JPS59162140A - Purification of aqueous solution of ferrous chloride - Google Patents

Purification of aqueous solution of ferrous chloride

Info

Publication number
JPS59162140A
JPS59162140A JP2374983A JP2374983A JPS59162140A JP S59162140 A JPS59162140 A JP S59162140A JP 2374983 A JP2374983 A JP 2374983A JP 2374983 A JP2374983 A JP 2374983A JP S59162140 A JPS59162140 A JP S59162140A
Authority
JP
Japan
Prior art keywords
aqueous solution
ferrous chloride
aluminum hydroxide
solution
colloidal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2374983A
Other languages
Japanese (ja)
Other versions
JPS6310098B2 (en
Inventor
Isashi Hattori
服部 勲史
Yoshimi Yamaguchi
山口 好美
Nanao Horiishi
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, NKK Corp, Nippon Kokan Ltd filed Critical Toda Kogyo Corp
Priority to JP2374983A priority Critical patent/JPS59162140A/en
Publication of JPS59162140A publication Critical patent/JPS59162140A/en
Publication of JPS6310098B2 publication Critical patent/JPS6310098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prepare a solution of ferrous chloride free from SiO2 and other impurities, by adding a specific amount of a solution of aluminum hydroxide colloid to an aqueous solution of ferrous chloride, thereby coagulating and adsorbing SiO2 to the surface of the colloid particle. CONSTITUTION:An aqueous solution of ferrous chloride obtained as a by-product of the process for pickling a steel plate with hydrochloric acid, is adjusted to 4-5pH with ammonia water, and is added with a solution of aluminum hydroxide colloid (25-60wt% in terms of Al2O3 based on SiO2 in the aqueous solution) and if necessary with negatively charged cellulose (10-20pts.wt. per 1pt.wt. of the colloidal solution). After the adsorption and coagulation of SiO2 in the aqueous solution to the surface of the colloid particles or the surface of the cellulose, the mixture is subjected to ultrafiltration.

Description

【発明の詳細な説明】 本発明は、鉄鋼板塩酸酸洗工程から副生される塩化第一
鉄水溶液の精製に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the purification of an aqueous ferrous chloride solution produced as a by-product from the hydrochloric acid pickling process of steel sheets.

近年、鉄鋼板等の酸洗方法が従来の硫酸酸洗方式から塩
酸酸洗方式へ移行しており、これにともない高価な塩酸
を回収して鉄鋼板酸洗に再使用する方法が採られている
。鉄鋼板塩酸酸洗水溶液から塩酸を回収する手段として
は工業的には周知の如く、代表的な方法として噴霧焙焼
法等が採られているが、これ等の方法による場合には、
酸化鉄が副生ずる(以下、中に副生酸化鉄と呼ぶ。)。
In recent years, the method of pickling steel plates, etc. has shifted from the conventional sulfuric acid pickling method to the hydrochloric acid pickling method, and with this, a method has been adopted to recover expensive hydrochloric acid and reuse it for pickling steel plates. There is. As a means for recovering hydrochloric acid from an aqueous solution for washing steel sheets with hydrochloric acid, as is well known in the industry, a typical method is a spray roasting method.
Iron oxide is produced as a by-product (hereinafter referred to as by-product iron oxide).

この副生酸化鉄は、ソエライト用主原料として広く使用
されているが特にソフトフェライト用主原料として用い
た場合には品質特性上多くの問題がある。
This by-product iron oxide is widely used as the main raw material for soerite, but there are many problems in terms of quality characteristics, especially when it is used as the main raw material for soft ferrite.

即ち、出発原料である塩化第一鉄水溶液中にはSiO□
及びAI、Ca、Na等の金属不純物を多量に含有して
おり、噴霧焙焼等の際にこれら不純物は副生酸化鉄中に
含有される。
That is, in the ferrous chloride aqueous solution which is the starting material, SiO
It also contains a large amount of metal impurities such as AI, Ca, and Na, and these impurities are contained in the by-product iron oxide during spray roasting and the like.

従ゲで、この副生酸化鉄を主原料として製造された最終
製品であるソフトフェライト製品中には5i02及び金
属不純物が多量に含有されることになり、これら不純物
はソフトフェライト製品の特性を低下させる原因となっ
ている。
However, the soft ferrite product, which is the final product manufactured using this by-product iron oxide as the main raw material, contains a large amount of 5i02 and metal impurities, and these impurities deteriorate the characteristics of the soft ferrite product. It is the cause of this.

これら不純物のうち、ソフトフェライト製品に最も悪影
響を与えるとされている5inQに注目して以下に述べ
る。
Among these impurities, attention will be paid to 5inQ, which is said to have the most adverse effect on soft ferrite products, and will be described below.

副生酸化鉄ば、SiO□を通常Fe2O,に対し0.0
5重量%程度(以下、単に0.05重量%という。)を
含有しており、この副生酸化鉄とZn、 Mn+ N+
 + Mg+ Cu化合物等のフェライト副原料とを混
合し、加熱焼成、粉砕する製造方法(以下、単に乾式法
という。)によって得られるソフトフェライト粉末は、
その製造工程において、更にS i02が混入し、多量
の5iO9を含有したものとなる。
For by-product iron oxide, SiO□ is usually 0.0% compared to Fe2O.
It contains about 5% by weight (hereinafter simply referred to as 0.05% by weight), and this by-product iron oxide and Zn, Mn+ N+
+ Mg + Soft ferrite powder obtained by a manufacturing method of mixing ferrite auxiliary raw materials such as Cu compounds, heating, firing, and pulverizing (hereinafter simply referred to as dry method) is as follows:
In the manufacturing process, Si02 is further mixed in, resulting in a product containing a large amount of 5iO9.

ソフトフェライト粉末に含有される5i02は、透磁率
(μ)、電気抵抗値等の特性を低下させる原因となるこ
とは知られている。この事実は、例えば、特公昭49−
15360号公報の「・・・酸化第2鉄中には・・・・
不純物が蓄積され、高性能化小型化を要求される磁性体
、特にソフト系のマンガン・亜鉛系或いはマンガン・マ
グネシウム系等の複合フェライトには全く使用が出来ず
、其の最大原因は酸化第2鉄中に含有される微量の珪M
(Si02)の作用に依っ“C、フェライト粒子の結晶
が粗大化し、且つ、(電気)抵抗値及びμ・Q特性が低
減する・・・」なる記載からも明らかである。
It is known that 5i02 contained in soft ferrite powder causes a decrease in properties such as magnetic permeability (μ) and electrical resistance value. This fact, for example,
Publication No. 15360 states, “...in ferric oxide...
Due to the accumulation of impurities, it cannot be used at all for magnetic materials that require high performance and miniaturization, especially soft composite ferrites such as manganese/zinc or manganese/magnesium.The main cause of this is secondary oxidation. Trace amount of silica M contained in iron
This is clear from the statement that "the crystals of C and ferrite particles become coarser and the (electrical) resistance value and μ/Q characteristics decrease due to the action of (Si02)."

近年、電気機器の小型化、軽量化に伴い、これらに組み
込まれるソフトフェライト磁性体も小型化の傾向にあり
、ソフトフェライト 能化、即ち、透磁率(μ)の増大と電気抵抗値の増大が
益々要求されるようになっており、ソフトフェライト用
主原料である副生酸化鉄中に含有されるS ioaを精
製除去する方法の開発が強く要望されている。
In recent years, as electric devices have become smaller and lighter, the soft ferrite magnetic materials incorporated in these devices have also become smaller. There is a strong demand for the development of a method for purifying and removing Sioa contained in by-product iron oxide, which is the main raw material for soft ferrite.

本発明者は、上述したところに鑑み、副生酸化鉄中のS
i02を精!除去するべく、副生酸化鉄の製造プロセス
中の各工程におけるS im2の存在形態及びSins
の精製除去の方法について種々検討を重ねた結果、本発
明に到達したのである。
In view of the above, the present inventor has determined that S in the by-product iron oxide
Take care of i02! In order to remove the by-product iron oxide, the existence form of Sim2 and Sins in each step of the manufacturing process are
As a result of various studies on purification and removal methods, the present invention was achieved.

即ら、本発明は、塩化第一鉄水溶液に、ρ114〜5に
おいて水酸化アルミニウムコロイド粒子を該水溶液中の
SiO□に対しへ1□08換算で25〜60重量%添加
し、又は、更に陰荷電に帯電している繊維素全水酸化ア
ルミニウム304ド粒子に対しlO〜20重量倍添加し
て、水酸化アルミニウムコロイド粒子表面に上記水溶液
中のS i02を吸着凝集させるか、又は繊維素表面に
水酸化アルミニウムコロイド粒子を介して上記水溶液中
のSiO□を吸着凝集させた後濾過することよりなる塩
化第一鉄水溶液の精製法である。
That is, the present invention adds 25 to 60% by weight of aluminum hydroxide colloidal particles at ρ114 to 5 to a ferrous chloride aqueous solution, calculated as 1□08 to SiO□ in the aqueous solution, or further adds negative It is added to the cellulose whole aluminum hydroxide 304 particles which are electrically charged to adsorb and aggregate the Si02 in the aqueous solution on the surface of the aluminum hydroxide colloidal particles by adding 10 to 20 times the amount by weight, or on the surface of the cellulose. This is a method for purifying a ferrous chloride aqueous solution, which comprises adsorbing and aggregating SiO□ in the aqueous solution through aluminum hydroxide colloid particles, and then filtering it.

次ぎに、本発明を完成するに至った技術的背景及び本発
明の構成について述べる。
Next, the technical background that led to the completion of the present invention and the configuration of the present invention will be described.

本発明者は、先ず、副生酸化鉄の製造プロセス中のいず
れの工程でS iOQを精製除去する処理を施せぽ容易
に目的を達成できるかを知る為に、各工程におけるS 
t02の存在形態について検討した。
First, the inventors of the present invention first conducted a study to determine at which step in the production process of by-product iron oxide SiOQ can be purified and removed, and in order to find out whether the purpose can be easily achieved,
We investigated the existence form of t02.

従来から、副生酸化鉄に種々の処理を施してSi02を
ネh製除去する方法が試みられてはいる。本発明者は、
副生酸化鉄は、塩化第一鉄水溶液を600〜800℃程
度の加熱炉体内に噴霧させて分解酸化さ一Cて得られる
ものであり、Si(IHは副生酸化鉄に凝着した形態で
存在しており、従って、副生酸化鉄が生成された段階で
Si02を精製除去することは非常に困難であると考え
た。
Conventionally, methods have been attempted to remove Si02 by subjecting the by-product iron oxide to various treatments. The inventor is
By-product iron oxide is obtained by spraying an aqueous ferrous chloride solution into a heating furnace body at about 600 to 800°C and decomposing and oxidizing it. Therefore, it was thought that it would be extremely difficult to purify and remove Si02 at the stage when by-product iron oxide was generated.

そして、本発明者は、副生酸化鉄が生成される前の段階
、即ち、塩化第一鉄水溶液の段階であらかじめ何らかの
処理を施してSiO□を精製除去しておくことが必要で
あることを知った。
The inventor of the present invention has found that it is necessary to perform some kind of treatment in advance to purify and remove SiO□ before the by-product iron oxide is produced, that is, at the stage of the ferrous chloride aqueous solution. Knew.

更に、本発明者は、塩化第一鉄水溶液に含有されるS 
ioQを精製除去するべく検討を重ね、塩化第一鉄水溶
液に含有されているSiO□は、S i02コロイド粒
子の形態で存在しζいるという事実に着目した。このS
 i02コロイド粒子は非常に微細な粒子であり、フィ
ルタープレス、減圧吸引濾過機及びプレコード加圧濾過
機等の通常の濾過手段によってはもちろん特殊な濾過機
である限外濾過機を用いても除去することができないも
のであった。本発明者は、この微細なS i02コロイ
ド粒子を効率よく除去する方゛法について更に検削を重
ね、微細なSiO。コロイド粒子を、濾過性めよい粗大
な凝集体にすればよいと考えた。そして、塩化第一鉄水
溶液に、pH4〜5において水酸化アルミニウムコロイ
ド粒子を添加した場合には、水酸化アルミニウムコロイ
ド粒子は粒子表面にS i02コロイド粒子を吸着凝集
させて濾過性のよい粗大な凝集体を生成させることがで
きるという知見を得た。この凝集体は、陽荷電に帯電し
ている水酸化アルミニウムコロイド粒子表面に陰(Wj
電に帯電しているS i02コロイド粒子を電気的に吸
着凝集することによって形成されるものと考えられる。
Furthermore, the present inventor has discovered that S contained in the ferrous chloride aqueous solution
After repeated studies to purify and remove ioQ, we focused on the fact that SiO□ contained in an aqueous ferrous chloride solution exists in the form of Si02 colloidal particles. This S
i02 colloidal particles are very fine particles and can be removed not only by normal filtration means such as filter presses, vacuum suction filtration machines, and pre-recorded pressure filtration machines, but also by using special filtration machines, such as ultrafilters. It was something that could not be done. The present inventor has further investigated the method of efficiently removing these fine SiO2 colloidal particles, and has developed a method for efficiently removing the fine SiO2 colloid particles. The idea was to form colloidal particles into coarse aggregates with good filterability. When aluminum hydroxide colloid particles are added to a ferrous chloride aqueous solution at pH 4 to 5, the aluminum hydroxide colloid particles adsorb and aggregate Si02 colloid particles on the particle surface, forming coarse aggregates with good filterability. We obtained the knowledge that it is possible to generate aggregates. This aggregate forms a negative (Wj
It is thought that it is formed by electrically adsorbing and aggregating electrically charged Si02 colloidal particles.

このようにして生成された粗大な凝集体は、前述したフ
ィルタープレス、減圧吸引濾過機及びプレコート加圧濾
過機等の通常の濾過手段を用いて濾別分離することがで
きる。
The coarse aggregates thus produced can be separated by filtration using a conventional filtration means such as the above-mentioned filter press, vacuum suction filtration machine, and precoat pressure filtration machine.

限外濾過によればより効率よく濾別分離することができ
る。
Ultrafiltration allows more efficient filtration and separation.

塩化第一鉄水溶液に水酸化アルミニウムコロイド粒子を
添加するにあたり、陽荷電に帯電している繊維素を存在
させた場合には、凝集体を一層粗大化させることができ
、しかも、その凝集体の状態が網目構造を形成する為、
濾過性を向上させることができるので−H1効率よく濾
別分離することができる。
When positively charged cellulose is present when adding aluminum hydroxide colloidal particles to a ferrous chloride aqueous solution, it is possible to make the aggregates even coarser. Because the state forms a network structure,
Since the filterability can be improved, -H1 can be efficiently separated by filtration.

この現象における凝集体は、陽荷電に帯電している繊維
素の表面に陽荷電に帯電しCいる水酸化アルミニウムコ
ロイド粒子を介して陽荷電に帯電しているS i02を
吸着凝集させることによって一層粗大化されたものにな
ると考えられる。しかもこの凝集体は、繊維素相互がか
らみあった状態で網目構造を形成する為、濾過性の大変
擾れたものとなると考えられる。
Aggregates in this phenomenon are formed by adsorbing and aggregating positively charged Si02 through positively charged aluminum hydroxide colloid particles on the surface of positively charged cellulose. It is thought that it will become coarser. In addition, this aggregate forms a network structure in which the cellulose molecules are entangled with each other, so it is thought that the filterability is greatly impaired.

次に、本発明実施に当たっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明における塩化第一鉄水溶液は、鉄鋼板塩酸酸洗−
[程から副生される塩化第一鉄水溶液が使用される。塩
化第一鉄水溶液の発生源としては、この他チタン白製造
プロセスから排出される塩化第一鉄水溶液があり、この
塩化第一鉄水溶液も本発明の出発原料として使用するこ
とができる。
The ferrous chloride aqueous solution in the present invention is used for pickling steel plates with hydrochloric acid.
[The ferrous chloride aqueous solution produced as a by-product from the process is used. Another source of the ferrous chloride aqueous solution is the ferrous chloride aqueous solution discharged from the titanium white manufacturing process, and this ferrous chloride aqueous solution can also be used as a starting material in the present invention.

本発明における塩化第一鉄水溶液のpl+は、アンモニ
ア水を添加することにより4〜5に調整しておく必要が
ある。この場合、実用的にはIIcIの正常な回収をは
かる為に主としてくず鉄等で中和し、次い゛乙アンモニ
ア水によってpHを4〜5に調整することが好ましい。
The pl+ of the ferrous chloride aqueous solution in the present invention needs to be adjusted to 4 to 5 by adding aqueous ammonia. In this case, in order to recover IIcI normally, it is practically preferable to neutralize it mainly with scrap iron or the like, and then adjust the pH to 4 to 5 with aqueous ammonia.

ρ114以下である場合には、添加した水酸化アルミニ
ウムコロイド粒子が溶解してしまい、pl+5以上であ
る場合には塩化第一鉄水溶液中の鉄分が多量に沈澱する
ので精製塩化第一鉄水溶液を得ようとする本発明の目的
を達成することができない。
If ρ is less than 114, the added aluminum hydroxide colloidal particles will dissolve, and if pl is more than 5, a large amount of iron in the ferrous chloride aqueous solution will precipitate, so a purified ferrous chloride aqueous solution can be obtained. However, the intended purpose of the present invention cannot be achieved.

本発明における水酸化アルミニウムコロイド粒子は、ア
ルミニウム塩水溶液とアルカリとを混合することにより
生成される水酸化アルミニウムコロイド粒子をそのまま
、又は、更に水洗したものが使用できる。水酸化アルミ
ニウムコロイド粒子の添加量はSiO□に対し^120
3換算で25〜60重量%である。25重量%以下であ
る場合には、S i02を精製除去する効果が十分では
ない。60重量%以上である場合にも本発明を実施する
ことは可能であり、水酸化アルミニウムコロイド粒子が
塩化第一鉄水溶液中のS i02コロイド粒子に対し余
分に存在する場合にも濾過により濾別分離することがで
きるが、必要以上に添加しても意味がなく−また、経済
的ではない。
As the aluminum hydroxide colloidal particles in the present invention, aluminum hydroxide colloidal particles produced by mixing an aqueous aluminum salt solution and an alkali can be used as they are, or those that have been further washed with water can be used. The amount of aluminum hydroxide colloid particles added is ^120 for SiO□
It is 25 to 60% by weight when converted to 3. If it is less than 25% by weight, the effect of purifying and removing Si02 is not sufficient. It is possible to carry out the present invention even when the amount is 60% by weight or more, and even when the aluminum hydroxide colloidal particles are present in excess of the SiO2 colloidal particles in the ferrous chloride aqueous solution, it is possible to separate them by filtration. Although it can be separated, there is no point in adding more than necessary - and it is not economical.

本発明における濾過は、前述のフィルタープレス、減圧
吸引濾過機及びプレ、、−1−ト加圧濾逸機等の通常の
濾過手段を用いればよい。限外濾過によれば、効率よく
濾別分離することができる。
For the filtration in the present invention, ordinary filtration means such as the above-mentioned filter press, vacuum suction filtration machine, pre-pressure filtration machine, etc. may be used. Ultrafiltration allows efficient filtration and separation.

本発明における陽荷電に帯電し′(いる繊維素としては
、山販の濾過綿をそのまま使用すればよい。
As the positively charged cellulose in the present invention, filter cotton available from Yamahan may be used as is.

また、綿糸を細断したものも使用することができる。陽
荷電に帯電し°Cいる繊維素の添加量は、水酸化アルミ
ニウム:10イド粒子に対し10〜20重量倍である。
Moreover, shredded cotton thread can also be used. The amount of positively charged cellulose added is 10 to 20 times the weight of the aluminum hydroxide:10oid particles.

10$i量倍以下である場合は、濾過効率の一層の向上
が望めない。20重量倍以上である場合にも本発明の実
施をすることはできるが必要以上に添加しても意味がな
く、また、経済的ではない。
If the amount is less than 10 times the amount, further improvement in filtration efficiency cannot be expected. Although the present invention can be practiced even when the amount is 20 times or more by weight, it is meaningless and uneconomical to add more than necessary.

本発明におりる繊維素と水酸化アルミニウムコロイド粒
子の添加順序は、いずれが先でも、また、同時でもよく
、アルミニウム塩水溶液に繊維素を分散さ・loた後ア
ルカリを添加することにより繊維素表面に水酸化アルミ
ニウムコロイド粒子が吸着したものも使用することがで
きる。
The order of addition of cellulose and aluminum hydroxide colloidal particles in the present invention may be either first or simultaneous. After dispersing cellulose in an aluminum salt aqueous solution and adding an alkali, cellulose is added. A material with aluminum hydroxide colloidal particles adsorbed on the surface can also be used.

以上の通りの構成の本発明は、次の通りの効果を奏する
ものである。
The present invention configured as described above has the following effects.

即ち、本発明における水酸化アルミニウムコロイド粒子
を添加する方法によれば、水酸化アルミニウムコロイド
粒子表面にSiO□コロイド粒子を吸着凝集させて濾過
性のよい粗大な凝集体を生成させることができる為、塩
化第一鉄水溶液中のS i02を容易に楕1i去するこ
とができる。
That is, according to the method of adding aluminum hydroxide colloidal particles in the present invention, SiO□ colloidal particles can be adsorbed and aggregated on the surface of aluminum hydroxide colloidal particles to produce coarse aggregates with good filterability. Si02 in an aqueous ferrous chloride solution can be easily removed.

また、本発明におりる水酸化アルミニウムコロイド粒子
及び繊維素を添加する方法によれば、凝集体を一層、粗
大化させることができ、しかも、凝集体が網目構造を形
成している為、濾過性を向上させることができるので一
層効率よく塩化第一鉄水溶液中のSiO□を精製除去す
ることができる。
Further, according to the method of adding aluminum hydroxide colloidal particles and cellulose according to the present invention, the aggregates can be made even coarser, and since the aggregates form a network structure, the filtration Since the properties can be improved, SiO□ in the ferrous chloride aqueous solution can be purified and removed more efficiently.

即ち、本発明によれば、後述する実施例からも明らかな
通り、塩化第−鉄水溶液中のS i02含量を0゜oo
sii%以下に精製除去することができるので、該塩化
第−鉄水溶液を出発原料とし111i霧焙焼等して得ら
れる副生酸化鉄中のS i02含量は非常に少ないもの
となる。従って、前述した乾式法におりるソフトフェラ
イト粉末の製造工程においてS i02が不可避的に混
入したとしても最終製品中のSiO□含量を全体的に抑
制することができ、S io2含量の非常に少ないソフ
I・フェライ1〜製品を得ることができる。
That is, according to the present invention, as is clear from the examples described later, the SiO2 content in the ferrous chloride aqueous solution is reduced to 0゜oo.
Since it can be purified and removed to less than Sii%, the content of Si02 in the by-product iron oxide obtained by performing 111i mist roasting using the ferrous chloride aqueous solution as a starting material becomes extremely small. Therefore, even if SiO2 is unavoidably mixed in during the production process of soft ferrite powder using the dry method described above, the SiO□ content in the final product can be suppressed as a whole, and the SiO2 content is extremely low. Soft I Ferrai 1 ~ products can be obtained.

更に、本発明の方法によれば、塩化第一鉄水溶液中のS
 iO3のみではなく、前述したAI、Ca、Na等の
金属不純物も同時に精M除去することができる。
Furthermore, according to the method of the present invention, S in the ferrous chloride aqueous solution
Not only iO3 but also metal impurities such as the aforementioned AI, Ca, and Na can be removed at the same time.

尚、ソフトフェライト磁性体の製造法には、上述した乾
式法の他、フェライト副原料であるZn、Mn、Ni、
Mg、Cu塩水溶液を添加した塩化第一鉄水溶液にアル
カリを添加して酸化反応を行うことにより生成したスピ
ネル型酸化物を加熱焼成する方法、所謂湿式法がある。
In addition to the above-mentioned dry method, methods for producing the soft ferrite magnetic material include ferrite auxiliary raw materials Zn, Mn, Ni,
There is a so-called wet method in which a spinel type oxide produced by adding an alkali to an aqueous ferrous chloride solution containing an aqueous Mg and Cu salt solution and performing an oxidation reaction is heated and calcined.

この湿式法による場合にも、本発明方法により5iO9
をはしめAI、Ca、Na等の金属不純物を精製除去し
た塩化第一鉄水溶液を使用することができることは当然
である。
Even when using this wet method, 5iO9 can be obtained by the method of the present invention.
Of course, it is possible to use an aqueous ferrous chloride solution in which metal impurities such as AI, Ca, and Na have been purified and removed.

次ぎに、実施例により本発明を説明する。Next, the present invention will be explained by examples.

尚、以下の実施例におけるFe’+量はJIS K 1
462の5.2.2.ニクロム酸カリウム滴定法により
、5i02量はJIS K 1462の5.4.3.重
量法により八l+ca+Naは原子吸光光度法により測
定した。
In addition, the amount of Fe'+ in the following examples is JIS K 1
462 5.2.2. By potassium dichromate titration method, the amount of 5i02 was determined as 5.4.3 of JIS K 1462. Eight l+ca+Na was measured gravimetrically using atomic absorption spectrophotometry.

実施例I Fe I]7.2シf、 5i020.085M (F
e20Bに対し0.051重量%に該当する。)、^I
 O,023%、 Ca O,017%及びNaO,0
)2%を含む鉄鋼板塩酸酸洗塩化第一鉄水溶液1βを準
備し、該水溶液にアンモニア水を添加しpH4,5とし
た。別に、硫酸アルミニウム(八Iz(S(L)a・1
71120)  0.3gを0.2Nの水に1容解して
、AI 0.02554を含む硫酸アルミニウム水溶液
とし、これにアンモニア水0.5 mllを添加してp
Example I Fe I]7.2sif, 5i020.085M (F
This corresponds to 0.051% by weight based on e20B. ), ^I
O,023%, CaO,017% and NaO,0
) A steel plate hydrochloric acid pickling ferrous chloride aqueous solution 1β containing 2% was prepared, and aqueous ammonia was added to the aqueous solution to adjust the pH to 4.5. Separately, aluminum sulfate (8Iz(S(L)a・1
71120) 0.3g was dissolved in 0.2N water to make an aluminum sulfate aqueous solution containing AI 0.02554, and 0.5ml of ammonia water was added to this to make p
.

9.5において水酸化アルミニ9173041粒子を生
成させた後、該生成物をpH’Hこなるまで水洗した。
After producing aluminum hydroxide 9173041 particles in step 9.5, the product was washed with water until pH'H was reached.

上記水洗後の水酸化アルミニウムコロイド粒子0.07
gを前記塩化第一鉄水溶液中に添加しくSiO□に対し
52重量%に相当する。)で5分間攪拌した後、フィル
タープレスを用いて濾別分離した。
Aluminum hydroxide colloid particles after washing with water 0.07
g was added to the ferrous chloride aqueous solution, which corresponds to 52% by weight based on SiO□. ) After stirring for 5 minutes, the mixture was separated by filtration using a filter press.

濾液中に残存するHe”は11.2.(l HlS i
02は0.00589J (Fe*Osに対し0.00
36重量%に相当する。)であり、11110.008
M、 Ca O,008M及びNa 0.005Mであ
った。
He” remaining in the filtrate is 11.2.(l HlS i
02 is 0.00589J (0.00 for Fe*Os
This corresponds to 36% by weight. ) and 11110.008
M, CaO, 008M and Na 0.005M.

実施例2〜7 塩化第一鉄水溶液の種類、水酸化アルミニうムコロイド
粒子の添加量、繊維素の種類、添加量及び濾過手段を種
々変化させたり外は実施例1と同様にして塩化第一鉄水
溶液の精製を行った。
Examples 2 to 7 Ferrous chloride aqueous solution, amount of aluminum hydroxide mucolloid particles added, type and amount of cellulose added, and filtration means were varied, and ferrous chloride was prepared in the same manner as in Example 1. The iron aqueous solution was purified.

主要精製条件及び精製結果を表1に示す。The main purification conditions and purification results are shown in Table 1.

比較例1 水M化yルミニウムコし!イト粒子を添加しなかった以
外は実施例5と同様にして塩化第一鉄水溶液の精製を試
みた。濾液中に残存するFe2′は113゜0ry6.
5in2は0.077 M (Pe203に対し0.0
48重量%に相当する。)であり、^I 0.0215
4、Ca O,017り及びNa O,012Mであり
、塩化第一鉄水溶液中の不純物はほとんど除ノにされて
いなかった。
Comparative example 1 Water Mated y-luminium! An attempt was made to purify a ferrous chloride aqueous solution in the same manner as in Example 5, except that iron particles were not added. Fe2' remaining in the filtrate is 113°0ry6.
5in2 is 0.077 M (0.0 for Pe203
This corresponds to 48% by weight. ) and ^I 0.0215
4, CaO,017M and NaO,012M, and impurities in the ferrous chloride aqueous solution were hardly removed.

Claims (1)

【特許請求の範囲】 1、塩化第一鉄水溶液に、al14〜5において水酸化
アルミニウムコロイド粒子を該水溶液中のSiO□に対
しへ1□02換算で25〜60i量%添加して、水酸化
アルミニウムコロイド粒子表面に上記水溶液中の510
2を吸着#築させた後濾過することを特徴とする塩化第
一鉄水溶液の精製法。 2、塩化第一鉄水溶液に、p114〜5において水酸化
アルミニウムコロイド粒子を該水溶液中の5iO9に対
しAI、0.換算で25〜60重量%添加して、水酸化
アルミニウムコロイド粒子表面に上記水Ig液液中Si
n、を吸着凝集させた後限外濾過することを特徴とする
塩化第一鉄水溶液の精製法。 3、塩化第一・鉄水/8液に、pH4〜5において水酸
化アルミニウムコロイド粒子を該水溶液中のSiO2に
対しAl2O,換算で25〜60重量%及び陰荷電に帯
電している繊維素を水酸化アルミニウムコロイド粒子に
対し10〜20重量倍添加して、繊維素表面に水酸化ア
ルミニウムコロイド粒子を介して上記水溶液中のS i
02を吸着凝集させた後濾過することを特徴とする塩化
第一鉄水溶液の精製法。
[Claims] 1. To a ferrous chloride aqueous solution, aluminum hydroxide colloidal particles with al14 to 5 are added in an amount of 25 to 60i in terms of 1□02 to SiO□ in the aqueous solution. 510 in the above aqueous solution on the surface of the aluminum colloid particles.
1. A method for purifying an aqueous ferrous chloride solution, which comprises adsorbing and filtering ferrous chloride. 2. In p114-5, aluminum hydroxide colloidal particles were added to a ferrous chloride aqueous solution at an AI ratio of 0 to 5iO9 in the aqueous solution. Si in the water Ig liquid is added to the surface of the aluminum hydroxide colloid particles in an amount of 25 to 60% by weight.
1. A method for purifying an aqueous ferrous chloride solution, which comprises adsorbing and aggregating ferrous chloride, followed by ultrafiltration. 3. Add 25 to 60% by weight of aluminum hydroxide colloidal particles to SiO2 in the aqueous solution and negatively charged cellulose to a solution of ferrous chloride/iron chloride/8 at pH 4 to 5. By adding 10 to 20 times the weight of aluminum hydroxide colloidal particles, Si in the above aqueous solution is applied to the cellulose surface via aluminum hydroxide colloidal particles.
A method for purifying an aqueous ferrous chloride solution, which comprises adsorbing and coagulating 02 and then filtering it.
JP2374983A 1983-02-17 1983-02-17 Purification of aqueous solution of ferrous chloride Granted JPS59162140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2374983A JPS59162140A (en) 1983-02-17 1983-02-17 Purification of aqueous solution of ferrous chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2374983A JPS59162140A (en) 1983-02-17 1983-02-17 Purification of aqueous solution of ferrous chloride

Publications (2)

Publication Number Publication Date
JPS59162140A true JPS59162140A (en) 1984-09-13
JPS6310098B2 JPS6310098B2 (en) 1988-03-03

Family

ID=12118959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2374983A Granted JPS59162140A (en) 1983-02-17 1983-02-17 Purification of aqueous solution of ferrous chloride

Country Status (1)

Country Link
JP (1) JPS59162140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1002199A3 (en) * 1987-12-10 1990-10-09 Nippon Kokan Kk PROCESS FOR REFINING AN ACID SOLUTION CONTAINING FERROUS IONS.
FR2693478A1 (en) * 1992-07-08 1994-01-14 Lorraine Laminage Process for the purification treatment of a spent acid bath for pickling steel substrates.
JP2014019593A (en) * 2012-07-13 2014-02-03 Jfe Steel Corp Method and apparatus for purifying aqueous solution of iron chloride (ii)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1002199A3 (en) * 1987-12-10 1990-10-09 Nippon Kokan Kk PROCESS FOR REFINING AN ACID SOLUTION CONTAINING FERROUS IONS.
FR2693478A1 (en) * 1992-07-08 1994-01-14 Lorraine Laminage Process for the purification treatment of a spent acid bath for pickling steel substrates.
JP2014019593A (en) * 2012-07-13 2014-02-03 Jfe Steel Corp Method and apparatus for purifying aqueous solution of iron chloride (ii)

Also Published As

Publication number Publication date
JPS6310098B2 (en) 1988-03-03

Similar Documents

Publication Publication Date Title
DE60113716T2 (en) RECOVERY OF TITANIUM DIOXIDE FROM TIO2-rich RAW MATERIALS SUCH AS STEEL MANUFACTURING SLAGS
JPH10152354A (en) Method for treating manganese slag
JP3272759B2 (en) Manufacture of trimanganese oxide
JPS59162140A (en) Purification of aqueous solution of ferrous chloride
CN111498917A (en) Treatment method of laterite-nickel ore
JPH0952716A (en) Production of multiple oxide powder for soft ferrite from waste plating liquid
US2718455A (en) Process for producing basic iron sulfate
US1916902A (en) Adsorbent
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
JPH0331654B2 (en)
WO2005068358A1 (en) Production of 'useful material(s)' from waste acid issued from the production of titanium dioxyde
JPS62235221A (en) Production of high-purity iron oxide
JP4629851B2 (en) Wastewater treatment method
US3944687A (en) Method of preparing purifying agents consisting of activated siliceous porous mineral substances
JPH035324A (en) Production of iron oxide for rerrite material
JP3382648B2 (en) Method for producing white aluminum hydroxide
US4364908A (en) Method for purifying titanyl hydrate
KR0128122B1 (en) Method of processing the iron chloride liquid
JP4767444B2 (en) Wastewater treatment method to reduce chlorine content in treated sludge
JP2953863B2 (en) Production method of iron oxide for ferrite raw material
KR100280262B1 (en) Manufacturing method of high purity ferric chloride solution
CN116534822A (en) Method for preparing ferric phosphate by using titanium dioxide waste acid by using chlorination process and application of method
RU2125109C1 (en) Method of producing battery manganese
JPS63242933A (en) Removal of silicon component from hydrochloric acid pickling waste liquid of steel material
KR100345730B1 (en) Fabrication method of high grade iron oxide