JPH035324A - Production of iron oxide for rerrite material - Google Patents

Production of iron oxide for rerrite material

Info

Publication number
JPH035324A
JPH035324A JP13646589A JP13646589A JPH035324A JP H035324 A JPH035324 A JP H035324A JP 13646589 A JP13646589 A JP 13646589A JP 13646589 A JP13646589 A JP 13646589A JP H035324 A JPH035324 A JP H035324A
Authority
JP
Japan
Prior art keywords
iron
aqueous solution
ferrous chloride
precipitate
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13646589A
Other languages
Japanese (ja)
Inventor
Masao Tsuzaki
津崎 昌夫
Takashi Takagi
高木 堅志
Fumiaki Yoshikawa
文明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13646589A priority Critical patent/JPH035324A/en
Publication of JPH035324A publication Critical patent/JPH035324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aqueous solution of refined ferrous chloride suitable for producing iron oxide for ferrite material by regulating the pH value of an aqueous solution of ferrous chloride to a value in a specific range by the use of iron or iron compound, partially forming a precipitate of goethite, and then separating the above precipitate. CONSTITUTION:In a method for producing iron oxide by applying high temp. roasting to an aqueous solution of ferrous chloride, the pH value of the aqueous solution of ferrous chloride is regulated to 2-5 by neutralizing free hydrochloric acid by the use of iron or iron compound and then the above aqueous solution is brought into contact with oxygen or oxygen-containing gas, by which 0.5-15% of iron (Fe) content in the solution is oxidized into a precipitate composed principally of hydrated ferric oxide (goethite, FeOOH). Subsequently, the above precipitate is separated and the aqueous solution of refined ferrous chloride is obtained, and this aqueous solution is subjected to high temp. roasting.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、鋼板等の鋼材の塩酸酸洗廃液から、St%A
n%P等の不純物含有量の少ないフェライト原料用酸化
鉄を製造する方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a method of extracting St%A from the hydrochloric acid pickling waste of steel materials such as steel plates
The present invention relates to a method for producing iron oxide for ferrite raw material with a low content of impurities such as n%P.

〈従来の技術〉 鉄鋼板の酸洗廃液として発生する塩化第一鉄水溶液は、
通常Six A11s P% Cr、Cu。
<Conventional technology> Ferrous chloride aqueous solution generated as pickling waste of steel plates is
Usually Six A11s P% Cr, Cu.

Ti等の不純物を含有しており、例えばこの廃液を焙焼
して酸化鉄を生成する際、これらの不純物が酸化鉄中に
残存し、そのためこの生成酸化鉄をフェライト原料用と
して使用したとき、その磁気特性を低下させる原因とな
る。 特に小型化、高性能化を要求されるソフト系フェ
ライト材料に使用する際は、特にSi%AfL、 Pの
ような微量不純物がフェライト粒子の結晶を粗大化させ
、電気的・磁気的特性が著しく低下することが知られて
いる。
It contains impurities such as Ti, and for example, when this waste liquid is roasted to produce iron oxide, these impurities remain in the iron oxide, so when the produced iron oxide is used as a ferrite raw material, This causes deterioration of its magnetic properties. In particular, when used in soft ferrite materials that require miniaturization and high performance, trace impurities such as Si%AfL and P can coarsen the crystals of ferrite particles, significantly impairing their electrical and magnetic properties. known to decrease.

従来、鋼材の酸洗廃液に含有される不純物の量を低減す
るために、主に脱Sin、を目的とした凝集−濾過分離
方式が利用されているが、強酸性条件下での凝集効果は
十分でなく、また、Si以外の不純物成分の除去率は小
さいという問題点があった。
Conventionally, in order to reduce the amount of impurities contained in the waste solution from pickling steel materials, a coagulation-filtration separation method has been used mainly for the purpose of de-sin, but the coagulation effect under strong acidic conditions is In addition, there was a problem that the removal rate of impurity components other than Si was low.

一方、凝集効果を高めるため、塩化第一鉄水溶液中の遊
離塩酸をアルカリで中和してpHを上げる方法や、原料
溶液中に少量存在する3価の鉄(Fe”″)をアルカリ
で中和してF e (OH) 3を沈殿させ、それに不
純物を共沈除去する方法が提案されている。 しかし、
アルカリを使用した場合、精製後の液中に不純物として
NH4、Na” 、Ca”  Mg”等が混入し、これ
らは溶液から容易に分離できないため、不純物として残
存するという問題点を有する。
On the other hand, in order to enhance the coagulation effect, there are methods to increase the pH by neutralizing free hydrochloric acid in the ferrous chloride aqueous solution with an alkali, and methods to neutralize trivalent iron (Fe"") present in a small amount in the raw material solution with an alkali. A method has been proposed in which F e (OH) 3 is precipitated by adding F e (OH) 3 and impurities are removed by coprecipitation. but,
When an alkali is used, there is a problem that NH4, Na'', Ca''Mg'', etc. are mixed into the purified solution as impurities, and since these cannot be easily separated from the solution, they remain as impurities.

そこで、アルカリ処理することなく、塩化第一鉄水溶液
中の不純物を共沈除去する方法として、酸素もしくは酸
素含有気体を通して含水酸化第二鉄(β−FeOOH)
を生成させ、不純物を共沈分離する方法〔特公昭56−
21731)、およびCrの除去を目的とし、鉄材の共
存下で酸素含有気体と接触させ、生成する酸化鉄沈殿を
分離除去する方法(特公昭6O−8980)が提案され
ている。
Therefore, as a method for removing impurities in a ferrous chloride aqueous solution by coprecipitation without alkali treatment, hydrated ferric oxide (β-FeOOH) is
A method of co-precipitation separation of impurities by producing
21731), and a method (Japanese Patent Publication No. 6O-8980) has been proposed in which the iron oxide precipitate produced is separated and removed by contacting with an oxygen-containing gas in the coexistence of an iron material for the purpose of removing Cr.

〈発明が解決しようとする課題〉 しかし、前述の共沈によるi製法については以下のよう
な問題点がある。
<Problems to be Solved by the Invention> However, the above-mentioned i-manufacturing method by coprecipitation has the following problems.

即ち、特公昭56−21731によれば、気曝反応時の
p)1条件が1付近の強酸性域であり、ある程度の不純
物除去効果は得られるものの、木目的に利用する際には
、Si、AJ2.P、Cr等において、その除去率は十
分とは言えないことが判明した。 特にPに関しては、
後述するように、金属のオルソリン酸塩(PO4)の溶
解度が強酸性域で大きいことから、液中に溶存し除去し
にくい原因となっている。 また、沈殿の生成するpH
域が例えば3以上である金属元素についても同様の傾向
がみられる。
That is, according to Japanese Patent Publication No. 56-21731, the p)1 condition during the aeration reaction is a strongly acidic region around 1, and although a certain degree of impurity removal effect can be obtained, when using Si for wood purposes, , AJ2. It was found that the removal rate of P, Cr, etc. was not sufficient. Especially regarding P.
As will be described later, the solubility of metal orthophosphate (PO4) is high in a strongly acidic region, which causes it to be dissolved in the liquid and difficult to remove. In addition, the pH at which precipitation occurs
A similar tendency is observed for metal elements whose range is, for example, 3 or more.

一方、特公昭60−8980は、Crの除去を目的とし
て、気曝時に液中に鉄材を存在させることで、溶液のp
Hを1.5〜3.5に調整するとしているが、鉄材に還
元作用があり、共存条件下では酸素含有気体によるFe
の酸化反応が抑制され、沈殿生成に時間を多く要し、S
i、Ai、pを共沈・吸着除去されるに十分な沈殿量を
容易に得られないという問題を有する。 また逆に酸化
雰囲気であるが故に、鉄材の還元作用によるpH上昇に
関しても制約を受けており、St、An、P等の不純物
の除去等が十分ではない要因になっていると考えられる
。 なお、溶液中のF el C112濃度は25〜4
0wt%としているが、上述の各1off題点は40w
t%以上の濃度において特に顕著にあられれる。
On the other hand, Japanese Patent Publication No. 1989-8980 proposed that, for the purpose of removing Cr, by making iron material exist in the solution during aeration, the pH of the solution was
Although it is said that H is adjusted to 1.5 to 3.5, the iron material has a reducing effect, and under coexistence conditions, Fe is reduced by oxygen-containing gas.
The oxidation reaction of S
There is a problem in that it is not easy to obtain a sufficient amount of precipitate to remove i, Ai, and p by coprecipitation and adsorption. On the other hand, since it is an oxidizing atmosphere, there are restrictions on the pH increase due to the reducing action of the iron material, which is considered to be a factor in the insufficient removal of impurities such as St, An, and P. In addition, the F el C112 concentration in the solution is 25 to 4
0wt%, but each 1off problem mentioned above is 40w
It is particularly noticeable at concentrations of t% or higher.

本発明は上記の問題点を解消し、広範囲の濃度の鋼板塩
酸酸洗廃液もしくはその濃縮液から、効率的かつ経済的
に、Si、AILS P等の不純物を除去した精製塩化
第一鉄水溶液を製造する技術を提供することを目的とし
ている。
The present invention solves the above-mentioned problems and efficiently and economically produces a purified ferrous chloride aqueous solution from which impurities such as Si and AILS P are removed from a steel plate hydrochloric acid pickling waste solution with a wide range of concentrations or its concentrate. The purpose is to provide manufacturing technology.

く課題を解決するための手段〉 本発明者等は、フェライト原料用酸化鉄の製造工程の中
で、特に塩化第一鉄水溶液の安価な精製方法について鋭
意研究を重ねた結果、鉄または鉄化合物を用いて溶液の
pHを2〜5に調整し、液を鉄材より分離した後、酸素
もしくは酸素含有気体と接触させて含水酸化第二鉄(ゲ
ーサイト)の沈殿を一部生成させ、凝集濾過分離させる
ことで、St%AfL% P等の不純物を効果的に共沈
・吸着除去できることを見いだし、本発明を完成するに
至った。
Means for Solving the Problems> As a result of extensive research into an inexpensive purification method for ferrous chloride aqueous solution in the manufacturing process of iron oxide for ferrite raw materials, the present inventors found that iron or iron compounds After adjusting the pH of the solution to 2 to 5 using It was discovered that impurities such as St%AfL%P can be effectively coprecipitated and adsorbed and removed by separation, and the present invention was completed.

即ち、上記目的を達成するために、本発明によれば、塩
化第一鉄水溶液を高温焙焼して酸化鉄を製造する方法に
おいて、 塩化第一鉄水溶液を鉄または鉄化合物で遊離塩酸を中和
してpHを2〜5に調整した後、酸素もしくは酸素含有
気体と接触させて溶液中の鉄(Fe)分の0.5〜15
%を含水酸化第二鉄(FeOOH)を主成分とする沈殿
物に酸化させ、該沈殿物を分離し、精製塩化第一鉄水溶
液とした後、高温焙焼することを特徴とするフェライト
原料用酸化鉄の製造方法が提供される。
That is, in order to achieve the above object, according to the present invention, in a method for producing iron oxide by roasting a ferrous chloride aqueous solution at a high temperature, free hydrochloric acid is dissolved in the ferrous chloride aqueous solution with iron or an iron compound. After adjusting the pH to 2 to 5, the iron (Fe) content in the solution is reduced to 0.5 to 15 by contacting with oxygen or an oxygen-containing gas.
% to a precipitate whose main component is hydrated ferric oxide (FeOOH), and the precipitate is separated to form a purified ferrous chloride aqueous solution, followed by high-temperature roasting. A method for producing iron oxide is provided.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

まず、本発明が適用される原料は、前述の通り鋼板等の
塩酸酸洗廃液もしくはこれを加熱濃縮した濃縮廃塩酸等
の塩化鉄水溶液である。
First, the raw material to which the present invention is applied is an aqueous iron chloride solution such as waste hydrochloric acid pickling of steel plates or the like or concentrated waste hydrochloric acid obtained by heating and concentrating this.

これらは通常遊離塩酸を含有しており、pHが1未満の
強酸性状態であることが多い。
These usually contain free hydrochloric acid and are often in a strongly acidic state with a pH of less than 1.

そこで、アルカリを使用せずに、鉄または鉄化合物を利
用して遊離塩酸の中和を行い、pHを2〜5;好ましく
は3〜4に調整する。 中和に利用する鉄または鉄化合
物は、ミルスケール、スクラップ、鉄粉等製鉄所内で発
生する鉄源が利用可能であり、特に金属鉄であれば、液
中に少量存在する3価の鉄(F e ”)を還元させる
(273F e ”+  173F e −* F e
 ”)ため、pH上昇に関して有利である。 また、反
応速度的には、比表面積の大きな形状であることが望ま
しい。
Therefore, free hydrochloric acid is neutralized using iron or an iron compound without using an alkali, and the pH is adjusted to 2 to 5; preferably 3 to 4. The iron or iron compounds used for neutralization can be mill scale, scrap, iron powder, or other iron sources generated in steel mills. In particular, if it is metallic iron, trivalent iron (trivalent iron, which is present in small amounts in the liquid) can be used. Fe ”) is reduced (273F e ”+ 173F e −* Fe
”), so it is advantageous in terms of increasing the pH. Also, in terms of reaction rate, it is desirable to have a shape with a large specific surface area.

なお、pHを上記範囲に調整する理由は、S i O2
A JZ、P等の不純物の溶解度を下げ、粒子を粗大化
させて次工程での共沈・吸着分離を容易にするためであ
る。 なお、pHを5以上にすることは、アルカリ未使
用の条件では技術的に困難であり、また溶液中の2価の
鉄(F e ”)の沈殿生成が一部開始されるので、F
e口又となり好ましくない。
The reason for adjusting the pH to the above range is that S i O2
A This is to lower the solubility of impurities such as JZ and P, and to coarsen the particles to facilitate coprecipitation and adsorption separation in the next step. In addition, it is technically difficult to raise the pH to 5 or higher when no alkali is used, and some of the divalent iron (F e '') in the solution starts to precipitate.
e It is undesirable because it becomes a mouthful.

上記の反応は60℃以上、好ましくは80℃以上におい
て迅速に進行し、処理液の塩化第一鉄濃度は任意である
が、経済的にみて高濃度(40wt%以上)で取扱うの
が有利である。
The above reaction proceeds rapidly at temperatures above 60°C, preferably above 80°C, and although the ferrous chloride concentration of the treatment solution is arbitrary, it is economically advantageous to handle it at a high concentration (40 wt% or above). be.

このように調製された塩化第一鉄水溶液は、前述の鉄ま
たは鉄化合物と分離して次工程へ送られる。 この際、
微細スケール等の懸濁物質を完全に分離するために、濾
過操作を行ワてもよい。 こうして得られた、塩化第一
鉄水溶液は、酸素もしくは、酸素含有気体と接触して溶
液中のFe分の0.5〜15%を含水酸化鉄(FeOO
H)に酸化して沈殿を生成させ、凝集濾過することで、
St、AJZ、P等の不純物を共沈・吸着分離する。
The ferrous chloride aqueous solution thus prepared is separated from the aforementioned iron or iron compound and sent to the next step. On this occasion,
A filtration operation may be performed to completely separate suspended substances such as fine scales. The thus obtained aqueous ferrous chloride solution is brought into contact with oxygen or an oxygen-containing gas to convert 0.5 to 15% of the Fe content in the solution into hydrated iron oxide (FeOO).
By oxidizing to H) to form a precipitate and coagulating and filtering it,
Impurities such as St, AJZ, and P are separated by coprecipitation and adsorption.

このときの不純物の除去機構について以下に説明を述べ
る。 まず、SLは5i02(シリカ)として存在し、
強酸性域では主に珪酸イオンとして存在するが、pH2
〜5に中和するとコロイド重合化が進行し、負帯電のコ
ロイダルシリカとして粗粒化する。
The impurity removal mechanism at this time will be explained below. First, SL exists as 5i02 (silica),
In the strongly acidic region, it mainly exists as silicate ions, but at pH 2
When neutralized to 5 to 5, colloidal polymerization progresses and the particles become coarse as negatively charged colloidal silica.

一方AjZは強酸性域では塩化物として溶存するが、p
H上昇に伴い、水酸化物沈殿となり析出する。 これは
、AIL以外に、Cr、Cu。
On the other hand, AjZ dissolves as chloride in a strongly acidic region, but p
As H increases, hydroxide precipitates and deposits. In addition to AIL, this includes Cr and Cu.

Ti等も同様の挙動を示す。Ti and the like also exhibit similar behavior.

ざらにPに関しては、強酸性域では主にリン酸イオン(
PO43−)として解離しており金属類とは可溶性の第
1塩((Me”H2PO4) M eは金属)として溶
存する。 これに対し、pHを2〜5の範囲まで上昇さ
せると、金属類と第2塩(Me”HPO4)さらには第
3塩(Me”Pop)を形成し、とりわけ第3塩は難溶
性であり、沈殿となり析出する。 さらに述べると、沈
殿するリン酸塩の主形態であるFePO4の溶解度デー
タ(第2図参照)より、FePO4の最小溶解度は、p
H3,5〜4にある。
Regarding Zarani P, in the strongly acidic region, phosphate ions (
It is dissociated from metals as a soluble first salt ((Me"H2PO4) Me is a metal). On the other hand, when the pH is raised to a range of 2 to 5, metals A second salt (Me"HPO4) and a third salt (Me"Pop) are formed, and the third salt is particularly poorly soluble and precipitates out.Moreover, the main form of the precipitated phosphate From the solubility data of FePO4 (see Figure 2), the minimum solubility of FePO4 is p
It is in H3, 5-4.

以上のように、pH調整することにより、Si、An、
P等の不純物を、不溶化させることができ、共沈・吸着
分離が容易となる。
As mentioned above, by adjusting the pH, Si, An,
Impurities such as P can be made insolubilized, making coprecipitation and adsorption separation easier.

一方、湿式酸化により生成する沈殿は、その主成分が含
水酸化鉄であり、X線回折分析の結果、β−FeOOH
であることが判明し、これは以下の特性を有している。
On the other hand, the main component of the precipitate produced by wet oxidation is hydrated iron oxide, and as a result of X-ray diffraction analysis, β-FeOOH
It turns out to be , which has the following properties:

即ち、構造上多孔質で表面積が大きい、液中で正帯電し
、コロイダルシリカのような負帯電物質のゼータ電位を
下げ電荷的に中和凝集させる、アニオン性の高分子凝集
剤で容易に凝集し、沈降分離性および濾過特性にすぐれ
ている等である。 これらはいずれも共沈・吸着処理す
る担体にとって、非常に望ましい特性である。
In other words, it is porous in structure and has a large surface area, is positively charged in liquid, lowers the zeta potential of negatively charged substances such as colloidal silica, neutralizes the charges, and coagulates, and is easily agglomerated by anionic polymer flocculants. It also has excellent sedimentation separation properties and filtration properties. All of these are very desirable properties for a carrier that undergoes coprecipitation and adsorption treatment.

以上の点より、本発明者らはpH調整による不溶化効果
と、含水酸化鉄(FeOOH)を担体とする共沈・吸着
効果を組み合わせること、なおかつ、両者の反応を独立
に行わせることにより、効率良く、広範囲の濃度領域で
塩化第一鉄水溶液中のSL、AJZ、P等の不純物を驚
くべき高除去率で取り除くことができることを知り、本
発明を完成させるに到ったのである。
Based on the above points, the present inventors have found that they can improve efficiency by combining the insolubilization effect through pH adjustment and the coprecipitation/adsorption effect using hydrous iron oxide (FeOOH) as a carrier, and by allowing both reactions to occur independently. It was discovered that impurities such as SL, AJZ, and P in an aqueous ferrous chloride solution can be removed at a surprisingly high removal rate over a wide range of concentrations, leading to the completion of the present invention.

なお、湿式酸化の実施条件をさらに詳しく述べると、含
水酸化鉄に酸化するFeの割合は、溶液中のFe分の0
.5〜15%、好ましくは、1〜5%でよい。 0.5
%未満では本発明の十分な効果は得られず、15%を越
えると、精製効果が比例しない上に、Feロスが大きく
なるため不経済である。
In addition, to explain the implementation conditions of the wet oxidation in more detail, the proportion of Fe oxidized to hydrated iron oxide is as follows:
.. It may be 5-15%, preferably 1-5%. 0.5
If it is less than 15%, the sufficient effect of the present invention cannot be obtained, and if it exceeds 15%, the refining effect will not be proportional and Fe loss will increase, which is uneconomical.

また、温度条件は50〜100℃、好ましくは70〜9
0℃において迅速に反応が進行する。 なお、酸化反応
終了時にはpHは2以下に低下するが、反応前半で共沈
・吸着された不純物は、容易に離脱、再溶出せず除去率
の低下を招くことはない。 もちろん、担体である含水
酸化鉄もこのpH域で再溶解することはない。
In addition, the temperature condition is 50 to 100°C, preferably 70 to 9°C.
The reaction proceeds rapidly at 0°C. Although the pH drops to 2 or less at the end of the oxidation reaction, the impurities co-precipitated and adsorbed during the first half of the reaction are not easily separated or re-eluted, and do not cause a decrease in removal rate. Of course, the carrier, hydrated iron oxide, will not be redissolved in this pH range.

また、沈殿の凝集を促進させるためには、アニオン性高
分子凝集剤を添加するのがよく、その量は5〜50 m
 g / It 、好ましくは10〜30 m g /
 ILがよい。 凝集後の沈殿は通常の沈降分離、また
は濾過分離等の手段により濾過ケーキとして系外へ排出
する。 一方、最終的に得られた精製塩化第一鉄溶液は
、噴n焙焼等の手段により酸化第二鉄(Fe2 os 
)に焙焼され、高品質なソフトフェライト用原料として
の利用が可能である。
In addition, in order to promote flocculation of the precipitate, it is recommended to add an anionic polymer flocculant, the amount of which is 5 to 50 m
g/It, preferably 10-30 mg/It
IL is good. The precipitate after coagulation is discharged out of the system as a filter cake by means such as ordinary sedimentation separation or filtration separation. On the other hand, the finally obtained purified ferrous chloride solution is converted into ferric oxide (Fe2 os
) and can be used as a raw material for high-quality soft ferrite.

以下に本発明の具体的な実施フローの1例を第1図に基
づいて説明する。 原料塩化第一鉄水溶液を溶解(pH
調整)装置1に導入し、FeあるいはFe化合物(1例
としてスクラップ片)を加えて、遊離塩酸を中和してp
H2〜5とした後、溶液のみをバッファタンク2を経由
して酸化装置3に移送する。
An example of a specific implementation flow of the present invention will be explained below based on FIG. 1. Dissolve raw material ferrous chloride aqueous solution (pH
Adjustment) Introduce into apparatus 1, add Fe or Fe compound (scrap pieces as an example), neutralize free hydrochloric acid, and p
After setting H2 to H5, only the solution is transferred to the oxidizer 3 via the buffer tank 2.

次に酸化装置3において酸素または酸素含有気体(1例
として空気)を液中に分散させ気液接触により、含水酸
化鉄の沈殿を生成させる。 Si、AIl、P等の不純
物を共沈・吸着した含水酸化鉄は、アニオン性高分子凝
集剤で凝集させ、シックナー4で濃縮後、フィルターブ
レス5で脱水分離してケーキとして系外へ排出する。 
一方、シックナー4からの清澄液は、清澄フィルター6
を経由して精製塩化第一鉄水溶液を得る。 この精製液
はさらに必要応じて噴露焙焼炉7で焙焼され、純度の高
い酸化第二鉄を生成することができる。
Next, in the oxidizer 3, oxygen or an oxygen-containing gas (for example, air) is dispersed in the liquid, and a precipitate of hydrated iron oxide is generated through gas-liquid contact. Hydrous iron oxide that has co-precipitated and adsorbed impurities such as Si, Al, P, etc. is coagulated with an anionic polymer flocculant, concentrated with thickener 4, dehydrated and separated with filter breath 5, and discharged from the system as a cake. .
On the other hand, the clarified liquid from the thickener 4 is passed through the clarification filter 6.
to obtain a purified ferrous chloride aqueous solution. This purified liquid is further roasted in a blow-out roasting furnace 7 if necessary, so that highly pure ferric oxide can be produced.

〈実施例〉 以下に本発明を、実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1.2) 表1に示すような鋼板塩酸酸洗廃液を原料として、スク
ラップ(製鉄所内発生の冷延鋼板スクラップ片)を理論
消費量の5倍以上を充てんしたバッチ式の溶解槽内で温
度90℃、2.5hr攪拌して、原料中の遊離塩酸を全
て中和するとともに、Fe’+を全量Fe”に還元して
pHを3〜3.5に調整した。
(Example 1.2) A batch-type melting tank filled with scrap (cold-rolled steel plate scrap pieces generated in a steelworks) at least 5 times the theoretical consumption amount, using the steel plate hydrochloric acid pickling waste liquid as shown in Table 1 as a raw material. The mixture was stirred for 2.5 hours at a temperature of 90° C. to neutralize all free hydrochloric acid in the raw materials, reduce Fe'+ to the total amount of Fe'', and adjust the pH to 3 to 3.5.

次に液を取り出し、スクラップ材と分離した後、酸化槽
内で液温を70〜80℃に保ちながら1.5〜2hrの
間空気を1117 m i n流量で液中に分散させ、
溶液中のFe分の3.0〜3.5%相当を酸化して、β
−FeOOHの沈殿物を析出させた。
Next, after taking out the liquid and separating it from the scrap material, air was dispersed into the liquid at a flow rate of 1117 min for 1.5 to 2 hours while maintaining the liquid temperature at 70 to 80°C in an oxidation tank.
By oxidizing 3.0 to 3.5% of Fe in the solution, β
A precipitate of -FeOOH was deposited.

さらにアニオン性高分子凝集剤10mg/j2を添加し
、10分攪拌した後、静置・沈降分離し、ケーキを脱水
分離した。 一方、上澄液は1μのフィルターで濾過し
、清澄液として精製F e Cm2液を回収した。
Further, 10 mg/j2 of an anionic polymer flocculant was added, and after stirring for 10 minutes, the mixture was left to stand and separated by sedimentation, and the cake was separated by dehydration. On the other hand, the supernatant liquid was filtered through a 1μ filter, and purified F e Cm2 liquid was recovered as a clear liquid.

実施例1.2の操作条件を表1に、得られた精製FeC
JZ2液の成分分析値より製品酸化鉄(Fez o3)
ベースに換算した不純物成分の含有量を表2に示す。
The operating conditions of Example 1.2 are shown in Table 1, and the purified FeC obtained
Product iron oxide (Fez o3) from the component analysis value of JZ2 liquid
Table 2 shows the content of impurity components in terms of base.

(比較例1〜4) 前出の実施例と同様の原料を用いて、以下の条件で操作
した。
(Comparative Examples 1 to 4) Using the same raw materials as in the previous example, operations were performed under the following conditions.

比較例1□原料液を直接凝集したもの。Comparative Example 1 □ Raw material liquid was directly agglomerated.

比較例2□原料液をスクラップ溶解してpHを上昇させ
、酸化共沈なしで凝集 濾過したもの。
Comparative Example 2 □ The raw material liquid was scrap-dissolved to increase the pH, and then coagulated and filtered without oxidative coprecipitation.

比較例3□原料液をスクラップ溶解なしで、低いpHレ
ベルのまま、酸化共沈 を行い、凝集濾過したもの(持分 昭56−21731の方法)。
Comparative Example 3 □ Raw material liquid was subjected to oxidation coprecipitation at a low pH level without scrap dissolution, followed by coagulation filtration (method of 1982-21731).

比較例4□原料液をスクラップ存在下で、同時に酸化共
沈を行い凝集濾過した もの(特公昭60−8980の方 法)。
Comparative Example 4 □ Raw material liquid was subjected to oxidation coprecipitation and coagulation filtration at the same time in the presence of scrap (method of Japanese Patent Publication No. 60-8980).

その他の操作条件は実施例と同じである。 各実施条件
を表1に、得られたFeCj2.液の成分(Fe03ベ
ース換算値)を表2に示す。
Other operating conditions are the same as in the example. The respective implementation conditions are shown in Table 1, and the obtained FeCj2. Table 2 shows the components of the liquid (converted values based on Fe03).

表1.2から明らかなように、本発明の如く操作すれば
、不純物を効率良く低減できることが明らかである。
As is clear from Table 1.2, it is clear that impurities can be efficiently reduced by operating as in the present invention.

比較例の方法では、特にS iO2A j2 s  P
において精製効果が劣り、また、酸化反応に時間を要す
る(比較例4)等の問題を有する。
In the method of the comparative example, in particular, S iO2A j2 s P
However, the purification effect is poor and the oxidation reaction takes time (Comparative Example 4).

原料及び精製FeCJlz液 分析結果Raw material and purified FeCJlz liquid result of analysis

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法に用いる装置の1例を示すフ
ロー図である。 第2図はFePO4の溶解度を示す図である。 符号の説明 1・・・溶解(pH調整)装置、 2・・・バッファタンク、 3・・・酸化装置、 4・・・シックナー 5・・・フィルタープレス、 6・・・清澄フィルター 〈発明の効果〉 本発明は、以上説明したように構成されているので、安
価に塩化第一鉄水溶液を精製することが可能となり、高
温焙焼処理することで高級フェライト原料として有用な
純度の高い酸化鉄を得ることができるという効果を奏す
る。
FIG. 1 is a flow diagram showing an example of an apparatus used in the manufacturing method of the present invention. FIG. 2 is a diagram showing the solubility of FePO4. Explanation of symbols 1...Dissolving (pH adjustment) device, 2...Buffer tank, 3...Oxidizing device, 4...Thickener 5...Filter press, 6...Clarifying filter <Effects of the invention 〉 Since the present invention is configured as described above, it is possible to purify an aqueous ferrous chloride solution at low cost, and by performing a high-temperature roasting treatment, it is possible to produce highly pure iron oxide useful as a raw material for high-grade ferrite. It has the effect that it can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)塩化第一鉄水溶液を高温焙焼して酸化鉄を製造す
る方法において、 塩化第一鉄水溶液を鉄または鉄化合物で遊離塩酸を中和
してpHを2〜5に調整した後、酸素もしくは酸素含有
気体と接触させて溶液中の鉄(Fe)分の0.5〜15
%を含水酸化第二鉄(FeOOH)を主成分とする沈殿
物に酸化させ、該沈殿物を分離し、精製塩化第一鉄水溶
液とした後、高温焙焼することを特徴とするフェライト
原料用酸化鉄の製造方法。
(1) In a method for producing iron oxide by roasting a ferrous chloride aqueous solution at a high temperature, after neutralizing free hydrochloric acid in the ferrous chloride aqueous solution with iron or an iron compound and adjusting the pH to 2 to 5, 0.5 to 15 of iron (Fe) in solution by contacting with oxygen or oxygen-containing gas
% to a precipitate whose main component is hydrated ferric oxide (FeOOH), and the precipitate is separated to form a purified ferrous chloride aqueous solution, followed by high-temperature roasting. Method for producing iron oxide.
JP13646589A 1989-05-30 1989-05-30 Production of iron oxide for rerrite material Pending JPH035324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13646589A JPH035324A (en) 1989-05-30 1989-05-30 Production of iron oxide for rerrite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13646589A JPH035324A (en) 1989-05-30 1989-05-30 Production of iron oxide for rerrite material

Publications (1)

Publication Number Publication Date
JPH035324A true JPH035324A (en) 1991-01-11

Family

ID=15175747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13646589A Pending JPH035324A (en) 1989-05-30 1989-05-30 Production of iron oxide for rerrite material

Country Status (1)

Country Link
JP (1) JPH035324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048939A1 (en) * 1999-02-16 2000-08-24 European Community, Represented By The Commission Of The European Communities Precipitation process
JP2007254194A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Processing method of iron-containing waste fluid
JP2008031018A (en) * 2006-07-31 2008-02-14 Jfe Chemical Corp Method of producing iron oxide for ferrite
JP2008162814A (en) * 2006-12-27 2008-07-17 Jfe Chemical Corp Method for producing iron oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048939A1 (en) * 1999-02-16 2000-08-24 European Community, Represented By The Commission Of The European Communities Precipitation process
US6811758B1 (en) 1999-02-16 2004-11-02 European Community, Represented By The Commision Of The European Communities Precipitation process
JP2007254194A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Processing method of iron-containing waste fluid
JP2008031018A (en) * 2006-07-31 2008-02-14 Jfe Chemical Corp Method of producing iron oxide for ferrite
JP2008162814A (en) * 2006-12-27 2008-07-17 Jfe Chemical Corp Method for producing iron oxide

Similar Documents

Publication Publication Date Title
DE60113716T2 (en) RECOVERY OF TITANIUM DIOXIDE FROM TIO2-rich RAW MATERIALS SUCH AS STEEL MANUFACTURING SLAGS
CN113195412A (en) Pure iron-containing compound
CN113955733B (en) Method for preparing ferric phosphate by utilizing waste hydrochloric acid containing iron
JPH01153532A (en) Purification of ferrous ion-containing solution
JPH035324A (en) Production of iron oxide for rerrite material
JPS61261446A (en) Method for recovering zn from zn containing material
JP3188573B2 (en) Purification method of iron chloride solution
US2718455A (en) Process for producing basic iron sulfate
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
CN114408972A (en) Method for comprehensively recovering vanadium and chromium from sodium salt roasting water leaching solution of vanadium-containing steel slag
CN113233503A (en) Method for improving purity of ammonium polyvanadate
JP3944779B2 (en) Method for improving sedimentation of neutralized starch
JP2953863B2 (en) Production method of iron oxide for ferrite raw material
JPS62235221A (en) Production of high-purity iron oxide
JPH0264025A (en) Purification of aqueous solution of ferrous sulfate
JPS63144123A (en) Method for removing silicon content in hydrochloric acid-pickled waste liquid
JPS63315521A (en) Method for purifying waste liquor from acid cleaning with hydrochloric acid
JPH0264024A (en) Purification of aqueous solution of ferrous salt
JPS6349294A (en) Method for removing silicon in pickling waste water
JPS63242933A (en) Removal of silicon component from hydrochloric acid pickling waste liquid of steel material
KR0119001B1 (en) Process for iron chloride utilizing the ferrite iron oxide
SU996495A1 (en) Method for processing ferrous hydrate cakes containing nickel and cobalt
JPS59162140A (en) Purification of aqueous solution of ferrous chloride
JPS62123006A (en) Method for removing cadmium from extracted residue solution or reextracted residue solution
JP4279022B2 (en) Manufacturing method of high purity iron oxide powder