds of substrate temperatures.

【図4】膜の動的押し込み硬度を示す図である。FIG. 4 is a diagram showing the dynamic indentation hardness of a film.

【図5】膜のエッチング速度を示す図である。FIG. 5 is a diagram showing an etching rate of a film.

【図6】テトラエトキシシランを用いて3種類の基板温
度で合成された膜の赤外線透過スペクトルの例を示す図
である。
FIG. 6 is a diagram showing an example of infrared transmission spectra of a film synthesized using tetraethoxysilane at three kinds of substrate temperatures.

【符号の説明】[Explanation of symbols]

1 キャリアガスボンベ 2 酸素ガスボンベ 3 オゾン発生器 4 ガス流量制御器 5 温度検出器 6 電気炉 7 シリコン源原料 8 基板(被処理物) 1 Carrier Gas Cylinder 2 Oxygen Gas Cylinder 3 Ozone Generator 4 Gas Flow Controller 5 Temperature Detector 6 Electric Furnace 7 Silicon Source Material 8 Substrate (Workpiece)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 テトラキスジエチルアミノシランをシリ
コン源として用い、シリコン源に酸素源を加えることに
より、被処理物表面に酸化珪素の膜を成長させることを
特徴とする化学気相成長方法。
1. A chemical vapor deposition method characterized in that tetrakisdiethylaminosilane is used as a silicon source, and an oxygen source is added to the silicon source to grow a film of silicon oxide on the surface of the object to be treated.
【請求項2】 酸素源がオゾンを含む酸素ガスである特
許請求範囲第1項記載の化学気相成長方法。
2. The chemical vapor deposition method according to claim 1, wherein the oxygen source is oxygen gas containing ozone.
JP22044193A 1993-07-07 1993-07-07 Chemical vapor phase growing method for silicon oxide film Pending JPH0726383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22044193A JPH0726383A (en) 1993-07-07 1993-07-07 Chemical vapor phase growing method for silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22044193A JPH0726383A (en) 1993-07-07 1993-07-07 Chemical vapor phase growing method for silicon oxide film

Publications (1)

Publication Number Publication Date
JPH0726383A true JPH0726383A (en) 1995-01-27

Family

ID=16751165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22044193A Pending JPH0726383A (en) 1993-07-07 1993-07-07 Chemical vapor phase growing method for silicon oxide film

Country Status (1)

Country Link
JP (1) JPH0726383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327496C (en) * 2002-07-09 2007-07-18 三星电子株式会社 Method for manufacturing semiconductor device with duoble space walls

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327496C (en) * 2002-07-09 2007-07-18 三星电子株式会社 Method for manufacturing semiconductor device with duoble space walls

Similar Documents

Publication Publication Date Title
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
JP2769307B2 (en) Very low temperature chemical vapor deposition of silicon dioxide.
JP2634743B2 (en) Low temperature chemical vapor deposition
US5011706A (en) Method of forming coatings containing amorphous silicon carbide
JP4987717B2 (en) Substrate with coating and method for preparing the same
JPH09172012A (en) Growth method for coatings containing silicon and oxygen
US20070173072A1 (en) Method for producing silicon oxide film
JP3476876B2 (en) Method for depositing silicon and oxygen containing coatings
JPH05186213A (en) Deposition of vapor phase of hydrogen silsesquioxane
JPH03504617A (en) Plasma deposition method of silicon nitride and silicon dioxide films on substrates
KR970706960A (en) (Glass Coating Method and Glass Coated Thereby)
Sahli et al. Rf plasma deposition from hexamethyldisiloxane-oxygen mixtures
KR20200026148A (en) Methods for making silicon containing films that have high carbon content
EP0617142A1 (en) Preparation of silica thin films
JP2006519496A (en) Method for producing a hydrogenated silicon oxycarbide film.
JPH0732151B2 (en) Low temperature chemical vapor deposition of silicon dioxide film
US5053255A (en) Chemical vapor deposition (CVD) process for the thermally depositing silicon carbide films onto a substrate
JPH06168937A (en) Manufacture of silicon oxide film
Okada et al. Formation of SiO2 film by chemical vapor deposition enhanced by atomic species extracted from a surface-wave generated plasma
WO1992001084A1 (en) Chemical vapor deposition (cvd) process for plasma depositing silicon carbide films onto a substrate
Pecheur et al. Properties of SiO2 films deposited on silicon at low temperatures by plasma enhanced decomposition of hexamethyldisilazane
JP2723472B2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
JPH0726383A (en) Chemical vapor phase growing method for silicon oxide film
JPS5998726A (en) Formation of oxide film
CN112334597A (en) Silicone composition and method for depositing silicon-containing films using the same