JPS61261446A - Method for recovering zn from zn containing material - Google Patents

Method for recovering zn from zn containing material

Info

Publication number
JPS61261446A
JPS61261446A JP60104706A JP10470685A JPS61261446A JP S61261446 A JPS61261446 A JP S61261446A JP 60104706 A JP60104706 A JP 60104706A JP 10470685 A JP10470685 A JP 10470685A JP S61261446 A JPS61261446 A JP S61261446A
Authority
JP
Japan
Prior art keywords
added
sulfuric acid
extract
water
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60104706A
Other languages
Japanese (ja)
Inventor
Masao Kawashima
川島 正男
Hiroshi Awaji
淡路 宏
Osamu Yoshino
修 吉野
Koji Furuya
古谷 好司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKO YAKUKA KOGYO KK
Nippon Steel Corp
Original Assignee
YOKO YAKUKA KOGYO KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKO YAKUKA KOGYO KK, Sumitomo Metal Industries Ltd filed Critical YOKO YAKUKA KOGYO KK
Priority to JP60104706A priority Critical patent/JPS61261446A/en
Publication of JPS61261446A publication Critical patent/JPS61261446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover Zn having high purity at a low cost by rinsing away water soluble impurities from a Zn-contg. material contg. Fe, Pb, Cl, etc., then extracting the Zn-component therefrom by sulfuric acid, adjusting the pH thereof, removing Fe and heavy metals from the material, adding Zn powder and sulfuric acid to the material and subjecting the same to a Pb removal treatment then to a carbonization treatment. CONSTITUTION:The slurry subjected to rinsing away of the water soluble impurities from the above-mentioned Zn-contg. material is subjected gradually to sulfuric acid dropping at about 3.5+ or -0.2pH to extract the Zn-component. An Na2CO3 soln. of 1-3% concn. is then added to the Zn extraction liquid to adjust the pH to 4-5 and an oxidizing agent such as H2O2 is added thereto to oxidize Fe<2+> to Fe3+ and to settle and separate Fe as Fe(OH)3 and other heavy metals. Sulfuric acid is added to the extraction liquid of the settling and separating treatment to adjust the pH to about 2-3. The Zn powder is added to such liquid and the formed Pb is filtered out by an ion exchange. The Na2CO3 of 2-5% concn. is added to the filtrate and the filtrate is subjected to the carbonization treatment at 6.7-7.2pH to recover Zn as the basic zinc carbonate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製鉄所において、還元ペレット工場より発生す
るFe5Pb1α等の不純物を含むキルンダスト或いは
高炉より発生するダスト等の翫含有物からに分を回収す
る方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is used in steel plants to recover waste from kiln dust containing impurities such as Fe5Pb1α generated from reduced pellet plants or dust from blast furnaces. It's about how to do it.

〔従来技術〕[Prior art]

製鉄所内で発生rるム含有物、即ち上記したキルンダス
ト、高炉ダスト、転炉ダスト或いはZnメッキ時の廃液
スラッジ類等のZn含有物より、kを回収する方法とし
て既に種々の方法が提案されている。例えば湿式法とし
て■NaOH水溶液を接触させてZn分をZn(OH)
4  として溶解分離する方法、■に含有物にロダン廃
液を接触させてロダ7’Zx+として回収する方法等が
あるが、■の方法はNaOHが高価でかつ鬼の残留があ
り、また■の方法は几の除去が困難である等の難点があ
り、また乾式法としては、k含有物にコークス等の還元
剤を添加し還元揮発させて為を回収する方法があるが、
この場合らも還元揮発されるためaの除去が困難で、回
収したZnの純度が低いという難点がある。
Various methods have already been proposed for recovering K from Zn-containing materials generated in steel works, such as the above-mentioned kiln dust, blast furnace dust, converter dust, and waste liquid sludge from Zn plating. There is. For example, as a wet method,
Method 4 involves dissolving and separating, and Method 2 involves contacting the contained material with Rodan waste liquid and recovering it as Roda 7'Zx+. However, as a dry method, a reducing agent such as coke is added to the K-containing material and the residue is recovered by reducing and volatilizing the K-containing material.
In this case as well, it is difficult to remove a because it is reduced and volatilized, and the purity of the recovered Zn is low.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は為含有物よりkを回収するに際し上記の問題点
、特に還元ペレット工場より発生する、Fe、 Pb、
α等の不純物を含むダストより純度の高い血を低コスト
で回収することを目的として、種々実験研究を重ねた結
果見出したもので、Fe、 Pb1α等の不純物も含有
するム含有物を水洗して水溶性不純物を除去したスラリ
ーに硫酸を加えてZn分を抽出し、これに炭酸ソーダを
加えてpH4〜5に調整後酸化剤を加えてFe  をF
e  に酸化させ脂及び微量の重金属を沈殿物として分
離除去し、Fe除去後の抽出液に血粉末と硫酸を添加し
て除り処理し、得られた溶液に炭酸化処理を行なって塩
基性炭酸亜鉛として回収すること、ならびに前記除几処
理のため濾過分離した濾過ケーキをZn抽出工程へ戻す
と共に、抽出した硫酸亜鉛溶液に炭酸ソーダを添加反応
せしめて水洗し塩基性炭酸亜鉛として回収すると共に、
上澄液をZn含有物水洗水として循環使用するようにし
たことを特徴とするものである。
The present invention addresses the above-mentioned problems when recovering K from materials containing Fe, Pb, and especially those generated from reduced pellet factories.
This was discovered as a result of various experimental studies with the aim of recovering blood with higher purity than dust containing impurities such as α at a lower cost. Sulfuric acid is added to the slurry from which water-soluble impurities have been removed to extract the Zn component, and after adjusting the pH to 4-5 by adding soda carbonate, an oxidizing agent is added to remove Fe and F.
After removing Fe, blood powder and sulfuric acid are added to the extract to remove it, and the resulting solution is carbonated to make it basic. Recovering as zinc carbonate, returning the filter cake separated by filtration for the sludge removal process to the Zn extraction process, adding sodium carbonate to the extracted zinc sulfate solution, washing with water, and recovering as basic zinc carbonate. ,
It is characterized in that the supernatant liquid is recycled and used as water for washing the Zn-containing material.

〔問題を解決するための手段、作用〕[Means and actions for solving problems]

添付する工程図を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to the accompanying process diagrams.

水を加え、水洗時間20分/回により、水洗→静置→排
水を複数回繰返し、水溶性不純物であるα、1’4. 
K等を含む上澄水を排水処理する。この水洗水は7tr
?少ツト、以下では沈降が遅く、上澄水の排出が少くな
り不純物が多く残る。
Add water and repeat the process of washing with water → standing → draining several times with a washing time of 20 minutes/time to remove water-soluble impurities α, 1'4.
The supernatant water containing K, etc. is treated as wastewater. This washing water is 7tr
? If the amount is too low, sedimentation will be slow, less supernatant water will be discharged, and more impurities will remain.

水洗後のスラリーは、pHM視のもとに大巾なpHのバ
ラツキを起させないでpH8,5±0.2程度\で徐々
に硫酸(H2SO4)滴下を行なって混合し、下記(1
)式の反応によりに分を抽出する。
The slurry after washing with water is mixed by gradually adding sulfuric acid (H2SO4) dropwise at a pH of about 8.5 ± 0.2 without causing large pH variations under pHM observation, and then mixed with the following (1).
) is extracted by the reaction of formula.

Zn + H2SO4−+ ZnSO4+ H2・=(
11この場合pHが3以下になるとFeの溶解度が大き
くなり好ましくない。
Zn + H2SO4−+ ZnSO4+ H2・=(
11 In this case, if the pH is 3 or less, the solubility of Fe increases, which is not preferable.

このに抽出工程の水洗スラリーには、後述する除a後の
濾過ケーキを加えるのが経済的である。
It is economical to add the filtered cake after removing atom, which will be described later, to the water-washed slurry in the extraction step.

H2SO4による為抽出液に、濃度1〜3チの炭酸ソー
ダ(Na2CO3)溶液を添加しpH4〜5に調整し、
過酸化水素(H2O2)等の酸化剤を添加して、下記(
2)式の反応によりFeを酸化ぎせる。
Add a sodium carbonate (Na2CO3) solution with a concentration of 1 to 3 to the extract using H2SO4 and adjust the pH to 4 to 5.
By adding an oxidizing agent such as hydrogen peroxide (H2O2), the following (
2) Oxidize Fe by the reaction of the formula.

この場合Na2CO3濃度が3チを越えて高くなると、
Ni、 Mn等が炭酸化され不純物として製品に混入し
好ましくない。また上記(2)式によりFeを除去する
にはpH4以上にし、水酸化第2鉄として沈殿分離する
ものでI)Hを5より高くすると為が水酸化亜鉛となっ
て沈殿し、除去されてしまうため為歩留りが低下する。
In this case, when the Na2CO3 concentration increases beyond 3.
Ni, Mn, etc. are carbonated and mixed into the product as impurities, which is undesirable. In addition, in order to remove Fe according to the above formula (2), the pH is set to 4 or higher, and it is precipitated and separated as ferric hydroxide.If I)H is made higher than 5, Fe is precipitated as zinc hydroxide and removed. Because of this, the yield decreases.

上記の(2)式によってh及びその他の重金属を沈殿せ
しめて、例えば、フィルタープレス等の濾過機で濾過し
、濾過ケーキは還元ベレット工場に返送回収し、p過抽
出液にH2SO4を添加しpH2〜3程度に調整し、九
よりイオン化傾向の大きいム末(蒸留法で亜鉛蒸気を冷
却して得られたに末、ブルーパウダーとも言う、金属に
+酸化ムの混合)を添加して下記(3)式によりイオン
交換を起させる。
H and other heavy metals are precipitated according to the above formula (2), and filtered using a filter such as a filter press. The filtered cake is returned to the reduction Beret factory for collection, and H2SO4 is added to the p-filtered extract to raise the pH ~ 3, and add mu powder (obtained by cooling zinc vapor by distillation method, also called blue powder, a mixture of metal + oxidized mu powder) which has a greater ionization tendency than 9, and make the following ( 3) Cause ion exchange according to the formula.

Pb  十Zn −+ Pb + Zn”  −(3)
壷 沈殿 この場合H2SO4を添加してpH2〜3に下げるのは
、酸性状態にしに末により還元状態に巳なければh除去
効果並びにZn末の経済効果が得られないためである。
Pb + Zn −+ Pb + Zn” − (3)
Bottle Precipitation In this case, H2SO4 is added to lower the pH to 2 to 3 because the H removal effect and the economical effect of the Zn powder cannot be obtained unless the powder is made into an acidic state and then reduced to a reduced state.

k末の代替として酸化亜鉛、k塊を使用することも可能
である。
It is also possible to use zinc oxide or k lump as a substitute for k powder.

上記(3)式反応により九を金属として沈殿せしめテ、
前記線Feの場合同様にフィルタープレス等で固液分離
し、濾過ケーキにはなおkが残留しているため前記した
ム抽出工程に戻し、p過抽出によって不純物が除去され
た10〜20係濃度の硫酸亜鉛(Zn5O4)溶液に、
2〜5チ濃度ノNa2co3溶液を添加し、pH6,7
〜7.2、温度10〜65℃で、Zn5O,a+Na2
cO3+4H2α+2ZnCOs ・3Zn((E)2
%Ω+3CO2+5NazSO4−−・”(41(4)
式により反応させる。
9 is precipitated as a metal by the reaction of formula (3) above,
In the case of the wire Fe, solid-liquid separation is performed using a filter press in the same manner as above, and since K still remains in the filter cake, it is returned to the above-mentioned mu extraction step, and the 10-20 concentration is removed from impurities by p filtration extraction. of zinc sulfate (Zn5O4) solution,
Add 2-5% Na2CO3 solution and adjust the pH to 6,7.
~7.2, at a temperature of 10 to 65°C, Zn5O, a + Na2
cO3+4H2α+2ZnCOs ・3Zn((E)2
%Ω+3CO2+5NazSO4−-・”(41(4)
React according to the formula.

この場合ZnSO4濃度を高くすると(4)式反応時に
不純物の混入が多くなり、またNa2CO3濃度を5チ
より高くするとNi、 Mn等が炭酸化され、不純物と
して製品に混入する。さらにpH7,2を越えて高くす
ると不純物が多く製品の純度が悪くなり、pH6,7未
満ではに歩留が低下する。Na2CO3溶液の中にCO
2ガスを補助的に加えてもよい。
In this case, if the ZnSO4 concentration is increased, more impurities will be mixed in during the reaction of formula (4), and if the Na2CO3 concentration is increased above 5%, Ni, Mn, etc. will be carbonated and mixed into the product as impurities. Furthermore, if the pH is increased beyond 7.2, impurities will be present and the purity of the product will be poor, while if the pH is below 6.7, the yield will be significantly reduced. CO in Na2CO3 solution
2 gases may be added supplementarily.

上記(4)式による反応終了後の溶液中にはSO4イオ
ンおよびNa 2 So 4が残存しているため、水洗
→静置→排水を複数回繰返して、上記した不純物を除去
し、塩基性炭酸亜鉛を製造し、上澄水はZn含有物の水
洗工程における水洗水として再使用する。
Since SO4 ions and Na 2 So 4 remain in the solution after the reaction according to the above formula (4) is completed, washing with water → standing → draining is repeated several times to remove the above impurities and convert the basic carbonic acid into Zinc is produced, and the supernatant water is reused as washing water in the washing process for Zn-containing materials.

上述の如(して製造された塩基性炭酸亜鉛は、一般に採
用される公知の方法によりZn に精製される。
The basic zinc carbonate produced as described above is purified to Zn by a commonly employed known method.

〔実験例及び効果〕[Experimental examples and effects]

次にFe、 pb、 C1等を含むキルンダストの実験
例について説明する。
Next, an experimental example of kiln dust containing Fe, PB, C1, etc. will be explained.

(1)水洗工程 キルンダスト(Zn含有物)を、水量比”/49 ) 
t、水洗回数3回、水洗時間20分んの条件で水洗した
(1) Water washing process: kiln dust (Zn-containing material), water amount ratio "/49)"
It was washed with water under the following conditions: 3 times in water and 20 minutes in washing time.

水洗前後の分析結果を第1表に示す。水洗前後で、Na
1に、 C1は90%以上の除去率が得られた。
Table 1 shows the analysis results before and after washing with water. Before and after washing with water, Na
1, a removal rate of 90% or more was obtained for C1.

(21Znn油抽出工 程洗後のスラリーに対するH2SO4滴下率と抽出液、
残渣の分析結果を第2表に示す。同表に明らかなように
H2SO4滴下量は、Zn当量の95%程度が限度で、
それ以上の使用は第2表に示すようにFe等の不純物が
溶解し得策でない。よってpHは3.5±0.2で終点
とするのがよいことが解る。
(21Znn oil extraction process H2SO4 dropping rate and extraction liquid to slurry after washing,
The analysis results of the residue are shown in Table 2. As is clear from the same table, the amount of H2SO4 dropped is limited to about 95% of the Zn equivalent.
As shown in Table 2, it is not advisable to use more than that because impurities such as Fe will dissolve. Therefore, it is understood that the pH should be set at 3.5±0.2 as the end point.

第   2   表 (3)R除去(微量の重金属を含む)工程上記(2)の
抽出液に、濃度1〜3チのNazCO3溶液を添加し、
pH4〜5に調整した後H2O2等の酸化剤を滴下すれ
ば、Feが除去できると共に微量重金属が除去される。
Table 2 (3) R removal (contains trace amounts of heavy metals) step To the extract of (2) above, add a NazCO3 solution with a concentration of 1 to 3,
By dropping an oxidizing agent such as H2O2 after adjusting the pH to 4 to 5, Fe can be removed as well as trace amounts of heavy metals.

このFe及び微量重金属の除去結果を第3表に示す。Table 3 shows the results of removing Fe and trace heavy metals.

第   3   表 (41Pb除去工程 上記(3)のFe除去後の抽出液にH2SO4を添加し
てpH2〜3に調整し、k末を添加しpH5までイオン
交換反応させると、第4表に示す如(Fb、 Cdが1
 my/l以下まで除去される。
Table 3 (41Pb Removal Step) H2SO4 was added to the extract after Fe removal in (3) above to adjust the pH to 2 to 3, and K powder was added and the ion exchange reaction was carried out until the pH was 5. As shown in Table 4. (Fb, Cd is 1
is removed to below my/l.

第   4   表 (5)炭酸亜鉛製造工程 上記(4)のpb除去工程を終って固液分離した、10
〜20%濃度の硫酸亜鉛溶液に2〜5%濃度のNa2C
O3溶液を添加しpH6,7〜7.2で反応を終了させ
、水洗→静置→排水を4回以上繰返IJh2E)4を除
去して、純度の高い塩基性炭酸亜鉛が得られた。
Table 4 (5) Zinc carbonate manufacturing process 10
2-5% Na2C in ~20% zinc sulfate solution
O3 solution was added to terminate the reaction at pH 6.7 to 7.2, and washing with water → standing → draining was repeated four or more times to remove IJh2E)4, and highly pure basic zinc carbonate was obtained.

得られた塩基性炭酸亜鉛の純度及び不純物を従来法との
比較において第5表に示す。
The purity and impurities of the obtained basic zinc carbonate are shown in Table 5 in comparison with the conventional method.

(注) (Il 従来法・・・乾式法(Zn化合物を還元揮発さ
せて回収する方法) ([I)塩基性炭酸亜鉛の純度は計算値、ZnおよびZ
nO純度は実測値である。
(Note) (Il Conventional method...dry method (method of recovering Zn compounds by reducing and volatilizing them) ([I] Purity of basic zinc carbonate is calculated value, Zn and Z
The nO purity is an actual value.

第5表より明らかな如く、従来法に比べ塩基性炭酸亜鉛
の純度及び不純物とも本発明方法が極めて良好であるこ
とが解る。因みに本方法の実施により塩基性炭酸亜鉛が
70t/月回収されている。
As is clear from Table 5, it can be seen that the method of the present invention is extremely superior in terms of purity and impurities of basic zinc carbonate compared to the conventional method. Incidentally, by implementing this method, 70 tons of basic zinc carbonate are recovered per month.

上記実験例におけるH2SO4の滴下速度は、ダスト1
を当りPH5までは1.9 K+!/min、  pH
3,5±0.2までは0.3 堅、A i nとし、出
計の設定により調整を行なっている。
The dropping rate of H2SO4 in the above experimental example was
1.9 K+ up to PH5! /min, pH
Up to 3.5±0.2, it is set as 0.3 ken and A in, and adjustments are made according to the setting of the payout.

以上に詳細説明した如く、本発明方法によればFe、 
Pb1C/をも含む為含有物から純度の高い血を効率的
に回収することができるという大きな効果を有するもの
である。
As explained in detail above, according to the method of the present invention, Fe,
Since it also contains Pb1C/, it has a great effect in that highly pure blood can be efficiently recovered from the contained substances.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の実施例を示す工程図である。 The figure is a process diagram showing an example of the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)Fe、Pb、Cl等の不純物も含有するZn含有
物を水洗して水溶性不純物を除去したスラリーに、硫酸
を加えてZn分を抽出し、これに炭酸ソーダを加えてp
H4〜5に調整後酸化剤を加えてFe^2^+をFe^
3^+に酸化させFe及び微量の重金属を沈殿物として
分離除去し、Fe除去後の抽出液にZn粉末と硫酸を添
加して除Pb処理し、得られた溶液に炭酸化処理を行な
つて塩基性炭酸亜鉛として回収することを特徴とするZ
n含有物よりZnを回収する方法。
(1) Sulfuric acid is added to the slurry in which the Zn-containing material, which also contains impurities such as Fe, Pb, and Cl, is removed to remove water-soluble impurities, and then sodium carbonate is added to extract the Zn component.
Add an oxidizing agent to H4~5 after adjustment to convert Fe^2^+ to Fe^
Oxidize to 3^+ to separate and remove Fe and trace amounts of heavy metals as precipitates, add Zn powder and sulfuric acid to the extract after Fe removal to remove Pb, and carbonate the resulting solution. Z characterized in that it is recovered as basic zinc carbonate by
A method for recovering Zn from n-containing materials.
(2)Fe、Pb、Cl等の不純物も含有するZn含有
物を水洗して水溶性不純物を除去したスラリーに硫酸を
加えてZn分を抽出し、これに炭酸ソーダを添加してp
H4〜5に調整後酸化剤を加えてFe^2^+をFe^
3^+に酸化させFe及び微量の重金属を沈殿物として
分離除去し、Fe除去後の抽出液にZn粉末と硫酸を添
加してろ過分離し、ろ過ケーキを前記Zn抽出工程へ戻
すと共に、抽出した硫酸亜鉛溶液に炭酸ソーダを添加反
応せしめて水洗し塩基性炭酸亜鉛として回収すると共に
上澄液を前記Zn含有物水洗水として循環使用するよう
にしたことを特徴とするに含有物よりZnを回収する方
法。
(2) Sulfuric acid is added to the slurry in which the Zn-containing material, which also contains impurities such as Fe, Pb, and Cl, is removed to remove water-soluble impurities, and sodium carbonate is added to extract the Zn component.
Add an oxidizing agent to H4~5 after adjustment to convert Fe^2^+ to Fe^
Oxidize to 3^+ to separate and remove Fe and trace amounts of heavy metals as precipitates, add Zn powder and sulfuric acid to the extract after Fe removal, filter and separate, return the filtered cake to the Zn extraction process, and extract Zn is removed from the Zn-containing material by adding sodium carbonate to the prepared zinc sulfate solution, washing with water, recovering basic zinc carbonate, and using the supernatant liquid as washing water for the Zn-containing material. How to collect.
JP60104706A 1985-05-15 1985-05-15 Method for recovering zn from zn containing material Pending JPS61261446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104706A JPS61261446A (en) 1985-05-15 1985-05-15 Method for recovering zn from zn containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104706A JPS61261446A (en) 1985-05-15 1985-05-15 Method for recovering zn from zn containing material

Publications (1)

Publication Number Publication Date
JPS61261446A true JPS61261446A (en) 1986-11-19

Family

ID=14387922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104706A Pending JPS61261446A (en) 1985-05-15 1985-05-15 Method for recovering zn from zn containing material

Country Status (1)

Country Link
JP (1) JPS61261446A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179899A (en) * 1988-12-28 1990-07-12 Furukawa Electric Co Ltd:The Preparation of galvanizing bath
FR2757540A1 (en) * 1996-12-20 1998-06-26 Unimetall Sa DEPOLLUTION OF METALLURGICAL RESIDUES BY ELECTRO-HYDROMETALLURGICAL TREATMENT CONTINUOUS IN A BASIC ENVIRONMENT
WO1999053108A1 (en) * 1998-04-08 1999-10-21 Recupac Method for treating steel works dust by wet process
KR100288904B1 (en) * 1998-05-30 2001-06-01 이호인 Method for recovering valuable metals from electric arc furnace dust
WO2001098546A1 (en) * 2000-06-23 2001-12-27 Patrice Stengel Method for sulphuric acid treatment and recycling of blast furnace sludge
CN103014350A (en) * 2012-12-22 2013-04-03 泸溪蓝天冶化有限责任公司 Recycling method of zinc hypoxide
JP2013155402A (en) * 2012-01-27 2013-08-15 Jfe Engineering Corp Method of recovering zinc from waste galvanizing solution
GB2575875A (en) * 2018-07-27 2020-01-29 British Steel Ltd Sinter for use in iron-making and/or steel-making
KR20210008229A (en) * 2019-07-11 2021-01-21 주식회사 동우 티엠씨 Method for removing heavy metals from zinc solution
JP2021008385A (en) * 2019-07-02 2021-01-28 株式会社キノテック Method for producing zinc carbonate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179899A (en) * 1988-12-28 1990-07-12 Furukawa Electric Co Ltd:The Preparation of galvanizing bath
FR2757540A1 (en) * 1996-12-20 1998-06-26 Unimetall Sa DEPOLLUTION OF METALLURGICAL RESIDUES BY ELECTRO-HYDROMETALLURGICAL TREATMENT CONTINUOUS IN A BASIC ENVIRONMENT
EP0854199A1 (en) * 1996-12-20 1998-07-22 Unimetal Decontamination of zinc-containing metallurgical residues by continuous electro-hydrometallurgical treatment in alkaline environment
WO1999053108A1 (en) * 1998-04-08 1999-10-21 Recupac Method for treating steel works dust by wet process
KR100288904B1 (en) * 1998-05-30 2001-06-01 이호인 Method for recovering valuable metals from electric arc furnace dust
FR2810678A1 (en) * 2000-06-23 2001-12-28 Patrice Jean Albert Stengel Recycling of sludge obtained from blast furnace gas purification in aqueous phase includes treatment with sulfuric acid, clarification, filtering, oxidizing the liquid phase with hydrogen peroxide and precipitating ferric hydroxides
WO2001098546A1 (en) * 2000-06-23 2001-12-27 Patrice Stengel Method for sulphuric acid treatment and recycling of blast furnace sludge
JP2013155402A (en) * 2012-01-27 2013-08-15 Jfe Engineering Corp Method of recovering zinc from waste galvanizing solution
CN103014350A (en) * 2012-12-22 2013-04-03 泸溪蓝天冶化有限责任公司 Recycling method of zinc hypoxide
CN103014350B (en) * 2012-12-22 2014-12-10 泸溪蓝天冶化有限责任公司 Recycling method of zinc hypoxide
GB2575875A (en) * 2018-07-27 2020-01-29 British Steel Ltd Sinter for use in iron-making and/or steel-making
JP2021008385A (en) * 2019-07-02 2021-01-28 株式会社キノテック Method for producing zinc carbonate
KR20210008229A (en) * 2019-07-11 2021-01-21 주식회사 동우 티엠씨 Method for removing heavy metals from zinc solution

Similar Documents

Publication Publication Date Title
JP3756687B2 (en) Method for removing and fixing arsenic from arsenic-containing solutions
KR101021180B1 (en) Method for producing high purity cobalt surfate
TW202343870A (en) Method for producing secondary battery material from black mass
JPS61261446A (en) Method for recovering zn from zn containing material
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
JP3052535B2 (en) Treatment of smelting intermediates
JPS641196B2 (en)
US3699208A (en) Extraction of beryllium from ores
KR100220976B1 (en) Recovering method for co,ni,cu from the scrap of diamond tools
CN114350963B (en) Recycling method of calcified vanadium extraction tailings
AU2010217184A1 (en) Zinc oxide purification
RU2070596C1 (en) Method of scandium concentrates production
CN111977690B (en) Method for removing copper and other impurities in preparation of tantalum-niobium oxide
CN114408972A (en) Method for comprehensively recovering vanadium and chromium from sodium salt roasting water leaching solution of vanadium-containing steel slag
CN114214520A (en) Waste-free environment-friendly recovery method for copper-containing difficultly-treated materials
US3685961A (en) Extraction of beryllium from ores
CN115704065B (en) Method for separating and recovering uranium and molybdenum from stripping three-phase floccules
CN113667842B (en) Method for removing non-rare earth impurities in rare earth hydrometallurgy
CN116005000B (en) Arsenic removal method for crude lead smelting smoke dust
JP3780358B2 (en) Treatment method for petroleum combustion ash
RU2765974C1 (en) Method for processing metallurgical slag
JP3796646B2 (en) Treatment method for petroleum combustion ash
WO2024138593A1 (en) Process method for recovering tin, iron and manganese by sulfuric acid elution of tantalum slag
US2096847A (en) Metallurgy of molyboenum
JPH11293361A (en) Production of high purity selenium from slime of copper electrolysis