JPS5952583A - Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria - Google Patents

Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria

Info

Publication number
JPS5952583A
JPS5952583A JP16289782A JP16289782A JPS5952583A JP S5952583 A JPS5952583 A JP S5952583A JP 16289782 A JP16289782 A JP 16289782A JP 16289782 A JP16289782 A JP 16289782A JP S5952583 A JPS5952583 A JP S5952583A
Authority
JP
Japan
Prior art keywords
iron
arsenic
liquid
oxidizing bacteria
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16289782A
Other languages
Japanese (ja)
Other versions
JPS6220868B2 (en
Inventor
Hiromi Magota
孫田 裕美
Juichi Shiratori
白鳥 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP16289782A priority Critical patent/JPS5952583A/en
Publication of JPS5952583A publication Critical patent/JPS5952583A/en
Publication of JPS6220868B2 publication Critical patent/JPS6220868B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently remove and recover arsenic, by effectively treating an aqueous soluion containing at least arsenic and iron using iron-oxidizing bacteria. CONSTITUTION:In the first step, an aqueous solution containing at least arsenic and ferrous ion above an amount equivalent to that of said arsenic is neutralized to a pH of 2.0-2.8 and then separated into a liquid and solid matter. The liquid is sent to the second step. In the second step, arsenic in the liquid sent from the first step is reacted with ferric ion returned from the third step undermentioned, to precipitate it as ferric arsenide. In the third step, the liquid after being dearsenided is introduced into an oxidizing tank, where ferrous ion in the liquid is oxidized into ferric ion by iron-oxidizing bacteria. The resulting liquid is returned to said second step. The iron-oxidizing bacteria in the third step are circulated together with the precipitate formed in the third step to the oxidizing tank for its reuse. A part of the liquid after being oxidized is returned to the second step, while the remainder is used for recovering the precipitate.

Description

【発明の詳細な説明】 本発明は少なくとも砒素と鉄を含有する水溶液、例えば
湿式製錬工程で生成する重金属含有水等を鉄酸化バクテ
リアを用いて効果的に処理する方法に関するも・のであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively treating an aqueous solution containing at least arsenic and iron, such as heavy metal-containing water produced in a hydrometallurgical smelting process, using iron-oxidizing bacteria.

一般に非鉄金属鉱物中には採取対象金属以外に砒素やカ
ドミウム等の有害物質が混在し、これが製錬工程で種々
の障害を生じたり、製品や副製品に混入して品位の低下
を来たす因となっている。
In general, non-ferrous metal minerals contain toxic substances such as arsenic and cadmium in addition to the metals to be extracted, and these can cause various problems in the smelting process or be mixed into products and by-products, causing a decline in quality. It has become.

特に砒素は原料の精鉱を溶錬炉で溶解する過程で揮発し
、煙灰中に濃縮する。近年、へ次熔錬炉として自″熔炉
などが採用されるのに伴ない、その〃ト出ガス中のSO
2濃度が高いのでそのまま硫酸原料とされることから、
煙道で沈降しない砒素は硫酸工程で廃硫酸中に補数され
るので、これに水硫化ソーダ等を加えてAetSsとし
て沈降除去する方法が知られている。また、その他の方
法として硫酸酸性液中で砒素を硫酸第2鉄のようなFe
3+イオンと共沈させる方法や、特開昭弘ター207j
2号公報のようにAs3+を過酸化水素等−め゛酸化剤
を用いてAs5+に酸化した後、アルカリ液中で水酸化
カルシウム等の水酸化物で共沈除去する方法もある。
In particular, arsenic is volatilized during the process of melting raw material concentrate in a smelting furnace and concentrated in smoke. In recent years, as automatic smelting furnaces have been adopted as hexagonal smelting furnaces, SO
2 Because the concentration is high, it can be used as a raw material for sulfuric acid,
Since arsenic that does not settle in the flue is complemented in waste sulfuric acid in the sulfuric acid process, a method is known in which sodium hydrogen sulfide or the like is added to this to precipitate and remove it as AetSs. In addition, as another method, arsenic can be mixed with Fe such as ferric sulfate in a sulfuric acid solution.
How to coprecipitate with 3+ ions and JP-A Akihiroter 207j
There is also a method, as disclosed in Publication No. 2, in which As3+ is oxidized to As5+ using an oxidizing agent such as hydrogen peroxide, and then removed by coprecipitation with a hydroxide such as calcium hydroxide in an alkaline solution.

しかしながら、これらの方法はいずれも砒素の除去に多
量の試薬を使用しなければならず、特に高濃度の砒素を
含有する場合には処理を二段で行なう等の操作が必要と
なり、それだけ試薬量や生成沈殿物が増加してコストの
増大を招いていた。
However, all of these methods require the use of a large amount of reagent to remove arsenic, and in cases where arsenic is particularly concentrated, operations such as two-step processing are required, which increases the amount of reagent required. This resulted in an increase in the amount of sediment and precipitate produced, leading to increased costs.

本発明者等は湿式煙灰処理工場等の湿式製錬工程で生成
される硫酸酸性溶液中には高濃度の砒素のほか、多量の
Fe2+イオンが含有されていることに着目し、鉄酸化
バクテリアを使用してこのFez+をFe3+に酸化さ
せた後、このFe3+と砒素(Aθ3+)とを反応させ
て除去する効果的かつ低コストな方法を見出した。
The present inventors focused on the fact that the sulfuric acid acidic solution produced in the hydrometallurgical process of wet smoke ash processing factories, etc. contains not only a high concentration of arsenic but also a large amount of Fe2+ ions. We have found an effective and low-cost method to oxidize this Fez+ to Fe3+ and then react and remove this Fe3+ with arsenic (Aθ3+).

Fe2+をFe3+に酸化処理する方法としては、従来
MnO2,KMnO+  、C12等の酸化剤を添加す
る方法や高温、高圧、高pHの条件で酸素を吹込んで酸
化沈殿せしめる方法などが知られているが、いずれも薬
品やエネルギー消費も大でコスト高である。
Conventionally known methods for oxidizing Fe2+ to Fe3+ include adding oxidizing agents such as MnO2, KMnO+, C12, etc., and methods of oxidizing and precipitating by blowing oxygen under conditions of high temperature, high pressure, and high pH. Both require large amounts of chemicals and energy, and are expensive.

また、鉄酸化バクテリアを使用してFe2+をFe3+
に酸化するものとして本出願人の提案に係る特公昭17
7−31rり11号公報等があるが、これらはもっばら
坑内排水の処理に利用され、高Fe2+濃度のしかも砒
素を多量に含有する製錬工程生成液は該バクテリアの使
用に適さないものとされていた。
In addition, Fe2+ can be converted to Fe3+ using iron-oxidizing bacteria.
Japanese Patent Publication No. 17, 1987, proposed by the applicant as a substance that oxidizes to
7-31r, No. 11, etc., but these are mainly used to treat underground drainage, and the liquid produced in the smelting process, which has a high Fe2+ concentration and also contains a large amount of arsenic, is not suitable for use by the bacteria. It had been.

本発明はこの鉄酸化バクテリアを使用して該製錬工程液
等から効率良く砒素を除去回収することができる方法を
提供するもので、以下本発明法を添付図面の70−シー
トを参照しながら詳述する。
The present invention provides a method for efficiently removing and recovering arsenic from the smelting process liquid using iron-oxidizing bacteria. Explain in detail.

まず、製錬工程生成液等少なくとも砒素(As”)と砒
素の当量以上のFe2+イオンを含む被処理液に炭酸カ
ルシウム等の中和剤を添加してpHを2.0〜2.1に
調整して反応させ、これを固液分離94   を行ない
、生成する石膏等の沈殿物は分離回収し、液は脱砒槽に
送る。
First, a neutralizing agent such as calcium carbonate is added to the liquid to be treated, such as the liquid produced in the smelting process, which contains at least arsenic (As'') and Fe2+ ions in an amount equal to or more than the equivalent of arsenic, and the pH is adjusted to 2.0 to 2.1. This is subjected to solid-liquid separation 94, and precipitates such as gypsum are separated and recovered, and the liquid is sent to a de-arsenization tank.

脱砒槽には後記する酸化槽で酸化されたFe3+イオン
が戻され、砒素と次式の反応が行なわれる。
Fe3+ ions oxidized in the oxidation tank described later are returned to the arsenization tank, and a reaction with arsenic according to the following formula takes place.

As033−+ 2Fe”+ H2O→As0X−+。As033-+ 2Fe"+ H2O→As0X-+.

2Fe  +、2H・・・・・・・・・(1)ABO3
+Fe”+−+FeAe04  ・・a、、* −−−
(2)これにより、白色のFeAeO+  (砒酸鉄)
の沈殿を生じ、この反応は瞬時に起るため、数分の攪拌
だけで反応は終了する。この場合、F e”/ A s
=/程度でり0%以上の砒素を沈殿分離することができ
る。
2Fe +, 2H・・・・・・(1) ABO3
+Fe"+-+FeAe04 ・・a,,* ---
(2) This produces white FeAeO+ (iron arsenate)
Since this reaction occurs instantaneously, the reaction is completed after only a few minutes of stirring. In this case, F e”/A s
0% or more of arsenic can be separated by precipitation.

第7表は、脱砒槽へ送られる原液の中和抜液のpHと砒
素除去率との関係を示したもので、上記の通り中和時の
pHは2.0〜2.rの範囲が最適であ・ることか判る
。なお、脱砒前のAe濃度番ま≠、6 t/lの液を′
使用した。
Table 7 shows the relationship between the pH of the neutralized liquid sent to the arsenization tank and the arsenic removal rate.As mentioned above, the pH during neutralization is between 2.0 and 2.0. It can be seen that the range of r is optimal. In addition, the Ae concentration before de-arsenization is ≠ 6 t/l.
used.

第  /  表 脱砒槽で生成される砒酸鉄は不純物が少なく、砒素も充
分濃縮されているのでミ亜砒酸の原料として利用でき、
この砒素穀物の沈降分離を行ない、唐量の未反応のFe
2+イオンを含む脱砒復液は酸化槽に送られて鉄酸化バ
クテリアによりFe3+に酸化処理を行なう。該酸化槽
には鉄酸化バクテリア(Ferrobacillus 
Ferrooxldans + Th1obaci11
ue Ferrooxidance等)が存在しており
一更心こ菌体保持のためキャリヤ剤として珪藻上等の酸
性多孔物質を加えておく。また、必要によりバクテリア
の増殖を図るためN、P、に等の栄養源、例えば(NH
4)2CO3、(NH,4)2804  、 K(、t
、 K2H1)04 t KH2PO4* Mg5Ot
・7H20、Ca(NO3)2等を添加する。なお、被
処理原水中に8.S、、 F 、 ct+ Zn 、H
g + Ag等のバクテリアの阻害元素が含まれている
ときは、あらかじめ前処理で除去しておくのが望ましく
、また例えばθ、8.は製錬工程でセトラー等により除
去し、Fは200 p p m、Ctは10(7ppm
、Znは20 ?lt位までバクテリアが生育すること
がビーカーテストで確認されたので、それ以上の濃度の
場合には希釈による方法であってもよい。
The iron arsenate produced in the arsenic removal tank has few impurities and is sufficiently concentrated in arsenic, so it can be used as a raw material for arsenite.
This arsenic grain is subjected to sedimentation separation, and a significant amount of unreacted Fe is recovered.
The dearsenization condensate containing 2+ ions is sent to an oxidation tank where it is oxidized to Fe3+ by iron-oxidizing bacteria. The oxidation tank contains iron oxidizing bacteria (Ferrobacillus).
Ferrooxldans + Th1obac11
ferrooxidance, etc.), and an acidic porous material such as diatoms is added as a carrier agent to maintain the bacterial cells. In addition, if necessary, nutrients such as N, P, etc., for example (NH
4) 2CO3, (NH,4)2804, K(,t
, K2H1)04t KH2PO4* Mg5Ot
- Add 7H20, Ca(NO3)2, etc. In addition, 8. S,, F, ct+ Zn, H
When bacteria-inhibiting elements such as g + Ag are included, it is desirable to remove them in advance through pretreatment. is removed by a settler etc. in the smelting process, F is 200 ppm, Ct is 10 (7 ppm
, Zn is 20? Since it has been confirmed in a beaker test that bacteria grow up to about 100 ml, a dilution method may be used if the concentration is higher than that.

次に、上記酸化処理後液の固液分離を行ない、バクテリ
アを担持する珪藻土等を含む沈殿物の一部又は全部を前
記酸化槽に繰返してFe”+→Fe3+への酸化に再使
用し、Fe3+に酸化された液の必要量は前記脱砒槽に
戻されて前述の脱砒反応に用いられ、残余の液は次工程
の鉄中和種に送られる。
Next, the liquid after the oxidation treatment is subjected to solid-liquid separation, and part or all of the precipitate containing diatomaceous earth carrying bacteria is repeatedly returned to the oxidation tank and reused for oxidation from Fe"+ to Fe3+, The required amount of the liquid oxidized to Fe3+ is returned to the dearsenization tank and used for the above-mentioned dearsenization reaction, and the remaining liquid is sent to the next step of iron neutralization.

酸化後の固液分離後液の大部分は鉄中和種でCaO、C
aCO5= Ca(OH)2 等のCa塩や水酸化ナト
リウム、炭酸ナトリウム、水酸化アンモニウム、水酸化
マグネシウム等のアルカリ剤が添加され、生成される水
酸化鉄、ゲーサイト等の鉄殿物が固液分離回収される。
Most of the liquid after solid-liquid separation after oxidation is iron-neutralized species, including CaO and C.
aCO5 = Ca salts such as Ca(OH)2 and alkaline agents such as sodium hydroxide, sodium carbonate, ammonium hydroxide, and magnesium hydroxide are added, and iron precipitates such as iron hydroxide and goethite are solidified. The liquid is separated and collected.

本発明法によれば、上記の如く被処理液中に多量に存す
るFez+イオンを鉄酸化バクテリアにより酸化して砒
素の除去に効果的に使用するもので、該バクテリアも繰
返し使用され、従来のようにFez+の酸化に特別試薬
を添加する必要がないので非常に経済的である。また、
バクテリア酸化後の残余の液に対しては中和剤を少量添
加することによりFe分も高収率で回収することができ
る。
According to the method of the present invention, as described above, the large amount of Fez+ ions present in the liquid to be treated are oxidized by iron-oxidizing bacteria and used effectively to remove arsenic. It is very economical because there is no need to add special reagents for the oxidation of Fez+. Also,
By adding a small amount of a neutralizing agent to the remaining liquid after bacterial oxidation, the Fe content can also be recovered at a high yield.

実施例/ 被処理原液はA製錬所の湿式煙灰処理工場からの脱銅復
液であり、その組成は第2表の通りである0 第  λ  表 この原液を2200m1/分の流量で中和槽に導いてj
%Ca COs溶液をII 00 nte 7分で添加
し、pHを2.乙に調整して反応させた後、シックナー
で沈殿生成した石膏とオーバーフロー水(流量/≠00
me/分)とに分離した。オーツ(−70−水の組成を
第3表に示す。
Example/ The raw solution to be treated is decopper-removed condensate from the wet smoke ash treatment plant of smelter A, and its composition is shown in Table 2. Lead me to the tank
% Ca COs solution was added at II 00 nte 7 min and the pH was adjusted to 2. After adjusting and reacting, mix the gypsum precipitated with the thickener and the overflow water (flow rate/≠00
me/min). The composition of oats (-70-water) is shown in Table 3.

第  3  表 次に、該オーバーフロー水を脱砒槽に送入してバクテリ
ア酸化槽からの硫酸第2鉄溶液(流量60θml1分)
と反応させ、シックナーで砒酸鉄の沈殿物とオーバーフ
ロー水(流量2000m1j1分)とに分離した。この
沈殿物と脱砒オーツく−フロー水の組成を第弘表に示す
Table 3 Next, the overflow water is sent to the dearsenization tank and the ferric sulfate solution (flow rate 60θml 1 minute) from the bacterial oxidation tank is
The mixture was separated into iron arsenate precipitate and overflow water (flow rate: 2000ml/min) using a thickener. The compositions of this precipitate and the dearsenized oat flow water are shown in Table 1.

第  弘  表 脱砒後のオーバーフロー水は鉄酸化バクテリア(槽内バ
ルブ濃度IJ−%)とキャリヤ剤として珪藻土(槽内濃
度!rOrny/l)ならびに栄養剤としてリン酸アン
モニウム(槽内濃度j OtnI−/ l )を添加し
である酸化槽に導いて酸化処理を行ない、酸化復液は固
液分離を行なった後、その液の一部を脱砒槽に返送し、
沈殿物は酸化槽に繰返した。
The overflow water after dearsenization contains iron oxidizing bacteria (valve concentration in the tank IJ-%), diatomaceous earth as a carrier agent (concentration in the tank!rOrny/l), and ammonium phosphate as a nutrient (concentration in the tank J OtnI- /l) is added and led to an oxidation tank for oxidation treatment, and after solid-liquid separation of the oxidized condensate liquid, a part of the liquid is returned to the de-arsenization tank.
The precipitate was returned to the oxidation tank.

これにより、第弘表からも判るように、高濃度砒素含有
液中のり9%近くもの砒素が除去された。
As a result, nearly 9% of the arsenic in the highly concentrated arsenic-containing liquid was removed, as can be seen from Table 1.

実施例コ 被処理原液は実施例/と同じ湿式煙灰処理工場の脱銅復
液であり、その組成は第5表に示す通りである。
The stock solution to be treated in Example 1 is a decopper-removed condensate from the same wet smoke ash treatment plant as in Example 1, and its composition is as shown in Table 5.

この原液(流量2200me1分)に夕%Ca CO3
溶液(≠00m1/分)を添加してpHを!、2となる
よう自動調整した中和復液は石膏とオーバーフロー水(
/l100ml/分)とに固液分離し、オーバーフロー
水は脱砒槽に送って酸化槽からのFe3+イオンと反応
させた。中和後のオーバーフロー水の組成は第6表の通
りである。
Add %CaCO3 to this stock solution (flow rate 2200me 1 minute).
Add solution (≠00ml/min) to adjust the pH! The neutralized condensate, which was automatically adjusted to , 2, is mixed with gypsum and overflow water (
The overflow water was sent to a de-arsenization tank and reacted with Fe3+ ions from the oxidation tank. The composition of the overflow water after neutralization is shown in Table 6.

また、脱砒槽からの砒酸鉄の沈殿と脱砒移液の組成を第
7表に示す。
Further, Table 7 shows the precipitation of iron arsenate from the arsenic removal tank and the composition of the arsenic removal liquid.

以下余白 この脱砒移液を実施例/と同じく鉄酸化ハタテリアが存
在する珪藻上とリン酸アンモニウムを添り口した酸化槽
に導いて酸化処理を行なった。酸化復液はシックナーで
沈殿物とオーバーフロー水とに分離し、沈殿物の一部は
酸化槽に返送し、余剰殿iは系外に抜出した。またオー
バーフロー水(1)一部は脱砒槽に戻して砒素との反応
に使用し、残りは鉄中和種に送った。バクテリア酸化後
のオーバーフロー水の組成は第g表の通りである。
Hereinafter, as in Example 1, this dearsenized liquid was introduced into an oxidation tank in which ammonium phosphate was sprinkled over a diatom surface containing iron oxidizing grouperia, and oxidation treatment was carried out. The oxidized condensate was separated into precipitate and overflow water using a thickener, a portion of the precipitate was returned to the oxidation tank, and excess precipitate i was extracted from the system. A portion of the overflow water (1) was returned to the arsenic removal tank and used for reaction with arsenic, and the rest was sent to iron neutralization. The composition of the overflow water after bacterial oxidation is shown in Table g.

鉄中和種では消石灰液が添加され、反応後沈殿物とオー
バーフロー水とに分離した。沈殿物は水酸化鉄主体の鉄
殿物であり、該沈殿物とオーバーフロー水の組成を第り
表に示す。
In the iron-neutralized species, slaked lime solution was added, and after the reaction, the mixture was separated into precipitate and overflow water. The precipitate is an iron precipitate mainly composed of iron hydroxide, and the composition of the precipitate and overflow water is shown in Table 1.

は約り乙%、Feはタタ、り%の除去率を示し、従来法
に比して高効率でしかも経済的に砒素を除去することが
できるのである。
It shows a removal rate of about 1%, and a removal rate of 2% for Fe, making it possible to remove arsenic more efficiently and economically than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明法の実施例のフローシートである。 特許出願人  同和鉱業株式会社 手  続  補  正  書(自発 )昭和5$「4ら
罰18日 特許庁長官 若杉和夫 殿 1、事件の表示 特願昭57−762g77号 2、発明の名称 鉄酸化バクテリアを使用する砒素と鉄を含有する水溶液
の処理法 a 補正をする者 事件との関係  特許出願人 氏名(名称)  同和鉱業株式会社 4、代理人 G 補正の内容 (1)明細書筒2頁//行目に「例えば湿式製錬工程」
とあるを「例えば製錬二「程」と補正する。 (2)明細書筒≠頁λ行目のl−’ (A e”) j
  を削除する。 (3)明細書第7頁乙行l」に「高■)11の条件で酸
素を吹込」とあるをU−高p I−1の条件で空気を吹
込−Jと補正する。 (4)明細書筒j頁/行目のI−(As”)Jを削除す
る。 (5)明細書筒7頁/〜2行ト1に1=酸性多孔物質J
とあるを「耐酸性多孔物質」と補正する。 (6)明細書第7頁70〜//行目に11・゛は200
 p ’pm、CAは/ 00 p p m Jとある
を1Fは/ 00 Dpm、C1は10θOp p m
Jと補正する。 (7)明細書第7頁の12表中に「As3+Jとあるを
1A日」と、同頁第3表中にI−A33F」とあるをf
−AeJとそれぞれ補正する。 以1
The figure is a flow sheet of an embodiment of the method of the present invention. Patent Applicant Dowa Mining Co., Ltd. Procedural Amendment (Voluntary) 1937 $4.18 Patent Office Commissioner Kazuo Wakasugi 1, Indication of the Case Patent Application No. 77-778-77 2, Name of the Invention: Iron-Oxidizing Bacteria Process for treating aqueous solutions containing arsenic and iron using a / line "For example, hydrometallurgical smelting process"
Correct the statement to ``For example, smelting 2nd degree''. (2) Specification tube ≠ page λth line l-' (A e”) j
Delete. (3) In page 7, line O of the specification, "Oxygen is blown under the conditions of 11" in "High ■) Oxygen is blown under the conditions of 11" is corrected to ``Blow air under the conditions of U-high p I-1 -J''. (4) Delete I-(As”)J on page j/line of specification tube. (5) 1 = acidic porous material J on page 7/~2 lines of specification tube
Correct the statement to read "acid-resistant porous material." (6) 11・゛ is 200 on page 7, line 70 to // of the specification.
p 'pm, CA is / 00 p p m J, 1F is / 00 Dpm, C1 is 10θOp p m
Correct with J. (7) In Table 12 on page 7 of the specification, it says "As3+J and 1A day" and in Table 3 on the same page, it says "I-A33F".
-AeJ and correct respectively. Below 1

Claims (4)

【特許請求の範囲】[Claims] (1)  少なくとも砒素と第1鉄イオンを含む水mW
をpH2,0〜ノ、♂に中和する第1工程と、該第1工
程反応後液中の砒素を後記第3工程から蒜される第2鉄
イオンと反応させて砒酸鉄としそ沈殿除去する第2工程
と、第2′工程の脱砒復液を酸化槽に導いて液中の第1
鉄イオンを鉄酸イトバクテリアにより第2鉄イオンに酸
化処理し、酸化後液は上記第2工程に戻す第3工程とか
らなることを特徴°とする鉄酸化バクテリアを使用する
砒素と鉄を含有する水溶液の処理法。
(1) Water mW containing at least arsenic and ferrous ions
A first step of neutralizing the liquid to pH 2.0 to ノ, male, and reacting arsenic in the solution after the first step reaction with ferric ions obtained from the third step described later to remove iron arsenate and precipitate. In the second step of
Containing arsenic and iron using iron-oxidizing bacteria, the method comprises a third step in which iron ions are oxidized to ferric ions by ferric acid bacteria, and the oxidized solution is returned to the second step. A method for treating aqueous solutions.
(2)前記第1工程における被処理液には砒素め当量以
上の第1鉄イオンが含有されてなる特許請求の範囲第1
項記載の処理法。
(2) The liquid to be treated in the first step contains ferrous ions in an amount equal to or more than an arsenic equivalent.
Treatment method described in section.
(3)  前記第3工程における鉄酸化バクテリアは該
第3工程で生成する沈殿物と共に酸化槽に循環させて再
使用され、また酸化後液の一部が前記第2工程に戻され
てその残余の液は鉄殿物の回収に使用される特許請求の
範囲第1項又は第2項記載の処理法。
(3) The iron-oxidizing bacteria in the third step are recycled to the oxidation tank together with the precipitate produced in the third step, and a part of the oxidized liquid is returned to the second step to collect the remainder. The treatment method according to claim 1 or 2, wherein the liquid is used for recovering iron precipitates.
(4)  前記第3工程における酸化槽には鉄酸化バク
  、7テリアのキャリヤ剤として珪藻土と、さらに該
バクテリアの栄養剤が添加されてなる特許請求の範囲第
1項、第2項又は第3項記載の処理法。
(4) Diatomaceous earth is added as a carrier agent for iron oxidizing bacteria, 7teria, and nutrients for the bacteria are added to the oxidation tank in the third step. Treatment method described in section.
JP16289782A 1982-09-18 1982-09-18 Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria Granted JPS5952583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16289782A JPS5952583A (en) 1982-09-18 1982-09-18 Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16289782A JPS5952583A (en) 1982-09-18 1982-09-18 Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria

Publications (2)

Publication Number Publication Date
JPS5952583A true JPS5952583A (en) 1984-03-27
JPS6220868B2 JPS6220868B2 (en) 1987-05-09

Family

ID=15763312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16289782A Granted JPS5952583A (en) 1982-09-18 1982-09-18 Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria

Country Status (1)

Country Link
JP (1) JPS5952583A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759308A1 (en) * 1997-02-11 1998-08-14 Oberkampf Louis Arsenic-containing waste stabilisation and solidification
US6406676B1 (en) * 1999-06-01 2002-06-18 Boliden Mineral Ab Method of purifying acid leaching solution by precipitation and oxidation
FR2939426A1 (en) * 2008-12-09 2010-06-11 Rech S Geol Et Minieres Brgm B PROCESS FOR THE BIOLOGICAL TREATMENT OF ARSENATED WASTE FROM THE TREATMENT OF ACID EFFLUENTS
JP2010285322A (en) * 2009-06-12 2010-12-24 Dowa Metals & Mining Co Ltd Method for obtaining crystalline scorodite from solution containing arsenic
JP2012170838A (en) * 2011-02-17 2012-09-10 Kyushu Univ Treatment method of arsenic
JP2013180034A (en) * 2012-03-01 2013-09-12 Kyushu Univ Method for treating arsenic
JP2014046221A (en) * 2012-08-29 2014-03-17 Kyushu Univ Method for treating arsenic
CN106698821A (en) * 2016-12-20 2017-05-24 中南大学 Method for treating wastewater containing trivalent arsenic by utilizing microorganisms
WO2018096962A1 (en) * 2016-11-22 2018-05-31 国立大学法人九州大学 Method for removing manganese from wastewater
JP2018086643A (en) * 2016-11-22 2018-06-07 国立大学法人九州大学 Method for removing manganese from drainage
JP2018202313A (en) * 2017-06-01 2018-12-27 国立大学法人九州大学 As RECOVERY METHOD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508722Y2 (en) * 1989-10-31 1996-08-28 株式会社島津製作所 Film forming equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759308A1 (en) * 1997-02-11 1998-08-14 Oberkampf Louis Arsenic-containing waste stabilisation and solidification
US6406676B1 (en) * 1999-06-01 2002-06-18 Boliden Mineral Ab Method of purifying acid leaching solution by precipitation and oxidation
FR2939426A1 (en) * 2008-12-09 2010-06-11 Rech S Geol Et Minieres Brgm B PROCESS FOR THE BIOLOGICAL TREATMENT OF ARSENATED WASTE FROM THE TREATMENT OF ACID EFFLUENTS
WO2010066965A1 (en) * 2008-12-09 2010-06-17 B.R.G.M. - Bureau De Recherches Geologiques Et Minieres Method for biologically treating arsenic waste from the treatment of acid effluents
JP2010285322A (en) * 2009-06-12 2010-12-24 Dowa Metals & Mining Co Ltd Method for obtaining crystalline scorodite from solution containing arsenic
JP2012170838A (en) * 2011-02-17 2012-09-10 Kyushu Univ Treatment method of arsenic
JP2013180034A (en) * 2012-03-01 2013-09-12 Kyushu Univ Method for treating arsenic
JP2014046221A (en) * 2012-08-29 2014-03-17 Kyushu Univ Method for treating arsenic
WO2018096962A1 (en) * 2016-11-22 2018-05-31 国立大学法人九州大学 Method for removing manganese from wastewater
JP2018086643A (en) * 2016-11-22 2018-06-07 国立大学法人九州大学 Method for removing manganese from drainage
CN106698821A (en) * 2016-12-20 2017-05-24 中南大学 Method for treating wastewater containing trivalent arsenic by utilizing microorganisms
CN106698821B (en) * 2016-12-20 2019-06-28 中南大学 A method of utilizing microbiological treatment waste water containing trivalent arsenic
JP2018202313A (en) * 2017-06-01 2018-12-27 国立大学法人九州大学 As RECOVERY METHOD

Also Published As

Publication number Publication date
JPS6220868B2 (en) 1987-05-09

Similar Documents

Publication Publication Date Title
US4244734A (en) Process for recovering metal values from materials containing arsenic
US4118243A (en) Process for disposal of arsenic salts
KR101330464B1 (en) Method for the recovery of valuable metals and arsenic from a solution
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
US5820966A (en) Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
AU2012224501B2 (en) Method for producing a poorly soluble calcium-arsenic compound
RU95122127A (en) METHOD FOR ISOLATING ZINC AND IRON FROM ZINC AND IRON-CONTAINING SULPHIDE MATERIAL
JPS5952583A (en) Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
CA2858415C (en) Method for separating arsenic and heavy metals in an acidic washing solution
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP3294181B2 (en) Method for producing calcium arsenate
JP4670004B2 (en) Method for treating selenium-containing water
JPS6225439B2 (en)
CN110819814B (en) High-arsenic waste acid treatment method
CN113526562B (en) Method for preparing scorodite by treating arsenic-containing smoke dust through ozone microbubble oxidation method
Maree et al. Limestone neutralization of Iron (II) rich acid water
RU2226562C2 (en) Method of removing arsenic from arsenic-containing materials
CN112897739A (en) Arsenic harmless treatment method for arsenic-containing waste liquid
JP3282452B2 (en) How to remove selenium from wastewater
AU2008202077B2 (en) Treatment of metal-containing water
CA3064679A1 (en) Method of treating a solution comprising metal sulphates
JPS61278391A (en) Method for removing antimony and bismuth from liquid extract of copper-free slime by sulfuric acid