JP2013155402A - Method of recovering zinc from waste galvanizing solution - Google Patents

Method of recovering zinc from waste galvanizing solution Download PDF

Info

Publication number
JP2013155402A
JP2013155402A JP2012015583A JP2012015583A JP2013155402A JP 2013155402 A JP2013155402 A JP 2013155402A JP 2012015583 A JP2012015583 A JP 2012015583A JP 2012015583 A JP2012015583 A JP 2012015583A JP 2013155402 A JP2013155402 A JP 2013155402A
Authority
JP
Japan
Prior art keywords
zinc
solid
liquid separation
liquid
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012015583A
Other languages
Japanese (ja)
Other versions
JP5719320B2 (en
Inventor
Shigeki Fujiwara
茂樹 藤原
Yohei Tomita
洋平 冨田
Hiroshi Tsuchiya
博嗣 土屋
Satoru Udagawa
悟 宇田川
Akemi Otani
明美 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
JFE Kankyo Corp
Original Assignee
JFE Engineering Corp
JFE Kankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, JFE Kankyo Corp filed Critical JFE Engineering Corp
Priority to JP2012015583A priority Critical patent/JP5719320B2/en
Publication of JP2013155402A publication Critical patent/JP2013155402A/en
Application granted granted Critical
Publication of JP5719320B2 publication Critical patent/JP5719320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing economically recyclable high concentration zinc cake of a zinc concentration of at least 40%, by efficiently separating zinc present in a waste galvanization solution from iron at low cost.SOLUTION: A zinc composition including at least 40% of zinc per dry weight is recovered by an air-oxidation process of adding an alkali into a waste galvanizing solution comprising a zinc ion and a ferric ion each at least in a predetermined concentration and further comprising heavy metal to maintain its pH in a range of 4.5 to 5.5, blowing air thereinto to oxidize the ferric ion to a ferrous ion, and subsequently precipitating the ferrous ion as ferrous hydroxide; a first solid-liquid separation process of adding a chelating agent into the treated solution obtained and subsequently carrying out solid-liquid separation; a pH adjustment process of adding an alkali to the separated solution obtained to control its pH between 8 and 11 to precipitate zinc hydroxide; a second solid-liquid separation process of subjecting the treated solution obtained to solid-liquid separation; and washing the solid matter obtained.

Description

本発明は、亜鉛めっき廃液中の亜鉛を高濃度で収率良く分離回収する方法に関する。   The present invention relates to a method for separating and recovering zinc in a galvanizing waste liquid at a high concentration and high yield.

亜鉛めっき廃液は鋼材表面への亜鉛めっきの工程で発生する高濃度亜鉛含有の廃液で国内では1〜2万トン/年発生していると想定される。液性は4〜6規定の高濃度塩酸もしくは硫酸酸性溶液中に、高濃度の亜鉛イオン及び鋼材から溶出した鉄イオンを含有する。亜鉛イオン濃度としては数%〜20wt%、鉄イオン濃度としては数%〜10wt%を含有する。亜鉛めっき廃液は強酸性で、中和には大量アルカリ剤が必要であり、また鉄は2価イオンで存在するのが特徴である。この廃液の殆どは産廃として処理され、鉄及び亜鉛は中和後、鉄及び亜鉛混合の水酸化物の脱水ケーキとして廃棄処分されている。したがって数千トン規模の亜鉛が廃棄されていると思われる。脱水ケーキの亜鉛濃度は高いので精錬原料として山元還元に供し再資源化することが必要とされているが、それを経済的に実施するためには、共存する鉄や塩の濃度を極力低減させて亜鉛濃度を40%以上に高めることが必要とされている。つまり亜鉛を鉄から効率よく分離回収する手段が必要となっている。複数の金属イオンを含む廃液からの分離回収技術としては多くの方法が知られている。例えば鉄−亜鉛系において特許文献1には、鋼板の酸洗廃液やめっき廃液など各種の重金属を含む廃液を各槽ごとに複数段階に分けてpH調整を行い、pHによる水酸化物生成傾向の差を利用し、金属種類別に水酸化物を析出させて分離回収する方法が提案されている。この中で二価鉄の酸化方法としては鉄酸化細菌を添加する方法が記載されている。特許文献2では鉄を含む複数の金属が混在する廃液から低含水率の鉄ケーキを得る方法が提案され、そこには、予め二価鉄を三価鉄に公知の方法で酸化させた後、中和剤を添加し、pH3〜5程度で水酸化鉄(三価)主体の粒子を生成させることが記載されている。特許文献3には、鉄、亜鉛等を含むめっき廃液スラッジからの金属回収のため、スラッジを酸に溶解した後、次いで液中の第1鉄(二価鉄)を過酸化水素等の酸化薬剤を使用して酸化後pH調整により、第二鉄沈殿物を得る方法が提案されている。   The galvanizing waste liquid is a high concentration zinc-containing waste liquid generated in the galvanizing process on the steel material surface, and is assumed to be generated at 1 to 20,000 tons / year in Japan. Liquidity contains high-concentration zinc ions and iron ions eluted from steel in a 4-6 N high-concentration hydrochloric acid or sulfuric acid acidic solution. The zinc ion concentration includes several percent to 20 wt%, and the iron ion concentration includes several percent to 10 wt%. Zinc plating waste liquid is strongly acidic, requires a large amount of alkaline agent for neutralization, and is characterized by the presence of iron as divalent ions. Most of this waste liquid is treated as industrial waste, and after iron and zinc are neutralized, they are disposed of as a dehydrated cake of a mixed hydroxide of iron and zinc. Therefore, it seems that thousands of tons of zinc are discarded. Since the zinc concentration in the dehydrated cake is high, it is necessary to use it as a refining material for Yamamoto reduction and to recycle it. To achieve this economically, the concentration of coexisting iron and salt must be reduced as much as possible. Therefore, it is necessary to increase the zinc concentration to 40% or more. That is, a means for efficiently separating and recovering zinc from iron is required. Many methods are known as a separation and recovery technique from a waste liquid containing a plurality of metal ions. For example, in an iron-zinc system, Patent Document 1 discloses that a waste liquid containing various heavy metals such as a pickling waste liquid and a plating waste liquid of a steel plate is adjusted in a plurality of stages for each tank, and a hydroxide generation tendency due to pH. A method has been proposed in which the difference is used to deposit and separate a hydroxide for each metal type. Among these, as a method for oxidizing divalent iron, a method of adding iron-oxidizing bacteria is described. Patent Document 2 proposes a method for obtaining an iron cake having a low water content from a waste liquid in which a plurality of metals including iron are mixed. In this method, after divalent iron is oxidized to trivalent iron in a known manner in advance, It describes that a neutralizing agent is added to produce particles mainly composed of iron hydroxide (trivalent) at a pH of about 3 to 5. In Patent Document 3, for metal recovery from plating waste liquid sludge containing iron, zinc, etc., the sludge is dissolved in acid, and then ferrous iron (divalent iron) in the liquid is oxidized with an oxidizing agent such as hydrogen peroxide. A method has been proposed for obtaining a ferric precipitate by adjusting the pH after oxidation using a phosphine.

上記はいずれも鉄を何らかの方法で酸化して、二価鉄を三価鉄に酸化し、その後pH調整を行い、共存する他の金属成分との分離回収をはかるものである。非特許文献1には数mg/L程度の希薄濃度の二価鉄の三価鉄への空気酸化速度に与えるpHの影響を示し、酸化には中性付近が好適であることが記載されている。   In any of the above methods, iron is oxidized by some method, divalent iron is oxidized to trivalent iron, pH is adjusted thereafter, and separation and recovery from other coexisting metal components are achieved. Non-Patent Document 1 shows the effect of pH on the air oxidation rate of dilute iron with a dilute concentration of several mg / L to trivalent iron, and it is described that neutrality is suitable for oxidation. Yes.

特開2003−71201号公報JP 2003-7201 A 特開2005−296866号公報JP 2005-296866 A 特開2007−237054号公報JP 2007-237054 A

高井雄、中西弘著「用水の除鉄、除マンガン処理」、産業用水調査会、昭和62年 P41。Yutaka Takai, Hiroshi Nakanishi, “Iron removal and manganese removal treatment of water”, Industrial Water Research Committee, 1987 P41.

これらの方法はいずれも金属水酸化物の形成傾向において水酸化第二鉄がpH3以上で溶解度を激減する特徴を利用したものである。   All of these methods utilize the feature that ferric hydroxide drastically reduces the solubility at pH 3 or higher in the tendency to form metal hydroxides.

化学的酸化には薬剤添加が必要で、多くは添加する薬剤の費用が有価金属回収のクレジットを損じ、経済的プロセスとしての成立を阻む結果となり、実用に至っていない。前記特許文献1において鉄酸化細菌を用いる方法では、酸化薬剤の投入はないが鉄イオン濃度が数10〜数100mg/L程度の希薄溶液への適用であり、本発明が対象とする亜鉛めっき廃液のような高濃度の鉄イオンを含有する廃液に適用した事例はないし、塩が高濃度であるため、菌の活性度も低くなることが想定され、亜鉛めっき廃液に適用するには膨大な希釈と費用が想定され、科学的には可能であっても工業的に成立しない。そこで、本発明者らは、亜鉛めっき廃液中の鉄と亜鉛のモル量の和に対して所定量のアルカリを添加し、特定のpHに調整した後、空気を吹込むことにより、2価鉄イオンを3価鉄イオンに酸化するとともに、水酸化第二鉄を析出させ、溶解している亜鉛と分離した後、次いで再度pH調整し、亜鉛を析出させることにより、亜鉛ケーキを有償譲渡可能な高濃度亜鉛含有組成物又は、山元還元に供し得る有価物として回収できることを見出し、この内容を特願2010−228243号として特許出願した。   Chemical oxidation requires the addition of chemicals. In many cases, the cost of the chemicals to be added impairs the credits for recovering valuable metals and prevents the establishment of an economic process. The method using iron-oxidizing bacteria in Patent Document 1 is applied to a dilute solution having an iron ion concentration of several tens to several hundreds mg / L, although no oxidizing agent is added. There are no examples of application to waste liquids that contain high concentrations of iron ions, such as the high concentration of salt, and it is assumed that the activity of the fungus will be low. However, it is scientifically possible but not industrially feasible. Therefore, the present inventors added a predetermined amount of alkali to the sum of the molar amounts of iron and zinc in the galvanizing waste liquid, adjusted to a specific pH, and then blown air to divalent iron. Oxidizing ions into trivalent iron ions, depositing ferric hydroxide, separating from dissolved zinc, then adjusting pH again and depositing zinc to allow zinc cake to be transferred for a fee It was found that it can be recovered as a high-concentration zinc-containing composition or a valuable material that can be used for Yamamoto reduction, and a patent application was filed as Japanese Patent Application No. 2010-228243.

しかし、亜鉛めっき廃液はカドミウムや鉛などの重金属を含んでいることが多く、これらは、水酸化第二鉄を分離して得た鉄ケーキ中に移行する。鉄ケーキは資源価値が低く、通常、産業廃棄物として埋立処分されるが、これらの重金属の溶出が埋立基準を超過して埋立処分ができなくなることがあるという課題が新たに見出された。   However, the galvanizing waste liquid often contains heavy metals such as cadmium and lead, and these migrate into the iron cake obtained by separating ferric hydroxide. Iron cake has a low resource value and is usually landfilled as industrial waste. However, a new problem has been found that elution of these heavy metals may exceed landfill standards and may not be landfilled.

本発明は、このような課題を解決するべくなされたものであり、先の発明において、空気酸化して得た処理液にキレート剤を添加することにより、水酸化第二鉄とともに沈殿するこれらの重金属を不溶性の塩に変えて埋立処理における溶出を抑制したものである。   The present invention has been made to solve such problems, and in the previous invention, by adding a chelating agent to the treatment liquid obtained by air oxidation, these precipitated with ferric hydroxide. The heavy metal is changed to an insoluble salt to suppress elution in the landfill process.

すなわち、本発明は、亜鉛イオンを10,000mg/L以上および2価の鉄イオンを3,000mg/L以上含有し、さらに重金属を含有する亜鉛めっき廃液にアルカリを添加してpHを4.5〜5.5の範囲に維持しながら、空気を吹き込み、2価の鉄イオンを3価の鉄イオンに酸化した後、水酸化第二鉄として析出させる空気酸化処理工程と、前記空気酸化処理工程で得られた処理液にキレート剤を添加した後、固液分離する第一固液分離工程と、前記第一固液分離工程で得られた分離液にアルカリを添加してpHを8〜11に調整し、水酸化亜鉛を析出させるpH調整処理工程と、前記pH調整処理工程で得られた処理液を固液分離する第二固液分離工程と、前記第二固液分離工程で得られた固形物を洗浄して、乾燥重量あたり亜鉛を40%以上含有する亜鉛組成物を回収する亜鉛回収工程を具備することを特徴とする亜鉛めっき廃液からの亜鉛回収方法と、亜鉛イオンを10,000mg/L以上および2価の鉄イオンを3,000mg/L以上含有し、さらに重金属を含有する亜鉛めっき廃液にアルカリを添加してpHを4.5〜5.5の範囲に維持しながら、空気を吹き込み、2価の鉄イオンを3価の鉄イオンに酸化した後、水酸化第二鉄として析出させる空気酸化処理工程と、前記空気酸化処理工程で得られた処理液にキレート剤を添加した後、固液分離する第一固液分離工程と、前記第一固液分離工程で得られた分離液にアルカリと硫化剤を添加してpHを8〜11に調整し、水酸化亜鉛および硫化亜鉛を析出させるpH調整処理工程と、前記pH調整処理工程で得られた処理液を固液分離する第二固液分離工程と、前記第二固液分離工程で得られた固形物を洗浄して、乾燥重量あたり亜鉛を40%以上含有する亜鉛組成物を回収する亜鉛回収工程を具備することを特徴とする亜鉛めっき廃液からの亜鉛回収方法を提供するものである。   That is, according to the present invention, zinc ions are contained at 10,000 mg / L or more and divalent iron ions are contained at 3,000 mg / L or more, and an alkali is added to a galvanizing waste solution containing heavy metals to adjust pH to 4.5. An air oxidation treatment step in which air is blown in while maintaining in the range of ~ 5.5 to oxidize divalent iron ions to trivalent iron ions and then precipitate as ferric hydroxide, and the air oxidation treatment step After adding a chelating agent to the treatment liquid obtained in step 1, a solid-liquid separation step is performed, and an alkali is added to the separation liquid obtained in the first solid-liquid separation step to adjust the pH to 8-11. Obtained in the second solid-liquid separation step and the second solid-liquid separation step in which the treatment liquid obtained in the pH adjustment treatment step is subjected to solid-liquid separation. Washed solids, zinc per dry weight A method of recovering zinc from a galvanizing waste solution, comprising a zinc recovery step of recovering a zinc composition containing 40% or more, and zinc ions of 10,000 mg / L or more and divalent iron ions of 3, While adding 000 mg / L or more and adding alkali to the galvanizing waste liquid containing heavy metal to maintain the pH in the range of 4.5 to 5.5, air was blown in, and divalent iron ions were converted into trivalent iron ions. An air oxidation treatment step in which iron oxide is oxidized and then precipitated as ferric hydroxide, and a first solid-liquid separation step in which solid-liquid separation is performed after adding a chelating agent to the treatment liquid obtained in the air oxidation treatment step. And a pH adjustment treatment step of adjusting the pH to 8 to 11 by adding an alkali and a sulfiding agent to the separation liquid obtained in the first solid-liquid separation step, and precipitating zinc hydroxide and zinc sulfide, and the pH Adjustment process A second solid-liquid separation step for solid-liquid separation of the treatment liquid obtained, and a solid composition obtained in the second solid-liquid separation step is washed to obtain a zinc composition containing 40% or more of zinc per dry weight. The present invention provides a method for recovering zinc from galvanizing waste liquid, characterized by comprising a recovery step of recovering zinc.

本発明によれば低コスト、高回収率で亜鉛めっき廃液中の亜鉛を再資源化でき、副生する鉄ケーキは安定して埋立処分できる。また、亜鉛めっき廃液に限定されず、鉄と亜鉛を含有する廃液からの鉄あるいは亜鉛の分離に利用することが可能である。   According to the present invention, zinc in the galvanizing waste liquid can be recycled at a low cost and a high recovery rate, and the iron cake produced as a by-product can be stably landfilled. Moreover, it is not limited to a zinc plating waste liquid, It can utilize for the separation of iron or zinc from the waste liquid containing iron and zinc.

本発明の方法を示すフローシートである。It is a flow sheet which shows the method of this invention. 液のpHとFe酸化率とZn回収率の関係を示すグラフである。It is a graph which shows the relationship between pH of a liquid, Fe oxidation rate, and Zn recovery rate. ゴムメンブレン式の散気装置の構造を示す図である。It is a figure which shows the structure of a rubber membrane type diffuser.

本発明が適用される亜鉛めっき廃液は、鉄板、鋼板、その他各種の鉄鋼材を、電解めっき、溶融めっき等で亜鉛めっきした際に生じるめっき液、めっき工程の後処理や、洗浄工程で生じる廃液であり、1〜7規定程度、通常4〜6規定程度の塩酸、硫酸等の鉱酸中に亜鉛イオンを10,000mg/L以上、好ましくは50,000mg/L以上、より好ましくは100,000mg/L以上、2価の鉄イオンを3,000mg/L以上、特に10,000mg/L以上、そしてさらに重金属を含むものである。亜鉛イオンの上限は特に制限されないが、通常200,000mg/L以下、多くは150,000mg/L以下である。また、2価の鉄イオンの上限も特に制限されないが、通常100,000mg/L以下、多くは60,000mg/L以下である。重金属の例としては、カドミウム、鉛、等を挙げることができる。重金属の含有量は特に限定されないが、通常数10〜数100mg/L程度、特に50〜500mg/L程度である。   The galvanizing waste liquid to which the present invention is applied is a plating liquid produced when galvanizing iron plate, steel sheet, and other various steel materials by electrolytic plating, hot dipping, etc., waste liquid produced in the post-treatment of the plating process and the washing process. In a mineral acid such as hydrochloric acid or sulfuric acid of about 1 to 7 N, usually about 4 to 6 N, zinc ion is 10,000 mg / L or more, preferably 50,000 mg / L or more, more preferably 100,000 mg. / L or more, divalent iron ions are 3,000 mg / L or more, particularly 10,000 mg / L or more, and further contain heavy metals. Although the upper limit of zinc ion is not particularly limited, it is usually 200,000 mg / L or less, and most is 150,000 mg / L or less. The upper limit of the divalent iron ion is not particularly limited, but is usually 100,000 mg / L or less, and most is 60,000 mg / L or less. Examples of heavy metals include cadmium, lead, and the like. The content of heavy metal is not particularly limited, but is usually about several tens to several hundreds mg / L, particularly about 50 to 500 mg / L.

この亜鉛めっき廃液に、必要により水を加えて撹拌しながら、2〜6倍程度、好ましくは3〜5倍程度に希釈する。亜鉛めっき廃液の希釈は亜鉛ケーキの品位を向上させる。脱水ケーキ中の水分に付随する塩分が低下するためである。廃液中の高濃度の酸の中和の結果として存在する塩濃度を低減するため、2〜6倍程度に希釈する。希釈度を上げすぎると品位は向上するが処理のボリュームが大きくなり、能率が低下する。   The galvanizing waste liquid is diluted to about 2 to 6 times, preferably about 3 to 5 times while adding water and stirring as necessary. Dilution of galvanizing waste liquid improves the quality of the zinc cake. It is because the salt content accompanying the water | moisture content in a dewatering cake falls. In order to reduce the salt concentration present as a result of neutralization of the high concentration acid in the waste liquid, it is diluted to about 2 to 6 times. If the degree of dilution is increased too much, the quality will be improved, but the processing volume will be increased and the efficiency will be reduced.

次いで、この希釈廃液にアルカリを添加してpH4.5〜5.5に調整するとともに空気を吹き込み、2価の鉄イオンを3価の鉄イオンに酸化する。空気を吹き込む装置は特に限定されないが、ゴムメンブレン式の散気装置を使用することが望ましい。ゴムメンブレン式の散気装置(図3)は通気時には散気口が広がるが、停止時には散気口が閉じるので、生成した水酸価鉄粒子による閉塞が生じにくい。空気酸化のpH条件は4.5〜5.5好ましくは4.6〜5.4付近の比較的狭い範囲が好ましい。低濃度域での二価鉄の空気酸化についてはpH依存性が大きく、中性域が好ましいことが知られている(非特許文献1)。しかしながら、本発明が対象とする亜鉛めっき廃液の場合は鉄、亜鉛ともに高濃度であるため、pH6以上では、二価鉄の酸化は進行するものの、水酸化第二鉄の沈降に伴い亜鉛が共沈し、亜鉛の回収率が低下してしまう。また、pHが4以下では二価鉄の酸化が進行せず、二価鉄イオンが液中に残留し、亜鉛析出の際に同時に析出するため回収亜鉛の濃度を低下させてしまう。二価鉄の酸化速度と亜鉛回収率とを考慮すると、pHには最適域が存在し5付近であることを見出した(図2)。pHの調整に用いるアルカリの種類は問わないが、安価で大量に入手できるものがよく、水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、酸化カルシウム、水酸化カルシウム等を例示することができる。なお、空気酸化反応の進行に伴いpHは低下し、低下に伴い酸化反応速度も低下するので酸化時においては液のpHを監視しながら中和用アルカリを連続的あるいは断続的に投入してpH4.5〜5.5付近を維持するのが良い。例えば、pH5を切ったらアルカリ溶液を添加するようにする。空気酸化しながら小まめにpH調整を行うことにより酸化の進行に伴うpH低下がもたらす酸化速度の低下を回避できるとともに過不足なくアルカリを添加することができる。このとき、あらかじめpH調整に必要なアルカリ溶液量を決めておき、空気酸化処理開始からの累積アルカリ溶液量があらかじめ決定したアルカリ量に達したらアルカリ添加を停止する方法がある。必要アルカリ量は、含有する鉄、亜鉛の和に対して1/2等量から等量までとする。なお、空気酸化は、溶液中の酸化還元電位をモニタリングしておき、酸化還元電位がプラスに転じるまで継続する。酸化時間に余裕がある場合には、酸化還元電位が+50mV程度になるまで継続することが望ましい。   Next, an alkali is added to the diluted waste liquid to adjust to pH 4.5 to 5.5 and air is blown to oxidize divalent iron ions to trivalent iron ions. The apparatus for blowing air is not particularly limited, but it is desirable to use a rubber membrane type air diffuser. In the rubber membrane type air diffuser (FIG. 3), the air diffuser port is widened when ventilated, but the air diffuser port is closed when stopped, so that it is less likely to be blocked by the generated iron hydroxide particles. The pH conditions for air oxidation are preferably within a relatively narrow range of 4.5 to 5.5, preferably 4.6 to 5.4. It is known that the air oxidation of divalent iron in a low concentration range has a large pH dependence and a neutral range is preferable (Non-patent Document 1). However, in the case of the galvanizing waste solution targeted by the present invention, both iron and zinc are at high concentrations. Therefore, at pH 6 or higher, the oxidation of divalent iron proceeds, but the zinc coexists with the precipitation of ferric hydroxide. It sinks and the recovery rate of zinc falls. On the other hand, when the pH is 4 or less, the oxidation of divalent iron does not proceed, and divalent iron ions remain in the liquid and precipitate at the same time as zinc precipitation, so that the concentration of recovered zinc is lowered. Taking into account the oxidation rate of divalent iron and the zinc recovery rate, it was found that there is an optimum range for pH, which is around 5 (FIG. 2). There is no limitation on the type of alkali used for adjusting the pH, but it is preferable that it is inexpensive and can be obtained in large quantities, and examples include sodium hydroxide, sodium hydrogen carbonate, sodium carbonate, calcium oxide, calcium hydroxide and the like. Since the pH decreases with the progress of the air oxidation reaction and the oxidation reaction rate decreases with the decrease, the neutralizing alkali is continuously or intermittently added while monitoring the pH of the solution during the oxidation. It is better to maintain around 5 to 5.5. For example, when pH 5 is cut, an alkaline solution is added. By adjusting the pH slightly while oxidizing with air, it is possible to avoid the decrease in the oxidation rate caused by the decrease in pH accompanying the progress of the oxidation, and it is possible to add the alkali without excess or deficiency. At this time, there is a method in which the amount of alkali solution necessary for pH adjustment is determined in advance, and the addition of alkali is stopped when the amount of accumulated alkaline solution from the start of the air oxidation treatment reaches a predetermined amount of alkali. The required alkali amount is from 1/2 equivalent to equivalent to the sum of iron and zinc contained. Air oxidation is continued until the oxidation-reduction potential in the solution is monitored and the oxidation-reduction potential turns positive. When the oxidation time has a margin, it is desirable to continue until the oxidation-reduction potential reaches about +50 mV.

空気酸化過程で生じる水酸化第二鉄の固相にある程度重金属が取り込まれ、不溶化するため、キレート剤は空気酸化処理工程の終段で加える。終段で加えることで、キレート剤添加量を極小化できる。キレート剤は、カドミウム、鉛などの重金属とキレートを形成するものであり、ジチオカルバミン酸系、ピペラジン系、ジエチルアミン系のものなどを使用できる。キレート剤の添加量は廃液重量に対して0.2〜2%程度、好ましくは0.5〜2%程度が適当である。   The chelating agent is added at the final stage of the air oxidation treatment step because some heavy metal is taken into the solid phase of ferric hydroxide generated in the air oxidation process and insolubilized. By adding at the final stage, the amount of chelating agent added can be minimized. The chelating agent forms a chelate with a heavy metal such as cadmium or lead, and a dithiocarbamic acid-based, piperazine-based, or diethylamine-based one can be used. The addition amount of the chelating agent is about 0.2 to 2%, preferably about 0.5 to 2% with respect to the weight of the waste liquid.

この空気酸化により、鉄は水酸化第二鉄として沈殿する。析出物の分離手段は、特に限定されず、各種の重力濾過機、加圧濾過機、真空濾過機の他、遠心分離機も利用できる。   By this air oxidation, iron precipitates as ferric hydroxide. The means for separating the precipitate is not particularly limited, and various gravity filters, pressure filters, vacuum filters, and centrifuges can be used.

分離したケーキは、水酸化第二鉄の他、カドミウムや鉛等の重金属もキレート剤で不溶化されているのでこれらの重金属も含まれる。   In the separated cake, heavy metals such as cadmium and lead are insolubilized with a chelating agent in addition to ferric hydroxide, so these heavy metals are also included.

鉄ケーキ回収後の分離液は高塩濃度であるため、アルカリ添加前に希釈することで、アルカリ添加時に生成する亜鉛化合物を分離した際にケーキに付着する液中の塩濃度が低減されるとともに、固液分離性も向上する。   Since the separation liquid after iron cake recovery has a high salt concentration, diluting before adding the alkali reduces the salt concentration in the liquid adhering to the cake when the zinc compound produced during the alkali addition is separated. Also, the solid-liquid separation property is improved.

空気酸化終了後、固液分離した濾液は、次に、アルカリを添加し、pH8〜11程度、好ましくは9.5〜10.5程度にして亜鉛を水酸化物として沈殿させる。アルカリの添加は、pHを確認しながら一度に投入しても、沈殿の生成状況を確認しながら数回に分けて投入しても良い。いずれの場合においても、最終的に前記pH範囲内となるようにアルカリ添加量を調整する。pH調整に用いるアルカリは、このようなpHにすることができるものであればよいが、安価で入手が容易な点で水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム等のナトリウム化合物が望ましい。水酸化カルシウムによる中和もできるがその場合は回収した亜鉛ケーキの含有量が低下する。また、水酸化物として沈殿させる方法以外に、硫化剤を添加して硫化物として回収することもできる。この場合、添加する硫化剤としては硫化ナトリウム、硫化水素ナトリウム等のナトリウム硫化物が好ましい。硫化水素ナトリウムを加える場合は、硫化亜鉛生成の際にpHが低下するため、上記アルカリと併用する。この場合、硫化剤の添加条件としては、上記のアルカリによる中和の後半において添加する方が好ましい。硫化亜鉛生成に伴うpH低下によって、硫化水素ナトリウム添加時に硫化水素ガスが発生しやすくなり、作業員に対して危険が及ぶ可能性があるためである。硫化剤の添加開始時期は、具体的には前記アルカリを加えて反応液中のpHが5〜6以上になった時点とする。硫化剤の添加量は、残存する溶解性亜鉛つまり未反応亜鉛の量に対しS当量で1〜1.2倍当量(モル比)程度が適当である。ここで、溶解性亜鉛とは、反応液を0.45μmフィルターでろ過して得られたろ液中の亜鉛であり、ろ液を原子吸光分析装置もしくはICP発光分光分析装置で測定した値を溶解性亜鉛と定義する。硫化剤添加後もアルカリの添加を続ける場合には、硫化剤とアルカリの合計量で残存する溶解性亜鉛の量の1〜1.2倍当量(モル比)程度が適当である。アルカリや硫化剤を必要量添加してから、30分〜1時間程度撹拌してから沈殿物を分離する。この際、高分子凝集剤等の凝集剤を添加すると分離を良好に進めることができるが、必ずしも必要ではない。   After completion of air oxidation, the filtrate separated into solid and liquid is then added with alkali to adjust the pH to about 8 to 11, preferably about 9.5 to 10.5, and precipitate zinc as a hydroxide. The alkali may be added all at once while confirming the pH, or may be added several times while confirming the formation state of the precipitate. In either case, the amount of alkali added is adjusted so that it finally falls within the pH range. The alkali used for pH adjustment is not particularly limited as long as the pH can be adjusted to this value, but sodium compounds such as sodium hydroxide, sodium hydrogen carbonate, sodium carbonate and the like are desirable because they are inexpensive and easily available. Neutralization with calcium hydroxide can also be performed, but in that case, the content of the recovered zinc cake is lowered. In addition to the method of precipitating as a hydroxide, a sulfurizing agent can be added and recovered as a sulfide. In this case, sodium sulfide such as sodium sulfide or sodium hydrogen sulfide is preferable as the sulfurizing agent to be added. When sodium hydrogen sulfide is added, the pH is lowered during the formation of zinc sulfide, so it is used in combination with the alkali. In this case, the addition condition of the sulfurizing agent is preferably added in the latter half of the neutralization with the alkali. This is because, due to the decrease in pH associated with the formation of zinc sulfide, hydrogen sulfide gas is likely to be generated when sodium hydrogen sulfide is added, and there is a possibility that it may be dangerous for workers. The addition start time of the sulfiding agent is specifically the time when the pH in the reaction solution becomes 5-6 or more by adding the alkali. The addition amount of the sulfurizing agent is suitably about 1 to 1.2 times equivalent (molar ratio) in terms of S equivalent to the amount of the remaining soluble zinc, that is, unreacted zinc. Here, the soluble zinc is zinc in the filtrate obtained by filtering the reaction solution with a 0.45 μm filter, and the value obtained by measuring the filtrate with an atomic absorption spectrometer or ICP emission spectrometer is the soluble zinc. It is defined as In the case where the addition of alkali is continued after the addition of the sulfiding agent, an amount of about 1 to 1.2 times equivalent (molar ratio) to the amount of soluble zinc remaining in the total amount of the sulfiding agent and the alkali is appropriate. After adding a necessary amount of alkali or sulfurating agent, the mixture is stirred for about 30 minutes to 1 hour, and then the precipitate is separated. At this time, if a flocculant such as a polymer flocculant is added, the separation can be promoted well, but it is not always necessary.

凝集剤を添加後は、靜置して、上澄水を除去して水を加えて攪拌し、これを繰返すことによって得られる水酸化亜鉛あるいは硫化亜鉛のケーキに含まれる塩分濃度を低下させることができる。分離した上澄水は別のタンクに移送した後にフィルタープレス等でろ過してもよく、別のタンクに移送する前にフィルタープレス等でろ過してもよい。   After adding the flocculant, it is allowed to stand, remove the supernatant water, add water and stir, and repeat this to reduce the salt concentration in the zinc hydroxide or zinc sulfide cake obtained. it can. The separated supernatant water may be filtered with a filter press or the like after being transferred to another tank, or may be filtered with a filter press or the like before being transferred to another tank.

沈殿物の分離手段は、鉄ケーキ同様に、特に限定されず、各種の重力濾過機、加圧濾過機、真空濾過機の他、遠心分離機も利用できる。なおこの脱水工程において亜鉛ケーキへの直接水投入による洗浄操作は前述したメッキ原液の希釈と同様にケーキ中の塩分を低減できるので、亜鉛ケーキの純度向上には有効である。   The means for separating the precipitate is not particularly limited as in the case of the iron cake, and various gravity filters, pressure filters, vacuum filters, and centrifuges can also be used. In this dehydration step, the washing operation by directly adding water to the zinc cake can reduce the salt content in the cake in the same manner as the dilution of the plating stock solution described above, and is therefore effective in improving the purity of the zinc cake.

本発明では、亜鉛ケーキ中の亜鉛濃度を乾燥重量で40重量%以上、好ましくは50重量%以上とする必要があり、そのために、(1)鉄の空気酸化前に水を加える希釈、(2)鉄ケーキを分離した液に水を加える希釈、(3)分離した亜鉛ケーキの脱水前の水による洗浄、(4)脱水時における水による洗浄を適宜組み合わせ、また、希釈水や線浄水の量をコントロールして亜鉛ケーキ中の塩分(NaCl等)濃度を低下させるようにする。これらの水には塩分濃度の高くないもの、例えば、工業用水、水道水、塩分濃度の高くない廃液の処理水などを用いる。尚、フィルタープレスで脱水した亜鉛ケーキの含水率は60〜70重量%程度である。   In the present invention, the zinc concentration in the zinc cake needs to be 40% by weight or more, preferably 50% by weight or more by dry weight. For that purpose, (1) dilution by adding water before air oxidation of iron, (2 ) Dilution by adding water to the liquid from which the iron cake was separated, (3) Washing the separated zinc cake with water before dehydration, (4) Washing with water at the time of dehydration as appropriate, Is controlled so as to reduce the concentration of salt (such as NaCl) in the zinc cake. For these waters, water having a low salinity concentration, for example, industrial water, tap water, treated waste water having a low salinity concentration, or the like is used. The water content of the zinc cake dehydrated with a filter press is about 60 to 70% by weight.

分離したケーキは、亜鉛を40重量%以上と高濃度に含有しており、山元にて公知の亜鉛回収プロセス、例えば、ばい焼して酸化亜鉛として更に精製した後、硫酸に溶解して硫酸亜鉛溶液とし、硫酸亜鉛溶液から電解によって金属亜鉛を得るプロセスなどに適用することが可能である。   The separated cake contains zinc in a high concentration of 40% by weight or more. A zinc recovery process known in Yamamoto, for example, roasted and further purified as zinc oxide, dissolved in sulfuric acid and dissolved in zinc sulfate. It can be applied to a process of obtaining metallic zinc from a zinc sulfate solution by electrolysis.

固液分離した濾液は、必要により、さらに浄化して放流し、あるいは工業用水等として再利用できる。浄化方法としては、pH調整後、沈殿物除去を行う。再利用時に求められる水質によっては前記浄化方法に、逆浸透膜法などを組み合わせることができる。   The solid-liquid separated filtrate can be further purified and discharged as needed, or reused as industrial water or the like. As a purification method, the precipitate is removed after pH adjustment. Depending on the water quality required at the time of reuse, the purification method can be combined with a reverse osmosis membrane method or the like.

Zn2+濃度96,000mg/L、Fe2+濃度27,000mg/L、Cd2+濃度57mg/L、Pb2+濃度270mg/Lの亜鉛めっき廃液10Lを工業用水で3倍に希釈して、Zn2+濃度32,000mg/L、Fe2+9,000mg/L、Cd2+濃度29mg/L、Pb2+濃度90mg/L、pH0.72、ORP448mVの希釈廃液を得た。この希釈廃液を200mlづつに分けて500mlトールビーカーに入れ、20(w/v)%のNaOHを表1の条件で加えて9時間空気酸化を行った。その間、空気はエアーポンプと曝気球を用いて供給し、スターラーは使用しなかった。(1)は、実験開始時にNaOHを添加してpHを調整し、その8.5時間後にNaOHを添加してpH5に調整した。(2)はマイクロピペットを使用して10分ごとに添加した。(3)は沈殿がないため、NaOH添加時のみスターラーを回して攪拌した。 A zinc plating waste solution 10L having a Zn 2+ concentration of 96,000 mg / L, an Fe 2+ concentration of 27,000 mg / L, a Cd 2+ concentration of 57 mg / L, and a Pb 2+ concentration of 270 mg / L was diluted three-fold with industrial water to obtain Zn A diluted waste solution having a 2+ concentration of 32,000 mg / L, an Fe 2+ of 9,000 mg / L, a Cd 2+ concentration of 29 mg / L, a Pb 2+ concentration of 90 mg / L, a pH of 0.72, and an ORP448 mV was obtained. This diluted waste solution was divided into 200 ml portions and placed in a 500 ml tall beaker, and 20 (w / v)% NaOH was added under the conditions shown in Table 1 for air oxidation for 9 hours. Meanwhile, air was supplied using an air pump and an aeration bulb, and a stirrer was not used. In (1), NaOH was added at the start of the experiment to adjust the pH, and NaOH was added to pH 5 after 8.5 hours. (2) was added every 10 minutes using a micropipette. Since (3) had no precipitation, the stirrer was rotated and stirred only when NaOH was added.

Figure 2013155402
各空気酸化処理液をろ紙No.5Cでろ過し、初流約50mlは除いて集めたろ紙を標準添加法で分析して表2の結果を得た。
Figure 2013155402
Each air oxidation treatment solution is filtered with filter paper No. The filter paper collected by filtering with 5C, except about 50 ml of the initial flow, was analyzed by the standard addition method, and the results shown in Table 2 were obtained.

Figure 2013155402
次に、空気酸化処理した亜鉛めっき廃液にキレート剤を添加してカドミウムと鉛の挙動を調べた。供試廃液の組成は、Zn210,000mg/L、Fe68,000mg/L、Cd114mg/L、Pb540mg/Lであった。キレート剤には(エチレンアミノ)ジチオカルボキシナトリウム−エチレンベンジルアミン−エチレンアミン共重合体を使用した。実験条件と結果を表3に示す。
Figure 2013155402
Next, the behavior of cadmium and lead was investigated by adding a chelating agent to the galvanizing waste solution subjected to air oxidation treatment. The composition of the test waste liquid was Zn 210,000 mg / L, Fe 68,000 mg / L, Cd 114 mg / L, Pb 540 mg / L. As the chelating agent, (ethyleneamino) dithiocarboxy sodium-ethylenebenzylamine-ethyleneamine copolymer was used. The experimental conditions and results are shown in Table 3.

Figure 2013155402
Figure 2013155402

本発明により、亜鉛めっき廃液から亜鉛を高い純度で回収して再利用でき、廃液の処理負担を軽減できるので亜鉛めっき廃液の処理に広く利用できる。   According to the present invention, zinc can be recovered from zinc plating waste liquor with high purity and reused, and the processing load of the waste liquor can be reduced.

Claims (4)

亜鉛イオンを10,000mg/L以上および2価の鉄イオンを3,000mg/L以上含有し、さらに重金属を含有する亜鉛めっき廃液にアルカリを添加してpHを4.5〜5.5の範囲に維持しながら、空気を吹き込み、2価の鉄イオンを3価の鉄イオンに酸化した後、水酸化第二鉄として析出させる空気酸化処理工程と、前記空気酸化処理工程で得られた処理液にキレート剤を添加した後、固液分離する第一固液分離工程と、前記第一固液分離工程で得られた分離液にアルカリを添加してpHを8〜11に調整し、水酸化亜鉛を析出させるpH調整処理工程と、前記pH調整処理工程で得られた処理液を固液分離する第二固液分離工程と、前記第二固液分離工程で得られた固形物を洗浄して、乾燥重量あたり亜鉛を40%以上含有する亜鉛組成物を回収する亜鉛回収工程を具備することを特徴とする亜鉛めっき廃液からの亜鉛回収方法。   The pH is in the range of 4.5 to 5.5 by adding alkali to a zinc plating waste solution containing zinc ions of 10,000 mg / L or more and divalent iron ions of 3,000 mg / L or more and further containing heavy metals. The air oxidation treatment step of blowing air and oxidizing the divalent iron ions into trivalent iron ions and then precipitating them as ferric hydroxide, and the treatment liquid obtained in the air oxidation treatment step After adding a chelating agent to the first solid-liquid separation step of solid-liquid separation, and adjusting the pH to 8-11 by adding alkali to the separation liquid obtained in the first solid-liquid separation step, The pH adjustment treatment step for precipitating zinc, the second solid-liquid separation step for solid-liquid separation of the treatment liquid obtained in the pH adjustment treatment step, and the solid matter obtained in the second solid-liquid separation step are washed. And contain 40% or more of zinc per dry weight Zinc recovery process from galvanized waste, characterized in that it comprises a zinc recovery process for recovering the lead composition. 前記亜鉛めっき廃液に水を加えて2〜6倍に希釈した後、前記空気酸化処理を施すことを特徴とする請求項1記載の亜鉛めっき廃液からの亜鉛回収方法。   The method for recovering zinc from the galvanizing waste liquid according to claim 1, wherein water is added to the galvanizing waste liquid to dilute it 2 to 6 times, and then the air oxidation treatment is performed. 亜鉛イオンを10,000mg/L以上および2価の鉄イオンを3,000mg/L以上含有し、さらに重金属を含有する亜鉛めっき廃液にアルカリを添加してpHを4.5〜5.5の範囲に維持しながら、空気を吹き込み、2価の鉄イオンを3価の鉄イオンに酸化した後、水酸化第二鉄として析出させる空気酸化処理工程と、前記空気酸化処理工程で得られた処理液にキレート剤を添加した後、固液分離する第一固液分離工程と、前記第一固液分離工程で得られた分離液にアルカリと硫化剤を添加してpHを8〜11に調整し、水酸化亜鉛および硫化亜鉛を析出させるpH調整処理工程と、前記pH調整処理工程で得られた処理液を固液分離する第二固液分離工程と、前記第二固液分離工程で得られた固形物を洗浄して、乾燥重量あたり亜鉛を40%以上含有する亜鉛組成物を回収する亜鉛回収工程を具備することを特徴とする亜鉛めっき廃液からの亜鉛回収方法。   The pH is in the range of 4.5 to 5.5 by adding alkali to a zinc plating waste solution containing zinc ions of 10,000 mg / L or more and divalent iron ions of 3,000 mg / L or more and further containing heavy metals. The air oxidation treatment step of blowing air and oxidizing the divalent iron ions into trivalent iron ions and then precipitating them as ferric hydroxide, and the treatment liquid obtained in the air oxidation treatment step After adding the chelating agent to the first solid-liquid separation step for solid-liquid separation, and adjusting the pH to 8 to 11 by adding alkali and sulfiding agent to the separation liquid obtained in the first solid-liquid separation step Obtained in the second solid-liquid separation step, the second solid-liquid separation step for solid-liquid separation of the treatment liquid obtained in the pH adjustment treatment step, and the pH adjustment treatment step for depositing zinc hydroxide and zinc sulfide. Wash the solids and dry The zinc recovery process from galvanized waste, characterized in that it comprises a zinc recovery process for recovering zinc composition containing 40% or more. 前記亜鉛めっき廃液に水を加えて2〜6倍に希釈した後、前記空気酸化処理を施すことを特徴とする請求項3に記載の亜鉛めっき廃液からの亜鉛回収方法。   The method for recovering zinc from the galvanizing waste liquid according to claim 3, wherein water is added to the galvanizing waste liquid to dilute it 2 to 6 times, and then the air oxidation treatment is performed.
JP2012015583A 2012-01-27 2012-01-27 Zinc recovery method from galvanizing waste liquid Active JP5719320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015583A JP5719320B2 (en) 2012-01-27 2012-01-27 Zinc recovery method from galvanizing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015583A JP5719320B2 (en) 2012-01-27 2012-01-27 Zinc recovery method from galvanizing waste liquid

Publications (2)

Publication Number Publication Date
JP2013155402A true JP2013155402A (en) 2013-08-15
JP5719320B2 JP5719320B2 (en) 2015-05-13

Family

ID=49050892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015583A Active JP5719320B2 (en) 2012-01-27 2012-01-27 Zinc recovery method from galvanizing waste liquid

Country Status (1)

Country Link
JP (1) JP5719320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716654A (en) * 2021-08-24 2023-02-28 斯瑞尔环境科技股份有限公司 Resource utilization method of zinc-containing and iron-containing waste acid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261446A (en) * 1985-05-15 1986-11-19 Sumitomo Metal Ind Ltd Method for recovering zn from zn containing material
JPS62253738A (en) * 1986-02-18 1987-11-05 ジエイムズ エム.フランカ−ド Removal of dangerous metal waste sludge
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2002030352A (en) * 2000-07-11 2002-01-31 Nippon Steel Corp Method for recovering valuable metal from metal- containing waste water
JP2004202488A (en) * 2002-12-09 2004-07-22 Nippon Steel Corp Method for treating metal mine drainage and method for collecting valuable metal
JP2008266774A (en) * 2007-03-29 2008-11-06 Nikko Kinzoku Kk Zinc recovery method
JP2010284593A (en) * 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
JP2011157568A (en) * 2010-01-29 2011-08-18 Jfe Engineering Corp Method for recycling waste galvanizing liquid
JP2012082458A (en) * 2010-10-08 2012-04-26 Jfe Engineering Corp Method for separating and recovering zinc from zinc plating waste liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261446A (en) * 1985-05-15 1986-11-19 Sumitomo Metal Ind Ltd Method for recovering zn from zn containing material
JPS62253738A (en) * 1986-02-18 1987-11-05 ジエイムズ エム.フランカ−ド Removal of dangerous metal waste sludge
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2002030352A (en) * 2000-07-11 2002-01-31 Nippon Steel Corp Method for recovering valuable metal from metal- containing waste water
JP2004202488A (en) * 2002-12-09 2004-07-22 Nippon Steel Corp Method for treating metal mine drainage and method for collecting valuable metal
JP2008266774A (en) * 2007-03-29 2008-11-06 Nikko Kinzoku Kk Zinc recovery method
JP2010284593A (en) * 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
JP2011157568A (en) * 2010-01-29 2011-08-18 Jfe Engineering Corp Method for recycling waste galvanizing liquid
JP2012082458A (en) * 2010-10-08 2012-04-26 Jfe Engineering Corp Method for separating and recovering zinc from zinc plating waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716654A (en) * 2021-08-24 2023-02-28 斯瑞尔环境科技股份有限公司 Resource utilization method of zinc-containing and iron-containing waste acid

Also Published As

Publication number Publication date
JP5719320B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5444024B2 (en) Recycling of zinc plating waste liquid
JP4589748B2 (en) Treatment of acidic waste liquid containing iron and chromium
JP5512482B2 (en) Method for separating and recovering zinc from galvanizing waste liquid
JP2011206757A (en) Method for wastewater treatment for wastewater containing aluminum, magnesium and manganese
JP4235094B2 (en) Metal mine drainage treatment method and valuable metal recovery method
CN103781923A (en) Process for purifying zinc oxide
JP2008036608A (en) Method and apparatus for treating cyanide-containing wastewater
JP5685456B2 (en) Method for producing polyferric sulfate
US9555362B2 (en) Method for separating arsenic and heavy metals in an acidic washing solution
JP4025841B2 (en) Treatment of wastewater containing arsenic and other heavy metals
CN113088702B (en) Method for recovering valuable elements from acid leaching solution of roasting slag of gold-containing sulfur concentrate
CN102191378A (en) Electrolyte preparation process for electrolyzing manganese
JP2002018394A (en) Treating method for waste
CN102925899A (en) Method for refining copper chloride etching waste liquor
JP2007069068A (en) Heavy metal-containing waste water treatment method
JP2006224023A (en) Method and apparatus for treating heavy metal-containing waste water
JP5719320B2 (en) Zinc recovery method from galvanizing waste liquid
RU2443791C1 (en) Conditioning method of cyanide-containing reusable solutions for processing of gold-copper ores with extraction of gold and copper and regeneration of cyanide
JP2015151613A (en) Method and equipment for processing combustion ash of waste for use in cement production
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP2017159222A (en) Method for removing arsenic
JP5073354B2 (en) Waste liquid treatment method and treatment equipment using iron-oxidizing bacteria
RU2744291C1 (en) Method of extraction of copper (i) oxide cu2o from multicomponent sulfate solutions of heavy non-ferrous metals
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2002126693A (en) Method for treatment waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R150 Certificate of patent or registration of utility model

Ref document number: 5719320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250