JPS62152592A - Treatment of desulfurized slag washing waste liquid - Google Patents

Treatment of desulfurized slag washing waste liquid

Info

Publication number
JPS62152592A
JPS62152592A JP29631085A JP29631085A JPS62152592A JP S62152592 A JPS62152592 A JP S62152592A JP 29631085 A JP29631085 A JP 29631085A JP 29631085 A JP29631085 A JP 29631085A JP S62152592 A JPS62152592 A JP S62152592A
Authority
JP
Japan
Prior art keywords
waste liquid
iron ions
pump
liquid
washing waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29631085A
Other languages
Japanese (ja)
Inventor
Itaru Matsubara
松原 格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29631085A priority Critical patent/JPS62152592A/en
Publication of JPS62152592A publication Critical patent/JPS62152592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Compounds Of Iron (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To remove efficiently phosphorus component and iron component and purify waste water by utilizing efficiently washing waste liquid and pickling waste solution. CONSTITUTION:In a unit equipped with a desulfurized slag washing waste liquid tank, a pickling waste liquid tank 2, a primary reaction tank 3, a secondary reaction tank 4, a thickener 5, a solid-liquid separation unit 6 and an air diffusing tube 7, the waste liquid A is sent into a primary reaction tank 3 by a pump P1 and controlled to be weak acid less than pH6. The formation of insoluble iron phosphate is carried out by sucking air from the air diffusing tube 7 and agitating. A formed up iron phosphate is extracted by a pump P3. The mixed liquid after phosphorus component being removed is sent gradually into a secondary reaction tank 4 by a pump P4 to be up more than pH6. Bivalent iron ion is exchanged to trivalent iron ion by leading air in from the air diffusing pipe 7 and agitating, and settled Fe(OH)3 is extracted and removed by a pump P5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄鋼加工々程等から多量に副生する脱燐滓を
水洗して得られる廃液の処理法に関し、特にソーダ灰を
含む金属精錬用脱燐剤を用いることによって形成される
脱燐滓の水洗廃液を、鉄鋼材料の除錆工程等から生ずる
酸洗廃液によって無害化処理する方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating waste liquid obtained by washing with water dephosphorization slag, which is a large amount of by-product from steel processing, etc. The present invention relates to a method of detoxifying a washing waste liquid of dephosphorization slag formed by using a refining dephosphorizing agent using a pickling waste liquid generated from a rust removal process of steel materials.

[従来の技術] 鉄鋼製造における溶銑予備処理或は精錬工程で実施され
る脱燐処理法として、ソーダ灰を主成分とする脱燐剤を
用いる方法が実用化されている。
[Prior Art] A method using a dephosphorizing agent containing soda ash as a main component has been put into practical use as a dephosphorization treatment method carried out in the hot metal pretreatment or refining process in steel manufacturing.

この方法を実施することによって排出されてくる脱燐滓
中には未反応のソーダ灰がNa2 CO3やNa2Oの
形で多量台まれている他、相当量の燐が含まれている為
、そのまま高炉滓や転炉滓の様に路盤材やコンクリート
用骨材として利用すると、脱燐滓中に含まれるアルカリ
成分や燐が雨水等によって溶出することがある。その為
上記の様な脱燐滓については一旦水洗処理することによ
ってアルカリ成分及び燐成分を溶出除去した後で路盤材
等として利用されるが、このとき副生ずる水洗廃液中に
は多量のアルカリ成分及び燐か含まれている為、今度は
該水洗廃液の後処理が大変になる。
The dephosphorization slag discharged by this method contains a large amount of unreacted soda ash in the form of Na2CO3 and Na2O, and also contains a considerable amount of phosphorus, so it can be directly transferred to the blast furnace. When slag or converter slag is used as roadbed material or aggregate for concrete, the alkaline components and phosphorus contained in the dephosphorization slag may be leached out by rainwater, etc. For this reason, the dephosphorization slag described above is used as roadbed material, etc. after the alkaline and phosphorus components are eluted and removed by washing with water, but at this time, the washing waste liquid that is produced as a by-product contains a large amount of alkaline components. Since it contains phosphorus and phosphorus, post-treatment of the washing waste liquid becomes difficult.

−1鉄鋼材料の加工々程等では主に脱錆を目的として大
量の酸(塩酸や硫酸)が使用され、それに伴フて大量の
酸洗廃液が排出される。そこで酸洗廃液を可能な限り繰
返して使用し、排出液総量の増大を防いでおり、例えば
塩酸々洗では5〜15%程度の塩酸水溶液を繰り返し使
用しているが、反応生成物である鉄塩(FeC12)が
次第に蓄積してくる。そして酸洗液中のF e C12
?lA度が15〜20%になると酸洗機能を発揮し得な
くなる為酸洗廃液として排棄されるのであるが、該酸性
廃液中には大量の鉄分が含まれている他、未反応の酸も
多量台まれている為、そのままで排棄する訳には行かな
い。そこで従来は石灰等のアルカリで中和すると共に鉄
イオンを不溶性の水酸化第2鉄に変換して分離し、廃液
の浄化と鉄分の回収を図っている。
-1 In the processing of steel materials, large amounts of acids (hydrochloric acid and sulfuric acid) are used mainly for the purpose of removing rust, and as a result, large amounts of pickling waste liquid are discharged. Therefore, the pickling waste liquid is used repeatedly as much as possible to prevent the total amount of waste liquid from increasing. For example, in hydrochloric acid pickling, a 5-15% hydrochloric acid aqueous solution is repeatedly used, but the reaction product iron Salt (FeC12) gradually accumulates. and F e C12 in the pickling solution
? When the lA degree reaches 15 to 20%, the pickling function cannot be achieved and the acidic waste solution is disposed of as waste pickling solution.In addition to containing a large amount of iron, the acidic waste solution contains unreacted acid. Because there are so many of them, it is impossible to just throw them away. Therefore, in the past, the waste liquid was neutralized with an alkali such as lime, and the iron ions were converted into insoluble ferric hydroxide and separated to purify the waste liquid and recover the iron content.

[発明が解決しようとする問題点] 本発明は上記の様な公知技術のもとで、アルカリ性の脱
燐滓水洗廃液と酸性の酸洗廃液を相互に中和剤として活
用し無害化処理しようとするものであるが、車に両者を
混合して中和しただけでは無害化の目的を果たすことが
できない。即ち廃液を単に中和するだけであれば両者を
中和当量ずつ混合するだけでよいが、この様な方法では
、特に脱燐滓水洗廃液から混入してくる燐成分を除去す
ることができず、その結果中和処理液中に燐が豊栄養源
として大量に残留することとなり、公害の原因となる。
[Problems to be Solved by the Invention] Based on the above-mentioned known technology, the present invention aims to detoxify the alkaline dephosphorization slag washing waste liquid and the acidic pickling waste liquid by mutually utilizing them as neutralizing agents. However, simply mixing the two in a car and neutralizing it cannot achieve the purpose of making it harmless. In other words, if the waste liquid is simply neutralized, it is sufficient to mix the two in neutralizing equivalent amounts, but with this method, it is not possible to remove the phosphorus component that is mixed in, especially from the dephosphorization residue washing waste liquid. As a result, a large amount of phosphorus remains as a nutrient source in the neutralization solution, causing pollution.

本発明はこうした問題に着目してなされたものであって
、その目的は、脱燐滓水洗廃液の中和剤として酸洗廃液
を有効に活用するだけでなく、その詳細手順を検討し、
混合廃液中の鉄分はもとより燐成分についても効果的に
分離除去することのできる処理方法を提供しようとする
ものである。
The present invention has been made with attention to these problems, and its purpose is not only to effectively utilize pickling waste liquid as a neutralizing agent for dephosphorization slag washing waste liquid, but also to study the detailed procedure,
The present invention aims to provide a treatment method that can effectively separate and remove not only iron but also phosphorus components in mixed waste liquid.

[問題点を解決する為の手段] 本発明に係る処理方法の構成は、ソーダ灰を含む金属精
錬用脱燐剤を用いて得た脱燐滓の水洗廃液を、2価の鉄
イオンを含む鉄鋼酸洗廃液と混合し、pH6,0以下の
弱酸性領域下で酸化処理して2価の鉄イオンの一部を3
価の鉄イオンに変換すると共に、水洗廃液によって持ち
込まれた燐イオンを3価の鉄イオンと反応させ、3価の
鉄塩として析出除去し、次いで該処理液にアルカリ性成
分を加えてpH6以上としてから酸化処理し、残りの鉄
イオンを3価の鉄塩に変換して析出除去するところに要
旨を有するものである。
[Means for Solving the Problems] The structure of the treatment method according to the present invention is such that the waste water from washing the dephosphorization slag obtained using a dephosphorizing agent for metal refining containing soda ash is It is mixed with steel pickling waste liquid and oxidized in a weakly acidic region of pH 6.0 or less to remove some of the divalent iron ions.
In addition to converting into valent iron ions, phosphorus ions brought in by the washing waste liquid are reacted with trivalent iron ions to be precipitated and removed as trivalent iron salts, and then an alkaline component is added to the treatment liquid to adjust the pH to 6 or more. The gist is that the remaining iron ions are converted into trivalent iron salts and removed by precipitation.

[作用] 前述の如く脱燐滓水洗廃液中に含まれる主な有害成分は
Na、Co3やNa2O等のアルカリと燐であり、一方
酸洗廃液中の主な有害成分は2価の鉄塩(FeC12)
と未反応の酸である。従って該水洗廃液と酸浅廃液を中
和当量ずつ混合してやれば、廃液中性化の目的は達成さ
れる。しかもこの中和工程では、下記の反応により水酸
化第1鉄が生成するが、 Na20   +H20−=2NaOHHa2Co3+
H20−+2NaOH+CO,t FeC12+2NaOH−Fe (OH)2+2NaC
1 この中和処理液を酸化処理(酸素又は空気の吹込み等)
すると水酸化第1鉄が水に不溶性の水酸化第2鉄に変換
されて沈殿し、処理液から鉄分を除去することができる
。この様な鉄化合物の酸化反応は中性乃至アルカリ性雰
囲気下で効率良く進行することが確認されている。また
水酸化第1鉄と水酸化第2鉄の溶解度と水溶液pHとの
関係は第2図及び第3図に示す通りであり、水酸化第1
鉄は弱アルカリ性以下のpH領域でも高い溶解度を示す
のに対し、水酸化第2鉄の溶解度は中性乃至アルカリ性
のpH領域で殆んど茎である。従ってこうした水酸化鉄
の特性を考えれば、2価の鉄塩を中和処理後の酸化によ
り3価の鉄塩(ここでは水酸化第2鉄)に変換すること
によって、廃液からの鉄分除去を効率良く行なうことが
できる。ところがこの方法をそのまま適用したのでは、
脱燐滓水洗廃液から混入してくる燐成分については効率
の良い除去を果たすことができない。そこで上記中和及
び酸化処理工程で燐成分についても効率良く不溶物に変
換させるべく種々研究を重ねたところ、まず前記両廃液
を混合してpH6.0以下の弱酸性に調整し、これに空
気等を吹込んで酸化した後、pHを微弱酸性にまで高め
て再度空気吹込み等による酸化処理を行なえば、燐成分
についてもうまく不溶化せしめ得ることが分かった。こ
の様な結果が得られた理由は次の様に考えることができ
る。即ち水溶液中の燐は3価の鉄イオンと反応して不溶
性の鉄化合物(FePO4等)を生成するものと考えら
れ、3価の鉄イオンが相当量共存しない限り燐成分を沈
降分離することはできない。
[Function] As mentioned above, the main harmful components contained in the dephosphorization slag washing waste solution are alkalis such as Na, Co3 and Na2O, and phosphorus, while the main harmful components in the pickling waste solution are divalent iron salts ( FeC12)
and unreacted acid. Therefore, the purpose of neutralizing the waste liquid can be achieved by mixing the washing waste liquid and the acidic waste liquid in neutralizing equivalent amounts. Moreover, in this neutralization step, ferrous hydroxide is generated by the following reaction, Na20 +H20-=2NaOHHa2Co3+
H20-+2NaOH+CO,t FeC12+2NaOH-Fe (OH)2+2NaC
1 This neutralized solution is oxidized (by blowing oxygen or air, etc.)
Then, ferrous hydroxide is converted to water-insoluble ferric hydroxide and precipitated, making it possible to remove iron from the treatment liquid. It has been confirmed that such an oxidation reaction of iron compounds proceeds efficiently in a neutral or alkaline atmosphere. In addition, the relationship between the solubility of ferrous hydroxide and ferric hydroxide and the pH of the aqueous solution is shown in Figures 2 and 3.
Iron exhibits high solubility even in a pH range of slightly alkaline or lower, whereas the solubility of ferric hydroxide is almost constant in a neutral to alkaline pH range. Therefore, considering these characteristics of iron hydroxide, it is possible to remove iron from wastewater by converting divalent iron salt into trivalent iron salt (ferric hydroxide in this case) through oxidation after neutralization. It can be done efficiently. However, if this method is applied as is,
It is not possible to efficiently remove phosphorus components that come into the dephosphorization slag washing waste liquid. Therefore, various studies were conducted to efficiently convert the phosphorus component into insoluble substances in the above neutralization and oxidation treatment process. First, the two waste liquids were mixed and adjusted to a weakly acidic pH of 6.0 or less, and air was added to the mixture. It was found that the phosphorus component could also be successfully insolubilized by raising the pH to slightly acidic and performing the oxidation treatment again by blowing in air or the like. The reason why such a result was obtained can be considered as follows. In other words, it is thought that phosphorus in an aqueous solution reacts with trivalent iron ions to produce insoluble iron compounds (FePO4, etc.), and unless a considerable amount of trivalent iron ions coexists, it is impossible to separate the phosphorus component by sedimentation. Can not.

ところが両廃液混合物を中性乃至弱酸性雰囲気下で酸化
処理すると、酸化反応により生成する3価の鉄塩水酸化
物の溶解度が実質的に零である為生成後直ちに析出して
沈殿することとなり、3価の鉄イオンの状態で系中に存
在し得なくなる。その結果、系中の燐成分は3価の鉄イ
オンと反応し得なくなり、3価の燐酸鉄として不溶化す
ることができない。これに対し前記両廃液混合物をまず
p)I6、θ以下の弱酸性領域下で酸化処理して2価の
鉄イオンの一部を3価の鉄イオンに変換した場合、生成
するFe (OH)3は第3図にも示した様に若干の溶
解度を有しており、系中に3価の鉄イオンとして共存し
得る為、系中の燐成分は該3価の鉄イオンと反応して不
溶性の燐酸鉄として析出し、混合廃液から分離除去する
ことができる。但し弱酸性領域下でそのまま酸化処理を
進めるだけでは、酸化反応速度が遅い為3僅の鉄イオン
への変換に長時間を要するばかりでなく、仮に鉄イオン
の全てを3価に変換し得たとしても該イオンの一部が系
中に溶存したままで残る為、濾過等による鉄イオンの完
全除去が不可能となる。そこで本発明では、弱酸性領域
下で適当時間酸化処理を行ない、系中に存在する燐化合
物のすべてを3価の鉄イオンと反応させて析出除去した
後、該処理液にアルカリ性成分を加えpH6以上として
から再び空気又は酸素吹込み等によって酸化処iを行な
い、3価の鉄イオンへの変換を効率良く進行させると共
に、生成するFe(OH)3は直ちに析出させる様にし
ている。
However, when a mixture of both waste liquids is oxidized in a neutral to weakly acidic atmosphere, the solubility of the trivalent iron salt hydroxide produced by the oxidation reaction is essentially zero, so it precipitates immediately after it is produced. It can no longer exist in the system in the form of trivalent iron ions. As a result, the phosphorus component in the system cannot react with trivalent iron ions and cannot be insolubilized as trivalent iron phosphate. On the other hand, when the above-mentioned mixture of both waste liquids is first oxidized in a weakly acidic region below p)I6, θ to convert some of the divalent iron ions into trivalent iron ions, the Fe (OH) produced As shown in Figure 3, 3 has a slight solubility and can coexist in the system as trivalent iron ions, so the phosphorus component in the system reacts with the trivalent iron ions. It precipitates as insoluble iron phosphate and can be separated and removed from the mixed waste solution. However, if the oxidation treatment is simply carried out in a weakly acidic region, the oxidation reaction rate is slow, so not only does it take a long time to convert the iron ions into just 3 iron ions, but even if all the iron ions could be converted into trivalent iron ions, However, some of the ions remain dissolved in the system, making it impossible to completely remove the iron ions by filtration or the like. Therefore, in the present invention, oxidation treatment is performed in a weakly acidic region for an appropriate period of time to react with trivalent iron ions to precipitate and remove all of the phosphorus compounds present in the system, and then an alkaline component is added to the treatment solution to pH 6. After the above steps, oxidation treatment i is performed again by blowing air or oxygen, etc., so that the conversion to trivalent iron ions proceeds efficiently and the generated Fe(OH)3 is immediately precipitated.

即ち本発明では、(1)燐化合物が3価の鉄イオンと効
率良く反応して不溶性の燐酸鉄に変換する、(2)Fe
 (OH)3はpH6,0以下の弱酸性領域下で若干の
溶解性を有しており、燐化合物の不溶化を進めることが
できる、(3)6以上のpH領域下で酸化処理を行なう
と、系中の2価の鉄イオンを効率良く3価の鉄イオンに
変換することができ、該3価の鉄イオンは直ちに不溶性
のFe (OH)3どなって析出する、という3つの特
性を巧みに組合せることによって、脱燐滓水洗廃液と酸
洗廃液の混合液中の燐成分と鉄化合物を巧みに不溶化し
て分離することができる。尚高アルカリ性状態では空気
吹込みを省略した場合でもFe (OH)2の沈殿物が
容易に生成し固液分離を行なうことができる。しかし排
水のpHが高くなって中和のために酸の添加が必要とな
り、又若干残った排水中の2価の鉄イオンが酸化されて
赤濁する恐れがありこうした問題を回避する為には中性
域で空気吹込みを行なった方がよく、又F e (OH
)3の方が沈殿分離性がよく脱水性も良好である。
That is, in the present invention, (1) a phosphorus compound efficiently reacts with trivalent iron ions to convert it into insoluble iron phosphate; (2) Fe
(OH)3 has some solubility in a weakly acidic region of pH 6.0 or lower, and can promote insolubilization of phosphorus compounds. (3) When oxidized in a pH region of 6 or higher, , divalent iron ions in the system can be efficiently converted to trivalent iron ions, and the trivalent iron ions immediately precipitate as insoluble Fe(OH)3. By skillfully combining them, it is possible to skillfully insolubilize and separate the phosphorus components and iron compounds in the mixed solution of dephosphorization slag washing waste and pickling waste. In highly alkaline conditions, even if air blowing is omitted, Fe(OH)2 precipitates are easily formed and solid-liquid separation can be performed. However, the pH of the wastewater becomes high, making it necessary to add acid to neutralize it, and the remaining divalent iron ions in the wastewater may be oxidized and turn red, so there is no way to avoid these problems. It is better to blow air in the neutral range, and F e (OH
) 3 has better precipitation separation properties and better dehydration properties.

[実施例] 第1図は本発明の実施例を示す概略工程説明図であり、
図中1は脱燐滓水洗廃液槽、2は酸洗廃液槽、3は第1
反応槽、4は第2反応槽、5はシックナー、6は固液分
離装置、7は散気管、8は攪拌機、9はpHメータを夫
々示しており、廃液処理を連続的に実施し得る様に構成
した例を示している。即ち本発明を実施するに当たって
は、脱燐滓水洗廃液槽1に溜められた脱燐滓水洗廃液(
以下単に水洗廃液という)AをポンプP、により第1反
応槽3へ送り込むと共に、酸洗廃液槽2に溜められた酸
洗廃液BをポンプP2により同じく第1反応槽3へ送り
込む。該水洗廃液A及び酸洗廃?ri、Bは、第1反応
槽3内における混合廃液のpHが6.0以下の弱酸性(
好ましくはpH5〜6)となる様に、送給量をコントロ
ールする。この場合pHメータ8による測定結果とポン
プPI、P2の開・閉を電気的に連動させて各送給量を
自動釣にコントロールすることも勿論可能である。そし
て第1反応槽3では散気管7がら空気(或は他の酸化性
ガス)を吹込みつつ攪拌することにより、前述の如く■
水洗廃液・酸洗廃液相互の中和、■混合液中の2価の鉄
イオンの一部酸化、■生成した3価の鉄イオンと燐化合
物の反応による不溶性燐酸鉄の生成、の各反応が進めら
れ、生成した燐酸鉄はポンプP3により連続的若しくは
間欠的に抜き出される。
[Example] FIG. 1 is a schematic process diagram showing an example of the present invention,
In the figure, 1 is the dephosphorization slag washing waste tank, 2 is the pickling waste tank, and 3 is the first
A reaction tank, 4 is a second reaction tank, 5 is a thickener, 6 is a solid-liquid separator, 7 is an aeration pipe, 8 is a stirrer, and 9 is a pH meter, so that waste liquid treatment can be carried out continuously. An example of the configuration is shown below. That is, in carrying out the present invention, the dephosphorization slag washing waste liquid (
The pickling waste liquid B (hereinafter simply referred to as water washing waste liquid) is sent to the first reaction tank 3 by a pump P, and the pickling waste liquid B stored in the pickling waste liquid tank 2 is also sent to the first reaction tank 3 by a pump P2. Said washing waste liquid A and pickling waste? ri and B are weakly acidic (with a pH of 6.0 or less) of the mixed waste liquid in the first reaction tank 3.
The feed rate is controlled so that the pH is preferably 5 to 6). In this case, it is of course possible to electrically link the measurement result by the pH meter 8 with the opening/closing of the pumps PI and P2 to automatically control each feeding amount. Then, in the first reaction tank 3, by stirring while blowing air (or other oxidizing gas) through the aeration pipe 7, as mentioned above,
The following reactions occur: mutual neutralization of water washing waste liquid and pickling waste liquid; ■ partial oxidation of divalent iron ions in the mixed liquid; and ■ production of insoluble iron phosphate by reaction between generated trivalent iron ions and phosphorus compounds. The produced iron phosphate is continuously or intermittently extracted by pump P3.

尚水洗廃液中に含まれる燐化合物の量は、酸洗廃液B中
に含まれる鉄イオンに比べると非常に少なく、また燐を
鉄化合物として沈殿させるのに要する3価鉄は燐の化学
量論的当量の2〜3倍程度で十分であるから、上記酸化
反応においては2価の鉄イオンの一部を3価の鉄イオン
に変えるだけで、燐成分除去の目的は十分に達成される
。燐成分の除去された混合液はポンプP4によって順次
第2反応槽4へ送る。ここではアルカリ性成分Cを適量
追加することによってpHを6以上(好ましくは6〜8
)とし、散気管7がら空気(或は他の酸化性ガス)を吹
込みながら攪拌することにより、前記第1反応4i3で
酸化されなかった2価の鉄イオンを3価の鉄イオンに変
換する。生成する3価の鉄イオンはすみやかにFe(O
H)3となるが、該pH領域におけるFe (OH)3
の溶解度は実質的に零であるから直ちに析出し第2反応
槽4の底部へ沈下する。また第1反応4!3内で生成し
混合液中に溶解していた少量のFe(OH)3は、pi
(調整と同時に析出・沈下するので、結局混合液中の鉄
イオンのすべては不溶性のFe(OH)3として分離さ
れることになる。尚pH調整用のアルカリ性成分として
は苛性ソーダ等の工業薬品又は石灰乳等を使用すること
も可能であるが、最も合理的なのはそれらと共に若干量
の水洗廃液を使用する方法である。
The amount of phosphorus compounds contained in the water washing waste liquid is very small compared to the iron ions contained in the pickling waste liquid B, and the trivalent iron required to precipitate phosphorus as an iron compound is within the stoichiometry of phosphorus. Since about 2 to 3 times the target equivalent is sufficient, the purpose of removing the phosphorus component can be sufficiently achieved by simply converting some of the divalent iron ions into trivalent iron ions in the above oxidation reaction. The mixed liquid from which the phosphorus component has been removed is sequentially sent to the second reaction tank 4 by a pump P4. Here, by adding an appropriate amount of alkaline component C, the pH is adjusted to 6 or more (preferably 6 to 8).
), and by stirring while blowing air (or other oxidizing gas) through the aeration pipe 7, divalent iron ions that were not oxidized in the first reaction 4i3 are converted to trivalent iron ions. . The trivalent iron ions that are generated quickly become Fe(O
H)3, but Fe(OH)3 in the pH range
Since its solubility is substantially zero, it immediately precipitates and sinks to the bottom of the second reaction tank 4. In addition, a small amount of Fe(OH)3 generated in the first reaction 4!3 and dissolved in the mixed liquid is
(Because they precipitate and settle at the same time as the adjustment, all of the iron ions in the mixture will eventually be separated as insoluble Fe(OH)3. As an alkaline component for pH adjustment, industrial chemicals such as caustic soda or It is also possible to use milk of lime, etc., but the most rational method is to use a small amount of washing waste liquid together with them.

沈降したFe (OH)、はポンプP、によって連続的
若しくは間欠的に抜き出し、液槽はポンプP6により連
続的にシックナー5へ送給して、液と共に巻き込まれて
きた不溶物を沈降分離する。
The precipitated Fe (OH) is continuously or intermittently extracted by a pump P, and the liquid tank is continuously fed to the thickener 5 by a pump P6, so that the insoluble matter drawn in with the liquid is separated by sedimentation.

そして沈降物はポンプP7から連続的若しくは間欠的に
抜き出す一方、清浄化された上澄液はポンプP8によっ
て抜き出し、放流若しくは工業用水等として再利用され
る。
The sediment is continuously or intermittently extracted from the pump P7, while the purified supernatant liquid is extracted from the pump P8 and reused as discharged water or industrial water.

尚上記図例ではシックナー5により不溶物の最終除去を
行なう様にしているが、これに代えてポンプP6からの
抜き出しラインにカートリッジフィルター等の濾過装置
を設けて不溶物を除去することもできる。
In the above-described example, the final removal of insoluble matter is performed by the thickener 5, but instead of this, a filtration device such as a cartridge filter may be provided in the extraction line from the pump P6 to remove the insoluble matter.

ポンプP3+PS+  P7より抜き出されたスラリー
は固液分離装置6に送り、固形物はケーキ状物等として
取り出す一方、液槽はシックナー5へ送って処理される
。尚特にポンプP3から抜き出されるスラリー中には肥
料或は土壌改良剤等として有効な燐成分が多量含まれて
いるので、固液分離後ペレット状等に成形して有効利用
することもてきる。この場合石灰や苦土石灰等を混入す
ることによって肥効を高めて2吹製品とすることも有効
である。尚生成した燐酸塩はFe (OH)3の沈殿物
とともに共沈するので最終排水系の燐濃度を上昇させる
ことはない。又第2反応槽にシックナー5の上澄液や工
業用水を注入して処理水を希釈することも考えられ、希
釈することによって第2反応槽での固液分離性およびシ
ャフナ−での沈降分離性を更に向上させることができる
The slurry extracted from the pump P3+PS+P7 is sent to the solid-liquid separator 6, and the solid matter is taken out as a cake-like substance, while the liquid tank is sent to the thickener 5 for treatment. In particular, the slurry extracted from the pump P3 contains a large amount of phosphorus, which is effective as a fertilizer or soil conditioner, so it can be effectively used by forming it into pellets after solid-liquid separation. . In this case, it is also effective to increase the fertilizing effect by mixing lime, magnesia lime, etc. to make a two-pour product. Since the generated phosphate co-precipitates with the Fe(OH)3 precipitate, it does not increase the phosphorus concentration in the final drainage system. It is also possible to dilute the treated water by injecting the supernatant liquid of the thickener 5 or industrial water into the second reaction tank, and by diluting it, solid-liquid separation in the second reaction tank and sedimentation separation in the shaffner can be improved. can further improve performance.

上記では第1及び第2反応槽を直列に接続して廃液処理
を連続的に行ない得る様に構成したが、1基の反応槽を
用いてバッチ処理を行なうことも勿論可能である。また
反応4!3.4や散気管7等の形状等についても前述の
趣旨に適合し得る範囲で任意に変更することができ、そ
れらは何れも本発明の技術的範囲に含まれる。
In the above description, the first and second reaction tanks are connected in series so that waste liquid treatment can be performed continuously, but it is of course possible to perform batch processing using one reaction tank. Further, the shape of the reaction 4!3.4, the diffuser tube 7, etc. can be arbitrarily changed within the range that can comply with the above-mentioned purpose, and all of these are included in the technical scope of the present invention.

[発明の効果] 本発明は以上の様に構成されており、水洗廃液と酸洗廃
液を有効に活用しつつ、燐成分及び鉄分の除去を効率良
〈実施することができ、廃液の有効利用と廃水の清浄化
、更には燐成分や鉄分の2次責源としての再利用をも可
能にする等、多くの利益を享受することができる。
[Effects of the Invention] The present invention is configured as described above, and while effectively utilizing the washing waste liquid and the pickling waste liquid, it is possible to efficiently remove the phosphorus component and the iron content, thereby making effective use of the waste liquid. Many benefits can be enjoyed, such as the purification of wastewater and the reuse of phosphorus and iron as secondary sources.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略工程説明図、第2.
3図はFe (OH)2及びFe(OH)3の溶解度と
pl(の関係を示すグラフである。 A・・・水洗廃液    B・・・酸洗廃液C・・・ア
ルカリ性成分
FIG. 1 is a schematic process explanatory diagram showing an embodiment of the present invention, and FIG.
Figure 3 is a graph showing the relationship between the solubility of Fe(OH)2 and Fe(OH)3 and pl. A... Water washing waste liquid B... Pickling waste liquid C... Alkaline component

Claims (1)

【特許請求の範囲】[Claims] ソーダ灰を含む金属精錬用脱燐剤を用いて得た脱燐滓の
水洗廃液を、2価の鉄イオンを含む鉄鋼酸洗廃液と混合
し、pH6.0以下の弱酸性領域下で酸化処理して2価
の鉄イオンの一部を3価の鉄イオンに変換すると共に、
水洗廃液によって持ち込まれた燐イオンを3価の鉄イオ
ンと反応させ、3価の鉄塩として析出除去し、次いで該
処理液にアルカリ性成分を加えてpH6以上としてから
酸化処理し、残りの鉄イオンを3価の鉄塩に変換して析
出除去することを特徴とする脱燐滓水洗廃液の処理方法
Water washing waste of dephosphorization slag obtained using a dephosphorizing agent for metal refining containing soda ash is mixed with steel pickling waste containing divalent iron ions, and oxidation treatment is performed in a weakly acidic region with a pH of 6.0 or less. to convert some of the divalent iron ions into trivalent iron ions,
Phosphorous ions brought in by the washing waste liquid are reacted with trivalent iron ions, precipitated and removed as trivalent iron salts, and then an alkaline component is added to the treatment liquid to adjust the pH to 6 or more, and then oxidized, and the remaining iron ions are removed. 1. A method for treating dephosphorization slag washing waste, characterized by converting it into a trivalent iron salt and removing it by precipitation.
JP29631085A 1985-12-25 1985-12-25 Treatment of desulfurized slag washing waste liquid Pending JPS62152592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29631085A JPS62152592A (en) 1985-12-25 1985-12-25 Treatment of desulfurized slag washing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29631085A JPS62152592A (en) 1985-12-25 1985-12-25 Treatment of desulfurized slag washing waste liquid

Publications (1)

Publication Number Publication Date
JPS62152592A true JPS62152592A (en) 1987-07-07

Family

ID=17831890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29631085A Pending JPS62152592A (en) 1985-12-25 1985-12-25 Treatment of desulfurized slag washing waste liquid

Country Status (1)

Country Link
JP (1) JPS62152592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164725A (en) * 1988-12-17 1990-06-25 Kemiraito Kogyo Kk Production of iron oxide powder
JP2012086161A (en) * 2010-10-20 2012-05-10 Nalco Japan Kk Bubbling device and method of treating blast furnace or converter dust collecting water using the same
CN110304617A (en) * 2019-08-01 2019-10-08 湖北昊瑞新能源有限公司 A kind of preparation method of low cost ferric orthophosphate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164725A (en) * 1988-12-17 1990-06-25 Kemiraito Kogyo Kk Production of iron oxide powder
JP2012086161A (en) * 2010-10-20 2012-05-10 Nalco Japan Kk Bubbling device and method of treating blast furnace or converter dust collecting water using the same
CN110304617A (en) * 2019-08-01 2019-10-08 湖北昊瑞新能源有限公司 A kind of preparation method of low cost ferric orthophosphate

Similar Documents

Publication Publication Date Title
CN106007046B (en) A kind of desulfurization wastewater hardness ions recycling pretreating process
US5820966A (en) Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
RU2238246C2 (en) Method for reducing of dissolved metal and non-metal concentration in aqueous solution
CN102358648A (en) Technology for recycling of sludge obtained after neutralizing treatment of steel and iron pickling wastewater and recycling ferroferric oxide
CZ203297A3 (en) Process for treating sludge of sewage or waste water treating plants
CN113149263B (en) Method for treating acidic wastewater by resource utilization of sodium-based desulfurized fly ash
CN115784408A (en) Method for removing phosphorus, fluorine and heavy metals in wastewater by using modified seed crystal for induced crystallization
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
JP2001130903A (en) Method for recovering phosphate salt
JPS62152592A (en) Treatment of desulfurized slag washing waste liquid
JPS5952583A (en) Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
CN111217477A (en) Method for treating wastewater from phosphorus trichloride production
JP2002177966A (en) Dephosphorizing agent and dephosphorization method as well as dewatering treatment method for sludge
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
JP2000342960A (en) Dephosphorization agent and manufacture of the same
CA2973460C (en) Chromium-containing water treatment method
US4035293A (en) Process for treating an acidic waste water stream
JPS6046930A (en) Improved method for treating heavy oil ash
JP2004330039A (en) Recovery method of phosphorus and coagulant
KR0157198B1 (en) Two-stage treatment process of phosphoric acid and fluoric acid wastewater by sludge recycle
CN210313961U (en) Purification device for synchronously treating ammonium salt wastewater and phosphate wastewater
CN117427616B (en) Dephosphorization agent and preparation method thereof
CN117772763B (en) Method for separating and recovering arsenic, phosphorus and aluminum from vanadium-phosphorus-containing arsenic slag