JPH01319610A - Method of refining superfine metal powder - Google Patents
Method of refining superfine metal powderInfo
- Publication number
- JPH01319610A JPH01319610A JP15017388A JP15017388A JPH01319610A JP H01319610 A JPH01319610 A JP H01319610A JP 15017388 A JP15017388 A JP 15017388A JP 15017388 A JP15017388 A JP 15017388A JP H01319610 A JPH01319610 A JP H01319610A
- Authority
- JP
- Japan
- Prior art keywords
- metal powder
- powder
- cleaning
- metal
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000007670 refining Methods 0.000 title description 2
- 239000012298 atmosphere Substances 0.000 claims abstract description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000004140 cleaning Methods 0.000 claims abstract description 13
- 150000004820 halides Chemical class 0.000 claims abstract description 13
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 12
- 150000005309 metal halides Chemical class 0.000 claims abstract description 12
- 239000012808 vapor phase Substances 0.000 claims abstract description 10
- 238000005406 washing Methods 0.000 claims description 14
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 238000000746 purification Methods 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 abstract description 12
- 229910021529 ammonia Inorganic materials 0.000 abstract description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 abstract description 5
- 238000010828 elution Methods 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 229910052736 halogen Inorganic materials 0.000 abstract description 3
- 150000002367 halogens Chemical class 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000000967 suction filtration Methods 0.000 abstract description 3
- 229910021607 Silver chloride Inorganic materials 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 abstract description 2
- 238000013019 agitation Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 13
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000012071 phase Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 235000005338 Allium tuberosum Nutrition 0.000 description 1
- 244000003377 Allium tuberosum Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- -1 M n Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は金属ハロゲン化物の蒸気を気相還元することに
より得られた金属超微粉あるいは金属微粉中に含有され
る不純物としてのハロゲンの除去に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to the removal of halogen as an impurity contained in ultrafine metal powder or fine metal powder obtained by vapor phase reduction of metal halide vapor. It is something.
〈従来技術〉
金属ハロゲン化物の気相還元において得られた金属超微
粉中に残留するハロゲン化物は金属超微粉の耐錆性をI
!ll害するほか、例えば金属超微粉を導電ペーストに
使用する場合マイグレーションを引き起ごず等の問題が
あり、その除去が必要である。<Prior art> The halide remaining in the ultrafine metal powder obtained in the gas phase reduction of metal halides impairs the rust resistance of the ultrafine metal powder.
! In addition to this, when ultrafine metal powder is used in a conductive paste, for example, there are problems such as migration causing dust, which must be removed.
従来、特開昭60−67603号公報に金属ハロゲン化
物の気相還元法で得られた金属超微粉を水洗して付着ハ
ロゲン化物を取り除き、その後乾燥時に自然発火を防く
ために制御された酸素を含むガスにより徐酸化する方法
が開示されている。この方法の実施例には、鉄−30%
コハルI−粉に処理を施し、塩素濃度が2.43%から
3Qppmに低下したと報告されているが、10分/回
の撹拌、洗浄を10回繰り返しており、長時間を要して
いる。また、この方法は、水に溶解しないハロゲン化物
に対しては適用が不可能である。Conventionally, in JP-A No. 60-67603, ultrafine metal powder obtained by a vapor phase reduction method of metal halides is washed with water to remove adhering halides, and then controlled oxygen is added to prevent spontaneous combustion during drying. A method of gradual oxidation using a gas containing is disclosed. Examples of this method include iron-30%
It is reported that the chlorine concentration was reduced from 2.43% to 3Qppm by processing Kohar I powder, but it took a long time as stirring and washing were repeated 10 times for 10 minutes. . Furthermore, this method cannot be applied to halides that do not dissolve in water.
また特開昭60−1.74807号公報においても金属
ハロゲン化物の気相還元で得られた金属および金属窒化
物の超微粉を水洗し、未反応ハロゲン化物および副生成
物を除去する方法が開示されている。JP-A-60-1.74807 also discloses a method of washing ultrafine powder of metals and metal nitrides obtained by gas-phase reduction of metal halides with water to remove unreacted halides and byproducts. has been done.
実施例には、塩化鉄のアンモニアによる還元で得られた
窒化鉄、金属鉄の水による撹拌、洗浄が示されているが
、1時間/回の撹拌、洗浄を3回繰り返しており、長時
間を要している。しかも、X線のピークが消滅している
と報告されているたりて、濃度値は述べられていないが
、0.1%以下程度と推測される。In the example, stirring and washing of iron nitride and metal iron obtained by reducing iron chloride with ammonia with water is shown, but the stirring and washing are repeated three times for one hour each time, and the process lasts for a long time. It takes. Furthermore, it has been reported that the peak of X-rays has disappeared, and although the concentration value is not stated, it is estimated to be about 0.1% or less.
また特開昭61 48506号公報には、金属ハロゲン
化物の気相還元により得られた金属、および金属窒化物
微粒子中のハロゲン化物及び副生成物を溶解する酸を用
いて洗浄する方法が開示されている。しかし、この方法
でも不純物の除去はX線のピークが消滅する程度であり
、また薄い酸では長時間を要し、濃い酸では金属、金属
窒化物粉自体が溶解してしまう。Furthermore, JP-A-61-48506 discloses a method of cleaning using an acid that dissolves metal obtained by gas phase reduction of metal halides, and halides and byproducts in metal nitride fine particles. ing. However, even with this method, impurities can only be removed to the extent that the peak of the X-ray disappears, and a dilute acid takes a long time, and a strong acid dissolves the metal or metal nitride powder itself.
〈発明が解決しようとする課題〉
本発明は、金属ハロゲン化物の蒸気を気相還元すること
により得られた金属超微粉中および微粉中の未反応ハロ
ゲン化物を除去するにあたって、洗浄時間の比較的短い
、また水に不溶なハロゲン化物にも適用でき、かつ本洗
浄による金属粉自体の酸化に起因する溶解損失の殆んど
ない効率的な金属超微粉の精製方法を提案するものであ
る。<Problems to be Solved by the Invention> The present invention aims to reduce the cleaning time in removing unreacted halides in ultrafine metal powder and fine powder obtained by vapor phase reduction of metal halide vapor. We propose an efficient method for purifying ultrafine metal powder that is short and applicable to water-insoluble halides, and has almost no dissolution loss due to oxidation of the metal powder itself during main washing.
〈課題解決のための手段〉
本発明の第1は、金属ハロゲン化物の蒸気を気相還元す
ることにより得られた金属超微粉中の残留ハロゲン化物
の除去にあたって、該金属超微粉をアンモニア水を用い
て洗浄することを特徴とする金属超微粉の精製方法であ
る。<Means for Solving the Problems> The first aspect of the present invention is to remove residual halide from ultrafine metal powder obtained by vapor-phase reduction of metal halide vapor by treating the ultrafine metal powder with aqueous ammonia. This is a method for purifying ultrafine metal powder, which is characterized in that it is washed using a metal powder.
本発明の第2は、上記洗浄を非酸化性雰囲気中で行うこ
とを特徴とする金属超微粉の精製方法である。The second aspect of the present invention is a method for purifying ultrafine metal powder, characterized in that the cleaning is performed in a non-oxidizing atmosphere.
〈作 用〉 第1図に本発明を具体化したフローヂャートを示す。<For production> FIG. 1 shows a flowchart embodying the present invention.
まず、洗浄液には望しくは溶存酸素を十分除去したアン
モニア水を用いる。アンモニア濃度は特に規定しないが
、1〜10呵%が好ましい。次に非酸化性雰囲気中で、
洗浄液を未処理粉に入れた後、1〜20分の撹拌5洗浄
を行う。ここでの非酸化性雰囲気としてはAr 、He
、N、等の不活性ガス、H2,CI4等の還元ガス、燃
焼排ガス等の非酸化性ガス雰囲気あるいは真空雰囲気が
利用できる。First, ammonia water from which dissolved oxygen has been sufficiently removed is preferably used as the cleaning liquid. Although the ammonia concentration is not particularly specified, it is preferably 1 to 10%. Next, in a non-oxidizing atmosphere,
After adding the washing liquid to the untreated flour, perform 5 washings with stirring for 1 to 20 minutes. The non-oxidizing atmosphere here is Ar, He
, N, etc., a reducing gas such as H2, CI4, etc., a non-oxidizing gas atmosphere such as combustion exhaust gas, or a vacuum atmosphere can be used.
本処理を非酸化性雰囲気中で行うことにより、木精製法
が適用できる金属超微わ〕において、Cu。By performing this treatment in a non-oxidizing atmosphere, the wood refining method can be applied to Cu.
Fe、Ni等の洗浄時の溶解損失を低減できる。Dissolution loss of Fe, Ni, etc. during cleaning can be reduced.
ただし、Ag 、Au 、PL 、Pd等の貴金属につ
いては、必ずしも非酸化性雰囲気中でなくとも溶解損失
を伴うことな(本発明の目的である残留ハロゲン化物の
除去を達成できる。洗浄方法としては、超音波または機
械的撹拌を用い、洗浄回数は1〜S3回で十分である。However, for noble metals such as Ag, Au, PL, and Pd, the removal of residual halides, which is the objective of the present invention, can be achieved without necessarily causing dissolution loss even in a non-oxidizing atmosphere.As a cleaning method, , using ultrasonic waves or mechanical stirring, and washing 1 to 3 times is sufficient.
3回を超えて洗浄してもかまわないが、経済性と残留ハ
ロゲン量の関係からその必要は殆んどない。Although washing may be performed more than three times, it is hardly necessary due to economic efficiency and the amount of residual halogen.
その後、精製粉とアンモニア洗浄液の分離を非酸化性ガ
ス中で吸引ろ過等により行う。ろ過された精製粉は、非
酸化性雰囲気中で乾燥し、非酸化性ガス、または真空中
に保存する。Thereafter, the purified powder and the ammonia cleaning solution are separated by suction filtration or the like in a non-oxidizing gas. The filtered purified powder is dried in a non-oxidizing atmosphere and stored in a non-oxidizing gas or vacuum.
この精製方法に適用できる金属超微粉、微粉は、金属ハ
l二」ゲン化物の気相還元により得られるΔU。The ultrafine metal powder or fine powder applicable to this purification method is ΔU obtained by gas phase reduction of a metal halide.
Ag、 Cu、 Ni 、 Co、 Fe、M
n 、 Cd 。Ag, Cu, Ni, Co, Fe, M
n, Cd.
Cr、 Ti、 PL、 Pd、 Ge、
Aj2. Ga。Cr, Ti, PL, Pd, Ge,
Aj2. Ga.
Bi等で、アンモニア水中で、そのハロゲン化物がアン
モニア錯体を形成するものである。Bi, etc., whose halide forms an ammonia complex in aqueous ammonia.
なお、一般にその粒度により金属超微粉と微粉を区別し
ているが、本発明の金属超微粉には一般の金属微粉も当
然その範囲に含むものである。Although ultrafine metal powder and fine powder are generally distinguished by their particle size, the ultrafine metal powder of the present invention naturally includes general fine metal powder.
〈実施例〉
実施例−1
第1図のフローに従って、塩化銅の気相水素還元により
得られた銅超微粉(平均粒径0.3μm)の精製を実施
した。Arガス雰囲気中で、末梢製粉5gに対し溶存酸
素を除去した5%アンモニア水1、00 ccを混合し
、超音波洗浄により20分間の撹拌を行った。この撹拌
を2回繰り返した後、吸引ろ過、真空中乾燥をすること
により、塩素含有量は3.25%からioppm以下ま
で低下した。しかも銅粉自体のアンモニア水への溶解は
認められなかった。<Example> Example-1 According to the flow shown in FIG. 1, ultrafine copper powder (average particle size 0.3 μm) obtained by gas-phase hydrogen reduction of copper chloride was purified. In an Ar gas atmosphere, 5 g of peripheral milled flour was mixed with 1.00 cc of 5% ammonia water from which dissolved oxygen had been removed, and stirred for 20 minutes by ultrasonic cleaning. After repeating this stirring twice, the chlorine content was reduced from 3.25% to less than ioppm by suction filtration and drying in vacuum. Furthermore, no dissolution of the copper powder itself into the ammonia water was observed.
実施例−2
実施例−川で用いたものと同し銅超微粉の精製において
、N2ガス雰囲気中で、末梢製粉10gに対して、溶存
酸素を除去した2、5%アンモニア水150 ccで超
音波による撹拌、洗浄を10分/回で3回の処理をした
。塩素含有量は3.25%から10ppm以下に低下し
、銅粉自体の溶出は認められなかった。Example 2 Example - In the purification of the same ultrafine copper powder as that used in Kawa, in an N2 gas atmosphere, 150 cc of 2.5% ammonia water from which dissolved oxygen had been removed was added to 10 g of peripheral milled powder. Stirring and washing using sonic waves were performed three times for 10 minutes each time. The chlorine content decreased from 3.25% to 10 ppm or less, and no elution of the copper powder itself was observed.
実施例−3
塩化銀の水素還元により得られた銀超微粉(平均粒径0
、5 pm )の精製において、N2ガス雰囲気中で
、末梢製粉5gに対し溶存酸素を除去した5%アンモニ
ア水100ccで超音波による撹拌、洗浄を20分/回
で2回行った。塩素含有量は5.2%から10ppm以
下に低下し、銀粉自体の溶出は認められなかった。Example 3 Ultrafine silver powder (average particle size 0) obtained by hydrogen reduction of silver chloride
, 5 pm), ultrasonic stirring and washing were performed twice for 20 minutes/time with 100 cc of 5% ammonia water from which dissolved oxygen had been removed for 5 g of peripheral milled flour in a N2 gas atmosphere. The chlorine content decreased from 5.2% to 10 ppm or less, and no elution of the silver powder itself was observed.
実施例−4
塩化ニラゲルの水素還元により得られたN1超微粉(平
均粒径0.Ohm)の精製において、N2雰囲気中で末
梢製粉5gに対し溶存酸素を除去した5%アンモニア水
]、OOccで超音波による撹拌、洗浄を20分/回で
2回処理した。塩素含有量は3.3%から+、oppm
以下に低下し、Ni粉粉体体溶出は認められなかった。Example 4 In the purification of N1 ultrafine powder (average particle size 0.Ohm) obtained by hydrogen reduction of Nira gel chloride, 5% ammonia water from which dissolved oxygen had been removed per 5 g of peripheral milled powder in an N2 atmosphere], OOcc. Ultrasonic stirring and washing were performed twice for 20 minutes each time. Chlorine content ranges from 3.3% to +, oppm
No elution of Ni powder was observed.
比較例−1
塩化銅の気相還元により製造した銅超微粉を水で洗浄し
た。末梢製粉1gに対し水100ccを入れ、超音波洗
浄による30分/回×5回の撹拌、洗浄で、塩素含有量
は3.0%から1%にしか低下しなかった。Comparative Example-1 Ultrafine copper powder produced by vapor phase reduction of copper chloride was washed with water. 100 cc of water was added to 1 g of peripheral milled flour, and the chlorine content was reduced from 3.0% to only 1% by ultrasonic cleaning for 30 minutes/time x 5 times.
比較例−2
塩化銅の気相還元により製造した銅超微粉を塩酸で洗浄
を行った。末梢製粉2.5gに対し、2規定の塩酸15
0ccを加えて40分間超音波洗浄を行った後440
dの純水で洗浄し、ろ過、乾燥を行った。Comparative Example 2 Ultrafine copper powder produced by vapor phase reduction of copper chloride was washed with hydrochloric acid. 2N hydrochloric acid 15g for peripheral milling 2.5g
After adding 0cc and performing ultrasonic cleaning for 40 minutes, 440
It was washed with pure water, filtered, and dried.
この方法では塩素含有量は4.6%から0.5%までし
か低下しなかった。This method reduced the chlorine content from 4.6% to only 0.5%.
比較例−3
塩化銅の気相還元により得られた銅超微粉を大気中で5
%アンモニア水で洗浄を行った。末梢製粉5gに対し5
%アンモニア水100ccを加え超音波で20分/回で
3回の洗浄後、ろ過、乾燥した結果、塩素含有量は2.
8%から50ppm以下に低下したものの酸化が著しく
進行しており、酸素含有量が0.2%から8%に増加し
た。また銅粉自体も20%程度溶出した。Comparative Example-3 Ultrafine copper powder obtained by vapor phase reduction of copper chloride was
% ammonia water. 5 for 5g of peripheral milling
After adding 100cc of % ammonia water and washing 3 times with ultrasonic waves for 20 minutes/time, filtering and drying, the chlorine content was 2.
Although the oxygen content decreased from 8% to 50 ppm or less, oxidation progressed significantly, and the oxygen content increased from 0.2% to 8%. Also, about 20% of the copper powder itself was eluted.
〈発明の効果〉
本発明の精製法により、金属ハロゲン化物の気相還元に
より製造した金属超微粉や微粉中の未反応ハロゲン化物
が、従来法に対し極低濃度まで、かつ短時間で、かつ金
属の酸化、溶出を伴うことなく除去できるようになった
。<Effects of the Invention> The purification method of the present invention reduces ultrafine metal powder produced by gas phase reduction of metal halides and unreacted halides in fine powder to an extremely low concentration and in a short time compared to conventional methods. It is now possible to remove metals without oxidation or elution.
第1図は、本発明になる洗浄工程を示す図である。 特許出願人 川崎製鉄株式会社 FIG. 1 is a diagram showing a cleaning process according to the present invention. Patent applicant: Kawasaki Steel Corporation
Claims (2)
り得られた金属超微粉中の残留ハロゲン化物の除去にあ
たって、該金属超微粉をアンモニア水を用いて洗浄する
ことを特徴とする金属超微粉の精製方法。(1) Ultrafine metal powder, which is characterized in that the residual halide in the ultrafine metal powder obtained by vapor phase reduction of metal halide vapor is removed by washing the ultrafine metal powder with aqueous ammonia. Purification method.
とを特徴とする金属超微粉の精製方法。(2) A method for purifying ultrafine metal powder, characterized in that the cleaning according to claim 1 is carried out in a non-oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15017388A JPH0672247B2 (en) | 1988-06-20 | 1988-06-20 | Method for refining ultrafine metal powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15017388A JPH0672247B2 (en) | 1988-06-20 | 1988-06-20 | Method for refining ultrafine metal powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01319610A true JPH01319610A (en) | 1989-12-25 |
JPH0672247B2 JPH0672247B2 (en) | 1994-09-14 |
Family
ID=15491098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15017388A Expired - Lifetime JPH0672247B2 (en) | 1988-06-20 | 1988-06-20 | Method for refining ultrafine metal powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672247B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526359A (en) * | 2009-05-05 | 2012-10-25 | カンブリオス テクノロジーズ コーポレイション | Reliable and durable conductive film containing metal nanostructures |
JP2014001455A (en) * | 2013-06-28 | 2014-01-09 | Sumitomo Metal Mining Co Ltd | Silver powder |
-
1988
- 1988-06-20 JP JP15017388A patent/JPH0672247B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526359A (en) * | 2009-05-05 | 2012-10-25 | カンブリオス テクノロジーズ コーポレイション | Reliable and durable conductive film containing metal nanostructures |
JP2014001455A (en) * | 2013-06-28 | 2014-01-09 | Sumitomo Metal Mining Co Ltd | Silver powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0672247B2 (en) | 1994-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4348224A (en) | Method for producing cobalt metal powder | |
JP2716050B2 (en) | Production method of copper powder | |
JP3131075B2 (en) | Purification method of ultrafine metal powder | |
JPH01319610A (en) | Method of refining superfine metal powder | |
JPH11189813A (en) | Cleaning method of metal super fine powder | |
JP2672985B2 (en) | Purified solution containing iron and manganese and method for producing the same | |
JPS5952696B2 (en) | Method for recovering copper and selenium from copper electrolysis anode slime | |
JP3494485B2 (en) | Method for producing rhodium nitrate solution | |
JPH08260065A (en) | Method for fractionating and recovering noble metal from noble metal-containing material | |
JPS60131829A (en) | Method for recovering rhenium | |
JP2011051836A (en) | Iron oxyhydroxide sol and method for producing the same | |
US2274237A (en) | Process for the removal of metallic magnesium from mixtures of beryllium and magnesium | |
JP4296706B2 (en) | Method for producing palladium powder | |
JP4730488B2 (en) | Method for producing manganese ore processed product | |
JP2776423B2 (en) | Manufacturing method of iron oxide powder | |
JP3763286B2 (en) | How to recover high-quality rhodium powder | |
JP2006274397A (en) | Purification method of zinc concentrate decoction | |
JP2910393B2 (en) | Method for removing and recovering nickel from aqueous iron chloride solution | |
JPH01270511A (en) | Removal of tin from silver or palladium solution | |
JPH02129309A (en) | Manufacture of copper fine powder | |
JP4507486B2 (en) | Purification method of carboxylic acid | |
JP2631429B2 (en) | Method for removing halogen radicals in ferric oxide | |
JPH10130703A (en) | Production of palladium powder | |
JP2004162099A (en) | Method for washing metallic powder | |
RU1787174C (en) | Method of cleaning equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070914 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |