JP2776423B2 - Manufacturing method of iron oxide powder - Google Patents

Manufacturing method of iron oxide powder

Info

Publication number
JP2776423B2
JP2776423B2 JP63317617A JP31761788A JP2776423B2 JP 2776423 B2 JP2776423 B2 JP 2776423B2 JP 63317617 A JP63317617 A JP 63317617A JP 31761788 A JP31761788 A JP 31761788A JP 2776423 B2 JP2776423 B2 JP 2776423B2
Authority
JP
Japan
Prior art keywords
solution
oxide powder
iron oxide
weight
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63317617A
Other languages
Japanese (ja)
Other versions
JPH02164725A (en
Inventor
直兄 平井
徹 村瀬
克伸 奥谷
輝夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63317617A priority Critical patent/JP2776423B2/en
Publication of JPH02164725A publication Critical patent/JPH02164725A/en
Application granted granted Critical
Publication of JP2776423B2 publication Critical patent/JP2776423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高級ソフトフェライトの製造に用いられる
酸化鉄粉の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing iron oxide powder used for producing high-grade soft ferrite.

[従来の技術] 鉄鋼の塩酸酸洗廃液あるいはこれを加熱濃縮した溶
液、あるいは加熱濃縮後に更に不溶化物を除去した溶液
等(本明細書ではこれらを粗塩化鉄溶液と総称する)
を、例えば流動焙焼炉で酸化焙焼すると、酸化鉄粉が得
られる。この酸化鉄粉は一般ソフトフェライト用の原料
として用いられる。第6図はこの酸化鉄粉の製造法のプ
ロセスフローの一例を示す図で、鉄鋼の塩酸酸洗廃液を
処理する例を示す図である。6は鉄鋼の塩酸酸洗廃液で
1はその貯溜槽である。2は接触塔で、鉄鋼の塩酸酸洗
廃液6は焙焼で生成した塩化水素を含有する熱ガス3と
接触し加熱濃縮される。加熱濃縮された液は焙焼炉5内
にスプレーされて酸化焙焼されて熱ガス3と酸化鉄粉4
とになる。7は酸化鉄粉4を採取する電気集塵機で、8
は熱ガスから塩酸を回収する回収塔で、9は水スプレ
ー、10は熱風である。鉄鋼や酸化鉄はSi,Al,Cr,Cu,P等
を含有するし、また工業用水はCaを含有するため、これ
等の不純物は粗塩化鉄溶液に含有され、また粗塩化鉄溶
液を酸化焙焼して得られた酸化鉄粉にも含有されてい
る。この酸化鉄粉は製造方法も簡易で酸化鉄粉のコスト
も安いために一般ソフトフェライト用の原料として用い
られているが、不純物を含有するために高級ソフトフェ
ライトには使用されていない。
[Prior Art] Waste solution of hydrochloric acid and pickling of steel or a solution obtained by heating and concentrating the solution, or a solution in which insolubilized substances are further removed after heat concentration (these are collectively referred to as a crude iron chloride solution in this specification)
Is oxidized and roasted in a fluidized roasting furnace, for example, to obtain iron oxide powder. This iron oxide powder is used as a raw material for general soft ferrite. FIG. 6 is a diagram showing an example of a process flow of the method for producing iron oxide powder, and is a diagram showing an example in which a hydrochloric acid pickling waste liquid of steel is treated. Reference numeral 6 denotes a steel pickling waste liquid, and reference numeral 1 denotes a storage tank. Reference numeral 2 denotes a contact tower, and the hydrochloric acid pickling waste liquid 6 of the steel is brought into contact with a hot gas 3 containing hydrogen chloride generated by roasting and concentrated by heating. The heat-concentrated liquid is sprayed into a roasting furnace 5 and oxidized and roasted to produce a hot gas 3 and an iron oxide powder 4.
And 7 is an electric precipitator for collecting the iron oxide powder 4;
Is a recovery tower for recovering hydrochloric acid from hot gas, 9 is water spray, and 10 is hot air. Since steel and iron oxide contain Si, Al, Cr, Cu, P, etc., and industrial water contains Ca, these impurities are contained in the crude iron chloride solution and oxidize the crude iron chloride solution. It is also contained in iron oxide powder obtained by roasting. This iron oxide powder is used as a raw material for general soft ferrite because of its simple manufacturing method and low cost of iron oxide powder, but is not used for high-grade soft ferrite because it contains impurities.

またSiやCa等を除去した粗塩化鉄溶液から、SiO2やCa
Oの含有量が少ない酸化鉄粉もこの酸化焙焼法で製造さ
れている。しかしSiO2やCaOを低減しただけでは、この
酸化鉄粉を用いて製造したソフトフェライトのフェライ
ト特性が不十分で、従って高級ソフトフェライトには、
やはり使用されていない。
Also, from the crude iron chloride solution from which Si and Ca are removed, SiO 2 and Ca
Iron oxide powder having a low O content is also produced by this oxidation roasting method. However, simply reducing SiO 2 and CaO has insufficient ferrite properties of soft ferrites manufactured using this iron oxide powder, and high-grade soft ferrites,
After all it is not used.

高級ソフトフェライトには不純物の含有量が少ない高
純度酸化鉄粉が専ら使用されている。
High-grade soft ferrite exclusively uses high-purity iron oxide powder with a low impurity content.

高純度酸化鉄粉は、通常は結晶精製法で製造される。
結晶精製法では硫酸鉄や塩化鉄の水溶液から硫酸鉄や塩
化鉄の結晶を晶出せしめ、この結晶を酸化して酸化鉄粉
とする。しかしこの方法では不純物の一部が結晶に混入
するため一回の晶出では不純物を十分には低減し難い。
従って得られた結晶を水等に再度溶解し、再度結晶を晶
出せしめる等の処理を繰り返して、不純物の含有量を低
減する。結晶精製法によると全ての不純物の含有量が極
めて低い高純度酸化鉄粉が得られるが、結晶の再溶解や
再晶出を繰り返すために工程は煩瑣で、酸化鉄粉の製造
コストも高い。酸化鉄粉の不純物には、ソフトフェライ
トの特性を損う不純物と、ソフトフェライトの特性を損
わない不純物が考えられるが、フェライト特性を損う不
純物の従来の知見や特定ではフェライト特性の改善が不
十分で、従って溶液を酸化焙焼する方法による安価な酸
化鉄粉では、高級ソフトフェライトが製造できなかっ
た。
High-purity iron oxide powder is usually produced by a crystal purification method.
In the crystal refining method, crystals of iron sulfate or iron chloride are crystallized from an aqueous solution of iron sulfate or iron chloride, and the crystals are oxidized into iron oxide powder. However, in this method, a part of the impurities is mixed into the crystal, so that it is difficult to sufficiently reduce the impurities by one crystallization.
Therefore, the process of dissolving the obtained crystal in water or the like again and crystallizing the crystal again is repeated to reduce the content of impurities. According to the crystal refining method, a high-purity iron oxide powder having an extremely low content of all impurities can be obtained, but the steps are complicated and the production cost of the iron oxide powder is high because re-dissolution and recrystallization of the crystal are repeated. Impurities in iron oxide powder can be considered as impurities that impair the properties of soft ferrite and impurities that do not impair the properties of soft ferrite. High-grade soft ferrite could not be produced with an inexpensive iron oxide powder obtained by a method of oxidizing and roasting a solution.

[発明が解決しようとする課題] 本発明は、塩化鉄溶液を酸化焙焼して酸化鉄粉を製造
する方法に簡易な処理を加えて、フェライト特性を損う
不純物を重点的に除去した酸化鉄粉を製造する方法を提
供するものである。本発明の方法による酸化鉄粉は、塩
化鉄溶液の酸化焙焼法で製造するため酸化鉄粉のコスト
が安く、かつフェライト特性を損う不純物が重点的に除
去されているため高級ソフトフェライト用に使用する事
ができる。
[Problems to be Solved by the Invention] The present invention provides a method for oxidizing and roasting an iron chloride solution to produce iron oxide powder by adding a simple treatment to remove oxidizing impurities that impair ferrite characteristics. It is intended to provide a method for producing iron powder. The iron oxide powder according to the method of the present invention is used for high-grade soft ferrite because the iron oxide powder is manufactured by the oxidizing roasting method of iron chloride solution, so that the cost of the iron oxide powder is low and impurities that impair the ferrite characteristics are mainly removed. Can be used for

[課題を解決するための手段] 本発明者等は、塩化鉄溶液の酸化焙焼法で製造した酸
化鉄粉に含有されている不純物がフェライト特性に及ぼ
す影響を研究した結果、酸化鉄粉中のPの含有量を0.00
5重量%以下とする事によって、フェライト特性が大幅
に改善され、高純度酸化鉄粉を使用した場合と同じ程度
のフェライト特性が得られる事を知得した。
[Means for Solving the Problems] The present inventors have studied the effect of impurities contained in iron oxide powder produced by the oxidative roasting method of the iron chloride solution on the ferrite characteristics, and as a result, have found that 0.00% P content
It has been found that by setting the content to 5% by weight or less, the ferrite characteristics are significantly improved, and the same ferrite characteristics as when using high-purity iron oxide powder are obtained.

本発明者等は、Pの含有量が異なる酸化鉄粉を用い
て、これに高純度酸化マンガンと高純度酸化亜鉛等を調
合してFe2O3:MnO:ZnOがモル比で53:24.5:22.5になるよ
うに通常の方法で配合し、1350℃で焼成し、外径:25mm,
内径:15mm,厚さ:5mmのリング状のテストピースを作成
し、FIS C2561に沿って、1KHz,25℃における交流初期透
磁率μiacと相対損失係数tanδ/μiacを測定した。第
1表に各テストピースに用いた酸化鉄粉や配合粉の成分
と磁気特性を示した。第1表でNo1〜No8はPが0.005重
量%以下の本発明の酸化鉄粉を使用したテストピース
で、No9〜No13は塩化鉄溶液の酸化焙焼法で製造した一
般ソフトフェライト用の酸化鉄粉を使用したテストピー
スで、No14〜No15は従来の高級ソフトフェライト用の高
純度酸化鉄粉を使用したテストピースである。
The present inventors use iron oxide powder having a different content of P, mix high-purity manganese oxide and high-purity zinc oxide, etc., and prepare Fe 2 O 3 : MnO: ZnO in a molar ratio of 53: 24.5 : Blend in the usual way to become 22.5, baked at 1350 ℃, outer diameter: 25mm,
A ring-shaped test piece having an inner diameter of 15 mm and a thickness of 5 mm was prepared, and an AC initial magnetic permeability μiac and a relative loss coefficient tanδ / μiac at 1 KHz and 25 ° C. were measured along FIS C2561. Table 1 shows the components and magnetic properties of the iron oxide powder and the compounded powder used for each test piece. In Table 1, No. 1 to No. 8 are test pieces using the iron oxide powder of the present invention having a P content of 0.005% by weight or less, and No. 9 to No. 13 are iron oxides for general soft ferrite manufactured by oxidizing and roasting of an iron chloride solution. No. 14 to No. 15 are test pieces using high-purity iron oxide powder for conventional high-grade soft ferrite.

Pの含有量が0.005重量%以下の本発明の酸化鉄粉を
使用したNo1〜No8は、一般ソフトフェライト用の酸化鉄
粉を用いたNo9〜No13に比べて、配合粉のPが低くかつ
磁気特性が優れている。またNo1〜No5は本発明の方法で
Pの含有量を0.003重量%以下とした酸化鉄粉を用いた
例であるが、従来の高級ソフトフェライト用の高純度酸
化鉄粉を使用したNo14,No15と同じ程度の磁気特性が得
られている。
No. 1 to No. 8 using the iron oxide powder of the present invention having a P content of 0.005% by weight or less had lower P and magnetic properties in the compounded powder than No. 9 to No. 13 using iron oxide powder for general soft ferrite. Excellent characteristics. No. 1 to No. 5 are examples using iron oxide powder having a P content of 0.003% by weight or less in the method of the present invention. No. 14 and No. 15 using conventional high-purity iron oxide powder for high-grade soft ferrite were used. The same degree of magnetic characteristics as described above is obtained.

第1図は、第1表の酸化鉄粉中のPの含有量とμiac
の関係を示す図であり、第2図は酸化鉄粉中のPの含有
量とtanδ/μiacの関係を示す図である。第1図及び第
2図にみられる如く、酸化鉄粉中のPを0.005重量%以
下に低減する事によりフェライトの磁気特性は大幅に向
上する。
FIG. 1 shows the P content and μiac in the iron oxide powder shown in Table 1.
FIG. 2 is a diagram showing the relationship between the P content in iron oxide powder and tan δ / μiac. As can be seen from FIGS. 1 and 2, the magnetic properties of ferrite are greatly improved by reducing P in the iron oxide powder to 0.005% by weight or less.

以上の点から本発明では、Pの含有量が0.005重量%
以下の酸化鉄粉を製造する。
From the above points, in the present invention, the content of P is 0.005% by weight.
The following iron oxide powder is produced.

本発明の請求項(1)では、粗塩化鉄溶液のPHを2.5
〜4.5に調整し、この溶液を機械撹拌して、Feに換算し
て0.01〜0.1重量%のFe3+の不溶化物を形成している溶
液とし、不溶化物を濾別する。この濾別によってPは不
溶化物として除去され、濾液はPの含有量が低い精製溶
液となるが、この精製溶液を酸化焙焼すると、Pの含有
量が0.005重量%以下の酸化鉄粉となる。
In claim (1) of the present invention, the pH of the crude iron chloride solution is adjusted to 2.5.
The solution is mechanically stirred to obtain a solution in which 0.01 to 0.1% by weight of Fe 3+ is converted into Fe 3+ insoluble material, and the insoluble material is filtered off. By this filtration, P is removed as an insolubilized substance, and the filtrate becomes a purified solution having a low P content. When the purified solution is oxidized and roasted, it becomes iron oxide powder having a P content of 0.005% by weight or less. .

次に粗塩化鉄溶液について説明する。例えば鉄鋼の塩
酸酸洗廃液は、Feイオンを約11重量%含有し、かつPを
約0.0025重量%含有するが、入手が容易な粗塩化鉄溶液
として使用する事ができる。後で述べる如く、本発明で
は粗塩化鉄溶液中のPを+5価のPリン酸の金属塩とし
て除去する。鉄鋼の塩酸酸洗廃液は、鉄鋼の表面の酸化
スケールを塩酸に溶解せしめた溶液であるが、酸化スケ
ール中のPは十分に酸化されている。従って鉄鋼の塩酸
酸洗廃液等を用いる場合は、溶液中のPは十分に酸化さ
れた+5価のPであり、後で述べる前処理を行わない
で、そのまゝ使用できる。
Next, the crude iron chloride solution will be described. For example, a hydrochloric acid pickling waste liquid of steel contains about 11% by weight of Fe ions and about 0.0025% by weight of P, but can be used as a readily available crude iron chloride solution. As described later, in the present invention, P in the crude iron chloride solution is removed as a metal salt of + 5-valent P phosphoric acid. The hydrochloric acid pickling waste liquid of the steel is a solution in which the oxide scale on the surface of the steel is dissolved in hydrochloric acid, and P in the oxide scale is sufficiently oxidized. Therefore, when a hydrochloric acid pickling waste solution of steel or the like is used, P in the solution is +5 valent P which has been sufficiently oxidized, and can be used as it is without performing pretreatment described later.

粗塩化鉄溶液はまた、鋼屑等を塩酸に溶解して調達す
る事もできる。しかしスケールと共に溶解された鋼中の
Pは酸化が不十分である。従って溶液中のPを+5価の
Pに酸化するために、例えば粗塩化鉄溶液1m3に対してH
NO3を20加えて加熱する等の前処理を行う事が好まし
い。
The crude iron chloride solution can also be obtained by dissolving steel chips and the like in hydrochloric acid. However, P in the steel melted with the scale is insufficiently oxidized. H Therefore, in order to oxidize P in the solution to +5 of P, for example with respect to the crude salt of iron solution 1 m 3
It is preferable to perform pretreatment such as heating by adding 20 of NO 3 .

本発明では、粗塩化鉄溶液のPHを2.5〜4.5に調整す
る。このPHの調整は、例えばアンモニア水等のアルカリ
を用いて行ってもよいが、粗塩化鉄溶液に鋼屑やミルケ
ース等の酸化鉄を添加し溶解せしめて、粗塩化鉄溶液の
H+イオンを消耗させる事によって簡易に行う事ができ
る。
In the present invention, the pH of the crude iron chloride solution is adjusted to 2.5 to 4.5. The adjustment of the PH may be performed using, for example, an alkali such as ammonia water.However, iron oxide such as steel chips or a mill case is added to and dissolved in the crude iron chloride solution, and the crude iron chloride solution is dissolved.
It can be easily done by consuming H + ions.

後で述べる如く、本発明ではPH調整後の溶液を大気中
で機械撹拌するが、この機械撹拌によって溶液中のFeが
酸化されてFe3+の不溶化物が発生する。この機械撹拌に
よりPH調整したこの溶液のPHは低下する。後で述べるが
機械撹拌に際してPHが1.5以下となるとPを十分に低減
する事が困難となる。
As will be described later, in the present invention, the solution after pH adjustment is mechanically stirred in the atmosphere. By this mechanical stirring, Fe in the solution is oxidized to generate insoluble Fe 3+ . The pH of the solution whose pH has been adjusted by the mechanical stirring decreases. As will be described later, when PH becomes 1.5 or less during mechanical stirring, it becomes difficult to sufficiently reduce P.

PHを2.5以上に調整すると機械撹拌中のPHが1.5以上に
確保され易い。
When the pH is adjusted to 2.5 or more, the pH during mechanical stirring is easily secured to 1.5 or more.

PHを4.5以上に調整してもよいが、PHが高過ぎると多
量の水酸化鉄が溶液中に形成されて、後で述べる濾過の
能率が低下する。
Although the pH may be adjusted to 4.5 or more, if the pH is too high, a large amount of iron hydroxide is formed in the solution, and the efficiency of filtration described later decreases.

本発明では、PHを調整した溶液を、機械撹拌して、そ
の後で不溶化物を濾別して精製溶液とする。機械撹拌と
は、大気中において撹拌翼や循環ポンプを用いる通常の
撹拌を、又不溶化物の濾別とは通常の濾紙や濾布を用い
る例えばフィルタープレスによる溶液の濾過をいう。
In the present invention, the pH-adjusted solution is mechanically stirred, and then the insolubilized product is filtered to obtain a purified solution. The mechanical stirring means ordinary stirring using a stirring blade or a circulating pump in the atmosphere, and the filtration of insolubilized substances means filtration of a solution using a usual filter paper or filter cloth, for example, by a filter press.

第3図は、粗塩化鉄溶液に鋼屑を加えてPHを3.5に調
整した後の、機械撹拌の進行による、溶液中のFe3+の不
溶化物の生成と、溶液の脱リン率 {(PH調整前のP濃度−精製溶液のP濃度)/(PH調整前のP濃度)}×100 の推移を示す図である。
FIG. 3 shows the formation of Fe 3+ insolubles in the solution and the dephosphorization rate of the solution 鋼 ( It is a figure which shows the transition of P concentration before PH adjustment-P concentration of purified solution / (P concentration before PH adjustment) x 100.

第3図にみられる如く、例えば機械撹拌を約5時間断
続した場合、溶液中に発生するFe3+の不溶化物はFe換算
で約0.01重量%(溶液量に対する重量%)以下である。
Fe3+の不溶化物がFe換算で0.01重量%以下では溶液の脱
リン率は60%以下であるが、0.01重量%以上では急激に
溶液の脱リン率が向上して安定する。
As shown in FIG. 3, for example, when mechanical stirring is interrupted for about 5 hours, the insolubilized Fe 3+ generated in the solution is about 0.01% by weight or less (% by weight based on the amount of the solution) in terms of Fe.
When the insolubilized material of Fe 3+ is 0.01% by weight or less in terms of Fe, the dephosphorization rate of the solution is 60% or less.

機械撹拌の時間が更に長くなると、溶液の脱リン率は
更にゆるやかに向上するが、しかしFe3+の不溶化物の生
成量も増加し、Fe換算で0.10重量%以上にもなると、不
溶化物が多いために濾過の能率が低下する。
When the mechanical stirring time is further increased, the dephosphorization rate of the solution is further improved, but the amount of the insolubilized product of Fe 3+ also increases, and when the amount becomes 0.10% by weight or more in terms of Fe, the insolubilized product is reduced. The large amount reduces the efficiency of filtration.

以上の点から、本発明の方法では、Fe3+の不溶化物の
形成量を、Fe換算で0.01〜0.10重量%とする。
From the above points, in the method of the present invention, the formation amount of the insolubilized material of Fe 3+ is set to 0.01 to 0.10% by weight in terms of Fe.

溶液を機械撹拌してFe3+の不溶化物を生成させると、
溶液のPHが低くなる。しかし機械撹拌でPHが1.5以下と
なると、後で述べる如く、Pの不溶化物は再度溶液に溶
解するため、溶液を濾過しても、Pは濾紙や濾布の目を
通り抜けて、精製溶液のPが高くなる。
When the solution is mechanically stirred to produce insoluble Fe 3+ ,
The pH of the solution decreases. However, when the pH becomes 1.5 or less due to mechanical stirring, as described later, the insolubilized substance of P is dissolved again in the solution. Therefore, even if the solution is filtered, P passes through the eyes of filter paper or filter cloth, and the purified solution P increases.

以上の処理を行う事によって、例えば鉄イオンを11重
量%含有し、Pの含有量が0.0008重量%以下の精製溶液
が得られるが、この精製溶液を通常の方法、例えば第6
図の酸化焙焼炉5で700℃の流動層を用いて酸化焙焼す
ると、Pの含有量が0.005重量%以下の酸化鉄粉が得ら
れる。
By performing the above treatment, a purified solution containing, for example, 11% by weight of iron ions and having a P content of 0.0008% by weight or less can be obtained.
When oxidizing and roasting is performed in the oxidizing roasting furnace 5 using a fluidized bed at 700 ° C., iron oxide powder having a P content of 0.005% by weight or less is obtained.

次に本発明の請求項(2)を説明する。この発明で
は、請求項(1)で述べたと同様に粗塩化鉄溶液のPHを
2.5〜4.5に調整した後で、エヤバブリングを溶液に施
す。
Next, claim (2) of the present invention will be described. In the present invention, the pH of the crude iron chloride solution is adjusted in the same manner as described in claim (1).
After adjusting to 2.5-4.5, apply air bubbling to the solution.

第4図は、粗塩化鉄溶液に鋼屑を加えてPHを3.5に調
整した後でエヤバブリングを溶液に施した際の、溶液中
のFe3+の不溶化物の生成と、溶液の脱リン率の推移を示
す図である。
Fig. 4 shows the formation of insolubles of Fe 3+ in the solution and the dephosphorization rate of the solution when the solution was subjected to air bubbling after adjusting the PH to 3.5 by adding steel chips to the crude iron chloride solution. FIG.

第4図にみられる如く、この方法によると短時間でFe
3+を不溶化物を生成させることができる。即ち、第4図
の例では約20分間のエヤバブリングによってFe換算で0.
01重量%以上のFe3+の不溶化物が生成するが、エヤバブ
リングをこの程度に行う事によって溶液の脱リン率も60
%以上となり安定する。
As can be seen from FIG. 4, according to this method, Fe
3+ can produce insolubles. That is, in the example of FIG.
Although insolubles of Fe 3+ of more than 01% by weight are produced, the dephosphorization rate of the solution can be reduced by performing evaporative bubbling to this extent.
% Or more and stabilized.

請求項(1)と同様に、この方法においてもエヤバブ
リングを更に長時間行うと、Fe3+の不溶化物の量は更に
増加しまた溶液の脱リン率も更に向上するが、Fe3+の不
溶化物の量がFe換算で0.10重量%以上にもなると、不溶
化物が増加して濾過の能率が低下する。従ってこの方法
においてもエヤバブリングは、Fe3+の不溶化物がFe換算
で0.01〜0.10重量%形成される範囲で行う。また請求項
(1)と同様に、エヤバブリングしてFe3+の不溶化物を
生成させると溶液のPHも低下するが、溶液のPHが1.5以
下となるとPの不溶化物は溶液に溶解するため、精製溶
液のPの含有量が高くなる。
As in claim (1), in this method as well, if the air bubbling is performed for a longer time, the amount of the insolubilized product of Fe 3+ further increases and the dephosphorization rate of the solution further increases, but the insolubilization of Fe 3+ increases. When the amount of the substance is 0.10% by weight or more in terms of Fe, the amount of insolubilized substance increases and the efficiency of filtration decreases. Therefore, also in this method, the air bubbling is performed in a range in which the insolubilized material of Fe 3+ is formed at 0.01 to 0.10% by weight in terms of Fe. Also, as in claim (1), when the insolubles of Fe 3+ are formed by air bubbling, the pH of the solution also decreases. However, when the pH of the solution becomes 1.5 or less, the insolubles of P dissolve in the solution. The P content of the purified solution increases.

以上の処理を行うことによって、例えばFeを11重量%
含有し、Pの含有量が0.0008重量%以下の精製溶液が得
られるが、この精製溶液を、請求項(1)の場合と同様
に、酸化焙焼すると、Pの含有量が0.005重量%以下の
酸化鉄粉が得られる。
By performing the above processing, for example, 11% by weight of Fe
A purified solution having a P content of 0.0008% by weight or less is obtained. When the purified solution is oxidized and roasted in the same manner as in claim (1), the P content is 0.005% by weight or less. Iron oxide powder is obtained.

本発明者等は下記の実験を行なった。即ち請求項
(1)で述べたと同様に粗塩化鉄溶液のPHを2.5〜4.5に
調整した溶液を、限外濾過器によって不溶化物を除去し
て、精製溶液とする。第5図はこの不溶化物の除去方法
を示す図で、11はPHを調整した粗塩化鉄溶液、12は循環
ポンプ、13は限外濾過器、14は精製溶液である。既に述
べた如く、粗塩化鉄溶液のPHを2.5〜4.5に調整しても、
例えば第3図では5時間以上の機械撹拌を行わないと、
又例えば第4図では約20分間のエヤバブリングを行わな
いと、通常の濾紙や濾布では精製溶液のP含有量を十分
に低減する事はできないが、例えば目の多きさが20Åの
限外濾過器を用いて濾過すると、機械撹拌やエヤバブリ
ングを全く行わなかった場合でも、精製溶液のPの含有
量を十分低減して、例えば鉄を11重量%含有し、Pの含
有量が0.0008重量%以下の精製溶液が得られる。この精
製溶液を酸化焙焼するとPの含有量が0.005重量%以下
の酸化鉄粉が得られる。
The present inventors conducted the following experiment. That is, the solution obtained by adjusting the pH of the crude iron chloride solution to 2.5 to 4.5 in the same manner as described in claim (1) is purified by removing the insolubilized substance with an ultrafilter. FIG. 5 is a diagram showing a method of removing the insoluble matter, wherein 11 is a crude iron chloride solution with adjusted pH, 12 is a circulation pump, 13 is an ultrafilter, and 14 is a purified solution. As already mentioned, even if the pH of the crude iron chloride solution is adjusted to 2.5 to 4.5,
For example, in FIG. 3, unless mechanical stirring is performed for 5 hours or more,
In addition, for example, in FIG. 4, the P content of the purified solution cannot be sufficiently reduced by ordinary filter paper or filter cloth unless the air bubbling is performed for about 20 minutes. When using a filter, the P content of the purified solution is sufficiently reduced even if mechanical stirring or evacuation is not performed at all, for example, containing 11% by weight of iron and having a P content of 0.0008% by weight or less. A purified solution of is obtained. When this purified solution is oxidized and roasted, iron oxide powder having a P content of 0.005% by weight or less is obtained.

[作用] 本発明の方法で、Pが0.005重量%以下の酸化鉄粉が
得られる理由を説明する。
[Action] The reason why iron oxide powder having P of 0.005% by weight or less can be obtained by the method of the present invention will be described.

例えば軟鋼板(炭素鋼)は通常0.03重量%のPを含有
している。また軟鋼板の酸化スケールには、このPが含
有されている。軟鋼板や軟鋼板を酸化スケールを塩酸に
溶解するとPも溶液中に溶解する。この粗塩化鉄溶液の
Pは、そのまゝで、あるいは必要な際は既に述べた前処
理を施すと、+5価のPに酸化され溶液中に存在してい
る。粗塩化鉄溶液中の+5価のPは下記の(1)〜
(3)式の如くに、挙動する。
For example, a mild steel plate (carbon steel) usually contains 0.03% by weight of P. The P is contained in the oxide scale of the mild steel sheet. When a mild steel sheet or a mild steel sheet is dissolved in an oxidized scale in hydrochloric acid, P also dissolves in the solution. The P in the crude iron chloride solution is oxidized to + 5-valent P and is present in the solution as it is or, if necessary, by performing the pretreatment described above. + 5-valent P in the crude iron chloride solution is as follows (1)-
It behaves as in equation (3).

H3PO4H+H2PO4 - ………(1) H2PO4 -H+HPO4 2- ………(2) HPO4 2-H++PO4 3- ………(3) 粗塩化鉄溶液のPHが低いと、上記の(2)および
(3)の解離は進行しないので、+5価のPはH3PO4
るいはH2PO4 -の金属塩となって溶液中に存在するが、H3
PO4やH2PO4 -の金属塩は水溶性であるために、PHが低い
とPを粗塩化鉄溶液から分別できない。PHを1.5以上に
すると、前記の(2)又は(3)に示した解離が進行し
て、HPO4 2-やPO4 3-が生成するが、これ等の金属塩は不
溶性であるために不溶化物として粗塩化鉄溶液から分別
する事が可能となる。粗塩化鉄溶液のPHを2.5〜4.5に調
整すると、安定したPの不溶化物が形成される。
H 3 PO 4 H + H 2 PO 4 - ......... (1) H 2 PO 4 - H + HPO 4 2- ......... (2) HPO 4 2- H + + PO 4 3- ......... (3) If the pH of the crude iron chloride solution is low, the dissociation of the above (2) and (3) does not proceed, so that the + 5-valent P becomes a metal salt of H 3 PO 4 or H 2 PO 4 and becomes a solution in the solution. Exists but H 3
Since the metal salts of PO 4 and H 2 PO 4 are water-soluble, P cannot be separated from the crude iron chloride solution at low PH. When the PH to 1.5 or more, wherein the (2) or (3) the dissociation proceeds shown, in order HPO 4 2-and PO 4 3- are but produces, this metal salt such as are insoluble It can be separated from the crude iron chloride solution as an insolubilized product. When the pH of the crude iron chloride solution is adjusted to 2.5 to 4.5, a stable P insolubilized substance is formed.

しかし粗塩化鉄溶液のPHを2.5〜4.5に調整しただけで
は、Pの不溶性の金属塩は微細であり、例えば目の大き
さが20Åの限外濾過器を用いると分別する事ができる
が、通常の濾紙や濾布ではPの不溶性の金属塩は濾紙や
濾布の目を通り抜けて、精製溶液に達するため、濾別す
る事は困難である。PHを調整した粗塩化鉄溶液を十分に
機械撹拌し、あるいはエヤバブリングして、Fe3+の不溶
化物を十分な量発生させると、Pの不溶性の金属塩は通
常の濾紙や濾布を用いても濾別できるが、これは十分な
機械撹拌やエヤバブリングによってPの不溶性の微細な
金属塩が、濾紙や濾布の目を通り抜けない性状に変化す
るためと思われる。
However, by simply adjusting the pH of the crude iron chloride solution to 2.5 to 4.5, the insoluble metal salt of P is fine, and can be separated by using an ultrafilter having a mesh size of 20 mm, for example. In a normal filter paper or filter cloth, the insoluble metal salt of P passes through the eyes of the filter paper or filter cloth and reaches a purified solution, so that it is difficult to separate by filtration. When the crude iron chloride solution whose pH has been adjusted is sufficiently mechanically stirred or subjected to air bubbling to generate a sufficient amount of the insolubilized product of Fe 3+ , the insoluble metal salt of P can be removed using ordinary filter paper or filter cloth. This can be attributed to sufficient mechanical stirring or air bubbling to change the insoluble fine metal salt of P into a property that does not pass through the eyes of filter paper or filter cloth.

本発明の請求項(1)および(2)では、溶液中にFe
3+の不溶化物が、溶液量に対するFe3+の重量%で0.01〜
0.10となる事を、濾過時期を判断する目安とするが、Fe
3+がこの程度に発生すると溶液の色調が褐色に変化する
ために、この時期は溶液の色調を観察する事によって容
易に把握できる。
In claims (1) and (2) of the present invention, Fe
The insolubilized 3+ is 0.01% by weight of Fe 3+ based on the solution volume.
0.10 is used as a guide for judging the filtration time.
When 3+ occurs to this extent, the color tone of the solution changes to brown, so this time can be easily grasped by observing the color tone of the solution.

[発明の効果] 本発明は、塩化鉄溶液のPの重点的に除去した後、酸
化焙焼して酸化鉄粉を製造する方法であるが、Pを重点
的に除去する方法が簡易であり、従来の結晶精製法に比
べて、簡易に且つ安価に酸化鉄粉を製造する事ができ
る。
[Effects of the Invention] The present invention is a method for producing iron oxide powder by oxidizing and roasting after removing P in an iron chloride solution mainly. However, the method for removing P mainly is simple. The iron oxide powder can be easily and inexpensively produced as compared with the conventional crystal refining method.

本発明の方法で製造した酸化鉄粉は、フェライトの磁
気特性を損わない不純物、例えばマンガン等を含有する
が、この酸化鉄粉を用いて製造したソフトフェライト
は、従来の高純度酸化鉄粉を用いて製造したソフトフェ
ライトの磁気特性と同じ水準の磁気特性を備えているた
め、高級ソフトフェライトの製造に用いる事ができる。
The iron oxide powder produced by the method of the present invention contains impurities that do not impair the magnetic properties of ferrite, such as manganese, but soft ferrite produced using this iron oxide powder is a conventional high-purity iron oxide powder. Since it has the same level of magnetic characteristics as the soft ferrite manufactured by using, it can be used for manufacturing high-grade soft ferrite.

【図面の簡単な説明】[Brief description of the drawings]

第1図は酸化鉄粉中のPの含有量とμiacの関係を示す
図、 第2図は酸化鉄粉中のPの含有量とtanδ/μiacの関係
を示す図、 第3図は機械撹拌の進行による溶液中のFe3+の不溶化物
の生成量(Fe換算の重量%)と溶液の脱リン率の推移を
示す図、 第4図はエヤバブリングの進行による溶液中のFe3+の不
溶化物の生成量(Fe換算重量%)と溶液の脱リン率の推
移を示す図、 第5図は限外濾過器による不溶化物の除去方法の模式
図、 第6図は塩化鉄溶液を酸化焙焼して酸化鉄粉を製造する
プロセスフローの例を示す図、 である。 1:塩化鉄溶液の貯溜槽、2:接触塔、3:熱ガス、4:酸化鉄
粉、5:焙焼炉、6:塩化鉄溶液、7:電気集塵機、8:塩酸回
収塔、9:水スプレー、10:熱風、11:粗塩化鉄溶液、12:
循環ポンプ、13:限外濾過器、14:精製溶液。
FIG. 1 is a diagram showing the relationship between the P content in iron oxide powder and μiac, FIG. 2 is a diagram showing the relationship between P content in iron oxide powder and tan δ / μiac, and FIG. 3 is mechanical stirring. shows progress by the amount of insolubles of Fe 3+ in the solution (% by weight of Fe conversion) changes in the dephosphorization rate of the solution, Fig. 4 insolubilization of Fe 3+ in solution by progress Eyababuringu Fig. 5 is a graph showing the change in the amount of the product (wt% in terms of Fe) and the dephosphorization rate of the solution. FIG. 3 is a diagram showing an example of a process flow for producing iron oxide powder by baking. 1: Storage tank of iron chloride solution, 2: Contact tower, 3: Hot gas, 4: Iron oxide powder, 5: Roasting furnace, 6: Iron chloride solution, 7: Electric dust collector, 8: Hydrochloric acid recovery tower, 9: Water spray, 10: hot air, 11: crude iron chloride solution, 12:
Circulating pump, 13: ultrafilter, 14: purified solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村瀬 徹 東京都中央区銀座7丁目12番14号 ケミ ライト工業株式会社内 (72)発明者 奥谷 克伸 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 森 輝夫 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 昭59−156901(JP,A) 特開 昭62−235221(JP,A) 特開 昭62−152592(JP,A) 特開 昭59−73439(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toru Murase 7-12-14 Ginza, Chuo-ku, Tokyo Inside Chemi Light Industry Co., Ltd. (72) Katsunobu Okutani 1-13-1 Nihombashi, Chuo-ku, Tokyo Inside DK Corporation (72) Inventor Teruo Mori 1-13-1 Nihonbashi, Chuo-ku, Tokyo Inside DK Corporation (56) References JP-A-59-156901 (JP, A) JP-A-62-235221 ( JP, A) JP-A-62-152592 (JP, A) JP-A-59-73439 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】塩化鉄溶液を酸化焙焼して酸化鉄粉を製造
する方法において、粗塩化鉄溶液のPHを2.5〜4.5に調整
し、その後その溶液中にFe換算で0.01〜0.1重量%のFe
3+の不溶化物が形成するまで機械撹拌し、更に不溶化物
を濾別除去して得た精製溶液を酸化焙焼して、Pの含有
量が0.005重量%以下でSiO2の含有量が0.005〜0.010重
量%の酸化鉄粉を製造することを特徴とする、酸化鉄粉
の製造方法。
1. A method for producing iron oxide powder by oxidizing and roasting an iron chloride solution, wherein the pH of the crude iron chloride solution is adjusted to 2.5 to 4.5, and then the solution contains 0.01 to 0.1% by weight of Fe. Fe
Mechanical stirring was performed until a 3+ insolubilized substance was formed, and the purified solution obtained by filtering and removing the insolubilized substance was oxidized and roasted. The P content was 0.005% by weight or less and the SiO 2 content was 0.005% by weight. A method for producing iron oxide powder, characterized by producing iron oxide powder of up to 0.010% by weight.
【請求項2】塩化鉄溶液を酸化焙焼して酸化鉄粉を製造
する方法において、粗塩化鉄溶液のPHを2.5〜4.5に調整
し、その後その溶液中にFe換算で0.01〜0.1重量%のFe
3+の不溶化物が形成するまでエヤバブリングし、更に不
溶化物を濾別除去して得た精製溶液を酸化焙焼して、P
の含有量が0.005重量%以下でSiO2の含有量が0.005〜0.
010重量%の酸化鉄粉を製造することを特徴とする、酸
化鉄粉の製造方法。
2. A method for producing iron oxide powder by oxidizing and roasting an iron chloride solution, wherein the pH of the crude iron chloride solution is adjusted to 2.5 to 4.5, and then the solution contains 0.01 to 0.1% by weight of Fe. Fe
Air purification is performed until a 3+ insolubilized substance is formed, and the purified solution obtained by filtering and removing the insoluble substance is oxidized and roasted.
The content is the content of SiO 2 0.005 wt% or less from 0.005 to 0.
A method for producing iron oxide powder, comprising producing 010% by weight of iron oxide powder.
JP63317617A 1988-12-17 1988-12-17 Manufacturing method of iron oxide powder Expired - Lifetime JP2776423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317617A JP2776423B2 (en) 1988-12-17 1988-12-17 Manufacturing method of iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317617A JP2776423B2 (en) 1988-12-17 1988-12-17 Manufacturing method of iron oxide powder

Publications (2)

Publication Number Publication Date
JPH02164725A JPH02164725A (en) 1990-06-25
JP2776423B2 true JP2776423B2 (en) 1998-07-16

Family

ID=18090182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317617A Expired - Lifetime JP2776423B2 (en) 1988-12-17 1988-12-17 Manufacturing method of iron oxide powder

Country Status (1)

Country Link
JP (1) JP2776423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114655995B (en) * 2022-03-30 2023-07-18 鞍钢股份有限公司 Wet purification and wastewater recycling method for ferric oxide powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973439A (en) * 1982-10-19 1984-04-25 Nippon Steel Corp Production of iron oxide from waste hydrochloric acid liquor for pickling
JPS59156901A (en) * 1983-02-21 1984-09-06 Tadayoshi Karasawa Improvement of process for recovering metallic oxide
JPS62152592A (en) * 1985-12-25 1987-07-07 Kobe Steel Ltd Treatment of desulfurized slag washing waste liquid
JPS62235221A (en) * 1986-04-02 1987-10-15 Japan Metals & Chem Co Ltd Production of high-purity iron oxide

Also Published As

Publication number Publication date
JPH02164725A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
CN108754186A (en) The method for preparing vfanadium compound containing vanadium solution
US5527469A (en) Method for the preparation of desulfurized titanium oxide hydrolysate of high purity
JP2672985B2 (en) Purified solution containing iron and manganese and method for producing the same
JP2776423B2 (en) Manufacturing method of iron oxide powder
JPH01153532A (en) Purification of ferrous ion-containing solution
JPH0952716A (en) Production of multiple oxide powder for soft ferrite from waste plating liquid
JPH0582330B2 (en)
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
JP2862875B2 (en) Iron oxide for ferrite
JPS582166B2 (en) Method for removing cobalt from aqueous nickel sulfate solution
JP3188573B2 (en) Purification method of iron chloride solution
JP2735790B2 (en) Mn-Zn ferrite
CN111039448A (en) Method for removing manganese impurities in acidic solution by ozone
KR100328064B1 (en) Acid pickling wastewater purification method
JP2939213B2 (en) Mn-Zn ferrite
JP2004051477A (en) Method for manufacturing iron hydroxide, iron oxide hydrate or iron oxide from filtered salt of recovered diluted acid
RU2148555C1 (en) Method for production of vanadium pentoxide
JPH035324A (en) Production of iron oxide for rerrite material
JPH0696453B2 (en) Purification method of iron chloride aqueous solution
JPH07121809B2 (en) Purification method of iron chloride aqueous solution
JPS63117915A (en) Production of raw material for iron oxide containing little manganese
JP3972996B2 (en) Method for purifying ferrous iron-containing solution
JP3417615B2 (en) Production method of ternary roasting liquid
JPH0249254B2 (en)
JPH0340924A (en) Production of high-purity ferrous sulfate solution from sulfuric acid-based pickling waste acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080501

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11