JP2018086643A - Method for removing manganese from drainage - Google Patents
Method for removing manganese from drainage Download PDFInfo
- Publication number
- JP2018086643A JP2018086643A JP2017101302A JP2017101302A JP2018086643A JP 2018086643 A JP2018086643 A JP 2018086643A JP 2017101302 A JP2017101302 A JP 2017101302A JP 2017101302 A JP2017101302 A JP 2017101302A JP 2018086643 A JP2018086643 A JP 2018086643A
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- amount
- wastewater
- oxidizing bacteria
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 127
- 239000011572 manganese Substances 0.000 title claims abstract description 127
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims abstract description 41
- 241000894006 Bacteria Species 0.000 claims abstract description 64
- 150000001413 amino acids Chemical class 0.000 claims abstract description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 29
- 239000008103 glucose Substances 0.000 claims abstract description 29
- 239000003513 alkali Substances 0.000 claims abstract description 18
- 239000002351 wastewater Substances 0.000 claims description 52
- 230000001590 oxidative effect Effects 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 7
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 210000003850 cellular structure Anatomy 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 235000001014 amino acid Nutrition 0.000 description 33
- 229940024606 amino acid Drugs 0.000 description 33
- 239000000243 solution Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229910000480 nickel oxide Inorganic materials 0.000 description 8
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 7
- 238000004065 wastewater treatment Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- 235000003704 aspartic acid Nutrition 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 241000894007 species Species 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000006229 amino acid addition Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009854 hydrometallurgy Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241001268407 Loweria Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000000640 hydroxylating effect Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- HEVKPEJBMPVNRR-UHFFFAOYSA-N manganese(2+);dihypochlorite Chemical compound [Mn+2].Cl[O-].Cl[O-] HEVKPEJBMPVNRR-UHFFFAOYSA-N 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- -1 manganese, amino acids Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- WTWSHHITWMVLBX-DKWTVANSSA-M sodium;(2s)-2-aminobutanedioate;hydron Chemical compound [Na+].[O-]C(=O)[C@@H](N)CC(O)=O WTWSHHITWMVLBX-DKWTVANSSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本発明は、マンガンを含有する排水からのマンガンの除去方法に関する。さらに詳しくは、ニッケル酸化鉱を原料とする湿式製錬プロセスにおける、マンガンを含有する排水を処理する方法に関する。 The present invention relates to a method for removing manganese from wastewater containing manganese. More specifically, the present invention relates to a method for treating wastewater containing manganese in a hydrometallurgical process using nickel oxide ore as a raw material.
ニッケル酸化鉱を原料とする湿式製錬プロセスにおいては、特許文献1に示すような操業が行われる。すなわち、ニッケル酸化鉱石に硫酸などの酸を加えてニッケルなどの有価物を浸出し、得た硫酸酸性の浸出液にアルカリを添加して含有された鉄、アルミニウム、マンガン、マグネシウム、カルシウムなどの不純物の大部分を中和物として分離し、次いで中和後の液に硫化剤を添加してニッケルなどの有価物を硫化物として分離し回収する。 In the hydrometallurgical process using nickel oxide ore as a raw material, an operation as shown in Patent Document 1 is performed. In other words, acid such as sulfuric acid is added to nickel oxide ore to leach valuable materials such as nickel, and alkali is added to the resulting sulfuric acid leachate to contain impurities such as iron, aluminum, manganese, magnesium and calcium. The majority is separated as a neutralized product, and then a sulfurizing agent is added to the neutralized solution to separate and recover valuable materials such as nickel as sulfides.
このプロセスを用いた場合、硫化後の硫酸酸性を呈する排水(「硫化後液」あるいは単に「貧液」とも呼ばれる)の一部は、浸出工程などの系内に繰り返して利用されるものの、大部分は排水処理工程に送り、アルカリを添加して残留する酸を中和し、同時に含有する不純物等を除去し、その後海域等に放出する処理が行われる。 When this process is used, a part of the waste water that exhibits sulfuric acidity after sulfidation (also called “post-sulfurization liquid” or simply “poor liquid”) is repeatedly used in the system such as leaching process, but it is large. The portion is sent to a wastewater treatment process, where alkali is added to neutralize the remaining acid, and impurities contained therein are removed at the same time.
前記の排水処理工程において、除去する必要がある不純物としては、浮遊粒子として存在する鉄や、イオンとして溶解しているアルミニウムやマンガンがある。 In the wastewater treatment process, impurities that need to be removed include iron that exists as suspended particles, and aluminum and manganese that are dissolved as ions.
上記の不純物の中で、鉄は、排水をシックナー等に送ることで浮遊粒子を沈降させて分離し、更にテーリングダム等を通過させることで実用上完全に沈降させ、さらに必要に応じてフィルタープレスなどの濾過手段を併用することで排水から除去できる。アルミニウムについては、アルカリを添加して、pHを比較的低く維持することで中和され、水酸化物の澱物として排水から除去できる。 Among the above impurities, iron is allowed to settle and separate suspended particles by sending wastewater to a thickener or the like, and further completely settled practically by passing it through a tailing dam, etc., and if necessary, a filter press It can be removed from waste water by using filtration means such as. Aluminum is neutralized by adding alkali and maintaining the pH relatively low and can be removed from the waste water as a hydroxide starch.
ところが、マンガンについては、排水中に溶解した状態で存在するため、排水にアルカリなどを添加して調整するpHが9を上回るアルカリ領域にまで調整しなければ、マンガンの澱物を生成させることはできない。このため、前述の排水からマンガンを除去するには、きわめて手間とコストがかかるという問題があった。
また、pHを上げるためにアルカリを添加した場合、pHが9を超えると、排水中に上述した不純物とともに含有されるマグネシウムが、マンガンよりも先に水酸化物を形成するという問題もあった。
However, since manganese exists in a state of being dissolved in the wastewater, if the pH adjusted by adding alkali or the like to the wastewater is not adjusted to an alkaline region exceeding 9, it is possible to produce manganese starch. Can not. For this reason, there has been a problem that it takes much labor and cost to remove manganese from the aforementioned waste water.
Further, when alkali is added to increase the pH, when the pH exceeds 9, there is a problem that magnesium contained together with the above-described impurities in the wastewater forms a hydroxide before manganese.
ところで、マグネシウムは、特段の排水基準もなく環境への影響もないので、排水からの除去が不要であるが、マンガンを除去するために添加したアルカリがマグネシウム水酸化物の生成に消費されるため、目的のマンガンを水酸化するのに必要な量以上のアルカリが必要となり、余計なコストがかかる。さらにマグネシウムが澱物化されることから発生する物量が増加するなど好ましくない。 By the way, magnesium has no special drainage standards and does not affect the environment, so there is no need to remove it from the wastewater, but the alkali added to remove manganese is consumed for the production of magnesium hydroxide. In addition, more alkali than the amount necessary for hydroxylating the target manganese is required, resulting in additional costs. Furthermore, it is not preferable because the amount of generated substances increases because magnesium is starched.
そこで、マンガンとマグネシウム両方の澱物が生成するpH9まで排水のpHを上げずに、マグネシウムの澱物が生成せずに、少量のマンガンが水溶液として残るpH8.6以下に排水のpHを調整し、そのpHの差だけアルカリの添加量を下げる操作が行われてきた(特許文献2参照)。 Therefore, the pH of the waste water is adjusted to pH 8.6 or less without increasing the pH of the waste water to pH 9 where both manganese and magnesium starch are formed, and without producing a magnesium starch and leaving a small amount of manganese as an aqueous solution. The operation of lowering the amount of alkali added by the difference in pH has been performed (see Patent Document 2).
この方法では、排水に残留する低濃度のマンガンについては、排水を積極的に酸化させて除去するので、澱物の増加が防げ、アルカリのコストを低減する効果がある。しかし取り扱う酸化剤の量や反応に要する設備などの点でコストがかかる課題があった。 In this method, the low-concentration manganese remaining in the wastewater is removed by actively oxidizing the wastewater, so that an increase in starch can be prevented and the cost of alkali can be reduced. However, there is a problem that costs are high in terms of the amount of oxidant to be handled and equipment required for the reaction.
とくに、工業的なニッケル酸化鉱の湿式処理では、せいぜい1〜2%かそれ以下の品位のニッケルを分離して回収するために、膨大な量の鉱石を処理することが多い。このため発生する排水量も膨大な量になる。さらに前述のようにニッケル等の有価物を還元雰囲気下で析出させて回収した後の排水を処理するため、マンガンを酸化して除去するため還元雰囲気から酸化雰囲気まで変化させなければならず、短時間で処理を進めるためには、次亜塩素酸ソーダや、オゾンなどの強力な酸化剤を大量に付与しなければならない。このため、酸化剤のコストが必要となるという問題があった。 In particular, in the industrial wet processing of nickel oxide ore, a huge amount of ore is often processed in order to separate and recover nickel of 1 to 2% or less. For this reason, the amount of generated wastewater is also enormous. Furthermore, in order to treat waste water after depositing and recovering valuable materials such as nickel in a reducing atmosphere as described above, manganese must be changed from the reducing atmosphere to the oxidizing atmosphere in order to oxidize and remove. In order to proceed in time, a large amount of strong oxidizer such as sodium hypochlorite and ozone must be applied. For this reason, there existed a problem that the cost of an oxidizing agent was needed.
そこで、酸化に要するコストと手間を省く方法として、マンガン酸化細菌を用いた処理方法が試みられてきた。
マンガン酸化細菌を利用してマンガンを除去するには、一定量のマンガン酸化細菌を増殖し、増殖したマンガン酸化細菌がマンガンを酸化して沈殿させ、澱物を形成する除去能力を高めなければならない。
Thus, a treatment method using manganese-oxidizing bacteria has been tried as a method for saving the cost and labor required for oxidation.
In order to remove manganese using manganese-oxidizing bacteria, it is necessary to grow a certain amount of manganese-oxidizing bacteria and increase the ability of the grown manganese-oxidizing bacteria to oxidize and precipitate manganese to form starch. .
特に前述するようにニッケル酸化鉱石の湿式製錬方法では、大量の排水を取り扱う場合があり、このような環境下でマンガン酸化細菌を効果的に増殖させ利用に適することは難しく、より確実に排水処理に適用する方法が望まれていた。 In particular, as described above, in the hydrometallurgical method of nickel oxide ore, a large amount of wastewater may be handled. In such an environment, it is difficult to effectively grow and use manganese-oxidizing bacteria in such an environment. A method applied to the processing has been desired.
本発明は、上記事情に鑑み、マンガン酸化細菌を用いて排水中に含まれるマンガンを酸化して除去する方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for oxidizing and removing manganese contained in wastewater using manganese oxidizing bacteria.
第1発明の排水からのマンガンの除去方法は、マンガンを含む排水からマンガン酸化細菌によりマンガンを除去する方法であって、90以上の分子量をもつアミノ酸と、グルコースを添加することを特徴とする。
第2発明の排水からのマンガンの除去方法は、第1発明において、前記アミノ酸の添加量が、排水中のマンガンのモル濃度の1.6倍〜2.2倍のモル濃度となる量であることを特徴とする。
第3発明の排水からのマンガンの除去方法は、第1発明において、前記グルコースの添加量が、排水中のマンガンのモル濃度の0.2倍〜0.6倍のモル濃度となる量であることを特徴とする。
第4発明の排水からのマンガンの除去方法は、予備工程として、マンガンを含む排水に予めアルカリを添加してpHを調整し、マンガン濃度を65mg/L以下に低減しておき、該予備工程で得られた排水を上記請求項1記載の処理に供することを特徴とする。
The method for removing manganese from wastewater according to the first aspect of the present invention is a method for removing manganese from wastewater containing manganese by manganese-oxidizing bacteria, characterized in that an amino acid having a molecular weight of 90 or more and glucose are added.
The method for removing manganese from the wastewater according to the second invention is the method according to the first invention, wherein the amount of amino acid added is 1.6 to 2.2 times the molar concentration of manganese in the wastewater. It is characterized by that.
The method for removing manganese from wastewater according to the third aspect of the present invention is the method according to the first aspect, wherein the added amount of glucose is a molar concentration of 0.2 to 0.6 times the molar concentration of manganese in the wastewater. It is characterized by that.
In the method for removing manganese from wastewater of the fourth invention, as a preliminary step, alkali is added to wastewater containing manganese in advance to adjust the pH, and the manganese concentration is reduced to 65 mg / L or less. The obtained waste water is subjected to the treatment according to claim 1.
第1発明によれば、マンガン酸化細菌を増殖させると共に細胞構成成分としての炭素源およびエネルギー源を供給することで、多大なアルカリを投入することなく、マンガン酸化細菌によってマンガンを十分に酸化させて、これを沈殿させて除去することができる。
第2発明によれば、アミノ酸分子量が好適な範囲なので、マンガン酸化能力が低すぎることもなく、過剰なアミノ酸により雑菌が増殖することもなく、マンガンを低減させることができる。
第3発明によれば、グルコース添加量が好適な範囲なので、マンガン酸化細菌の活動が弱くなることもなく、過剰のグルコースによって雑菌が増殖することもなく、マンガンを低減させることができる。
第4発明によれば、予備工程において、マンガン濃度を下げておくので過剰なアルカリ添加を必要とせず、反応時間も短くできるので、コスト的および設備的に有利となる。
According to the first aspect of the present invention, manganese oxidizing bacteria are proliferated and supplied with a carbon source and an energy source as cell constituents, so that manganese is sufficiently oxidized by manganese oxidizing bacteria without introducing a large amount of alkali. This can be removed by precipitation.
According to the second invention, since the amino acid molecular weight is in a suitable range, manganese oxidation ability is not too low, and bacteria can be reduced by excessive amino acids, and manganese can be reduced.
According to the third invention, since the amount of glucose added is in a suitable range, the activity of manganese-oxidizing bacteria is not weakened, and it is possible to reduce manganese without causing miscellaneous bacteria to grow due to excessive glucose.
According to the fourth invention, since the manganese concentration is lowered in the preliminary process, excessive alkali addition is not required and the reaction time can be shortened, which is advantageous in terms of cost and equipment.
(本発明の技術原理)
本発明に係る排水からのマンガンの除去方法は、マンガンを含む排水からマンガン酸化細菌によりマンガンを除去する方法であって、90以上の分子量をもつアミノ酸と、グルコースを添加して行う。グルコースを添加する目的は増殖したマンガン酸化細菌に細胞構成成分としての炭素源およびエネルギー源を供給するためであり、アミノ酸を添加する目的は、炭素源・エネルギー源、また、その他窒素源などの微量栄養元素を供給するためである。
マンガン酸化細菌を増殖させると共に細胞構成成分としての炭素源およびエネルギー源を供給すれば、多大なアルカリを投入することなく、マンガン酸化細菌によってマンガンを十分に酸化させて、これを沈殿させて除去することができる。このマンガン除去効果は強力なので、pH9未満となる低いpH領域の排水であってもマンガン除去は可能である。
(Technical principle of the present invention)
The method for removing manganese from wastewater according to the present invention is a method for removing manganese from wastewater containing manganese by manganese-oxidizing bacteria, and is performed by adding an amino acid having a molecular weight of 90 or more and glucose. The purpose of adding glucose is to supply the grown manganese-oxidizing bacteria with a carbon source and an energy source as cell constituents, and the purpose of adding amino acids is for a trace amount of carbon sources / energy sources and other nitrogen sources. This is to supply nutrient elements.
If manganese-oxidizing bacteria are grown and a carbon source and an energy source are supplied as cell components, manganese is sufficiently oxidized by manganese-oxidizing bacteria, and this is precipitated and removed without adding a large amount of alkali. be able to. Since this manganese removal effect is strong, it is possible to remove manganese even in wastewater in a low pH range where the pH is less than 9.
(マンガン酸化細菌)
マンガン酸化細菌は、排水中に含まれている例が多いが、含まれていなかったり、極く微量の場合は、予め保存しておいたマンガン酸化細菌を排水中に添加する。
(Manganese oxidizing bacteria)
In many cases, manganese-oxidizing bacteria are contained in the wastewater. However, if the manganese-oxidizing bacteria are not contained or are extremely small, manganese oxide bacteria stored in advance are added to the wastewater.
マンガン酸化細菌にはさまざまな種類のものが知られているが、単一の菌種だけで酸化させるよりも実際の排水処理場所などマンガン酸化細菌が自然に繁殖している場所から採取した菌を一括して取り扱うことがコストも抑えられ、工業的には実用的である。しかしながら、現場で採取した様々な菌種をまとめて取扱うような場合、有用なマンガン酸化細菌の他にも様々な無役のいわゆる雑菌も含まれている。
既述のように、多種多様な菌種があるマンガン酸化細菌を、精密に分析して菌種を特定したり、あるいは特定の菌のみを増殖させたりすることは一般に困難である。そのため、本発明では、同一条件で採取し培養した菌種をまとめて扱い、様々な菌種が全体としてマンガンを除去することに利用する。このため、本明細書では、マンガンを酸化する能力がある細菌を一括して「マンガン酸化細菌」と定義し、マンガンの酸化に関与しない細菌を「雑菌」と定義する。
また、本発明では後述するようにフィリピン国パラワン島で操業する製錬所の排水処理設備の排水路配管から採取したマンガン酸化細菌を培養して試験に付したが、特定の産出地に限定されるものではない。
Various types of manganese-oxidizing bacteria are known, but bacteria collected from places where manganese-oxidizing bacteria naturally thrive, such as actual wastewater treatment sites, are more than oxidized by a single species. Collective handling reduces costs and is industrially practical. However, when various bacterial species collected on site are handled together, various unutilized so-called bacteria are included in addition to useful manganese-oxidizing bacteria.
As described above, it is generally difficult to precisely analyze a manganese-oxidizing bacterium having a wide variety of bacterial species to identify the bacterial species or to propagate only specific bacteria. For this reason, in the present invention, bacterial species collected and cultured under the same conditions are collectively handled, and various bacterial species are used to remove manganese as a whole. For this reason, in this specification, bacteria having the ability to oxidize manganese are collectively defined as “manganese oxidizing bacteria”, and bacteria not involved in manganese oxidation are defined as “miscellaneous bacteria”.
In the present invention, as described later, manganese oxide bacteria collected from the drainage pipes of the sewage treatment facility operating at Palawan Island in the Philippines were cultured and subjected to the test. However, the present invention is limited to specific production areas. It is not something.
(本発明の適用対象となる排水)
本発明によるマンガン除去は、マンガン濃度が概ね60mg/Lとなる排水を対象とし、それ以下にマンガン濃度を低減させる場合に好適である。
(Drainage to which the present invention is applied)
Manganese removal according to the present invention is suitable for wastewater with a manganese concentration of approximately 60 mg / L, and when the manganese concentration is reduced below that.
上記マンガン濃度を対象とする理由は、下記(1)、(2)のとおりである。
(1)アルカリを添加してpHを上昇させる従来からのマンガン除去方法を用いた場合、pHが9未満となる領域であっても排水のマンガン濃度は概ね60mg/Lまでは低減できるが、さらにマンガンを低減しようとする場合には当量を上回る過剰量のアルカリ添加や過大な反応時間が必要となる。このため、マンガン濃度が65mg/L以下、好ましくは60mg/L程度になるように中和した後、この中和後の排水に対してマンガン酸化細菌を利用した処理を行ってマンガン濃度を1mg/L以下まで低減するのが、コスト的にまた設備的にも有利である。
The reason for the above manganese concentration is as follows (1) and (2).
(1) When the conventional manganese removal method of increasing pH by adding alkali is used, the manganese concentration in the wastewater can be reduced to approximately 60 mg / L even in the region where the pH is less than 9, In order to reduce manganese, excessive alkali addition exceeding the equivalent amount and excessive reaction time are required. For this reason, after neutralizing so that the manganese concentration is 65 mg / L or less, preferably about 60 mg / L, the neutralized waste water is treated using manganese-oxidizing bacteria to reduce the manganese concentration to 1 mg / L. Reduction to L or less is advantageous in terms of cost and equipment.
(2)過剰の中和剤を使用した場合、排水中のpHが上がりすぎ、マンガンを除去した後の排水を放流するために再度酸を添加して放流に適したpHに調整する必要があるなど手間とコストを要する。 (2) When excessive neutralizing agent is used, the pH in the wastewater rises too much, and in order to discharge the wastewater after removing manganese, it is necessary to add acid again to adjust the pH to be suitable for the discharge. It takes time and money.
(マンガン除去能力を保持するための条件)
以下に本発明によるマンガン酸化細菌を用いたマンガン除去方法を実施するに当って、必要とされるマンガン除去能力を保持するための条件を説明する。
(Conditions for maintaining manganese removal capability)
In the following, conditions for maintaining the manganese removal capability required in carrying out the manganese removal method using the manganese-oxidizing bacteria according to the present invention will be described.
供試液として、ニッケル酸化鉱の湿式製錬する現場の排水処理工程において採取したマンガン酸化細菌を含んだ培養液を用意した。排水処理工程では前述のようにマンガンが含有されるため、これに適応した細菌が適量存在することが多い。 As a test solution, a culture solution containing manganese-oxidizing bacteria collected in an on-site wastewater treatment process for hydrometallizing nickel oxide ore was prepared. Since the wastewater treatment process contains manganese as described above, there are many cases where an appropriate amount of bacteria is present.
(アミノ酸)
添加するアミノ酸の役割は、炭素源・エネルギー源、また、その他窒素源などの栄養源となってマンガン酸化細菌の増殖を助けるところにある。
上記培養液に、低濃度のマンガン及びそのマンガン量に対して0.01倍から5倍までの間のモル量の分子量100以上のアミノ酸を加えて供試の水溶液とした。
(amino acid)
The role of the added amino acid is to assist the growth of manganese-oxidizing bacteria as a carbon source / energy source and other nutrient source such as nitrogen source.
A low concentration of manganese and an amino acid having a molecular weight of 100 or more in a molar amount between 0.01 and 5 times the amount of manganese were added to the culture solution to prepare a test aqueous solution.
アミノ酸には、例えばセリン(分子量105.1)、ロイシン(分子量131.2)、アスパラギン酸(分子量133.1)、グルタミン酸(分子量147.1)などの種類がある。またこれらのアミノ酸は、ナトリウム塩の形態で添加しても良い。 Examples of amino acids include serine (molecular weight 105.1), leucine (molecular weight 131.2), aspartic acid (molecular weight 133.1), glutamic acid (molecular weight 147.1), and the like. These amino acids may be added in the form of a sodium salt.
水溶液に添加するアミノ酸の分子量と低減できるマンガン量、すなわちマンガンの酸化能力を図2に示す。図2では、アミノ酸の分子量が増加するにつれてマンガン低減量も高くなっている。
そして、60mg/Lの濃度差のマンガンを除去するには、添加するアミノ酸の分子量として概ね90程度以上が必要であることがわかる。分子量が75のグリシンのように、分子量が90未満となるようなアミノ酸を用いた場合はマンガン低減量は60mg/L未満にしかならない。
FIG. 2 shows the molecular weight of the amino acid added to the aqueous solution and the amount of manganese that can be reduced, that is, the oxidation ability of manganese. In FIG. 2, the amount of manganese reduction increases as the molecular weight of the amino acid increases.
It can be seen that in order to remove manganese having a concentration difference of 60 mg / L, the molecular weight of the amino acid to be added should be about 90 or more. When an amino acid having a molecular weight of less than 90, such as glycine having a molecular weight of 75, is used, the manganese reduction amount is less than 60 mg / L.
分子量が133のアスパラギン酸を用いてアミノ酸添加量とマンガン低減量を比較すると、図3に示すように、マンガン濃度を60mg/L以上低減するためには3mMol/L以上のアミノ酸を添加する必要がある。 When aspartic acid having a molecular weight of 133 is used to compare the amino acid addition amount and the manganese reduction amount, as shown in FIG. 3, it is necessary to add an amino acid of 3 mMol / L or more in order to reduce the manganese concentration by 60 mg / L or more. is there.
アミノ酸を過剰に添加すると、これら雑菌の栄養源にも寄与して雑菌の増殖を助けることになる。したがって目的とするマンガン酸化細菌の増殖が阻害されてしまうので好ましくない。
具体的には、マンガンが1.8mMol/L(100mg/L)の濃度で含まれた排水に対して、アミノ酸の添加量が概ね4mMol/Lを超えると。過剰なアミノ酸によって雑菌の増殖が加速されてしまい、さらに次亜塩素酸ソーダを添加してマンガンを酸化してきた場合のコストに匹敵するためマンガン酸化細菌を用いるメリットがなくなる。そのため、図3に示すように、アミノ酸は3〜4mMol/Lを添加することが好ましい。
When an excessive amount of amino acid is added, it contributes to the nutrient source of these bacteria and helps the growth of the bacteria. Accordingly, the growth of the target manganese-oxidizing bacteria is inhibited, which is not preferable.
Specifically, when the amount of amino acid added exceeds 4 mMol / L with respect to wastewater containing manganese at a concentration of 1.8 mMol / L (100 mg / L). Excess amino acids accelerate the growth of miscellaneous bacteria, and further, the merit of using manganese-oxidizing bacteria is lost because it is comparable to the cost of adding manganese hypochlorite to oxidize manganese. Therefore, as shown in FIG. 3, it is preferable to add 3-4 mMol / L of amino acids.
つまり、マンガンのモル数に対して、アミノ酸を1.6倍以上2.2倍以下の範囲となる量で添加することがよい。
また、元液のマンガン濃度が異なる場合は、同じ倍数の範囲となるアミノ酸濃度を添加すればよい。具体的には、例えばマンガンが50mg/L(0.91mMol/L)含有された排水に対しては、アミノ酸は1.4mMol/L〜2mMol/Lの範囲で添加する。
That is, it is preferable to add an amino acid in an amount ranging from 1.6 times to 2.2 times the number of moles of manganese.
In addition, when the manganese concentration of the original solution is different, an amino acid concentration in the same multiple range may be added. Specifically, for example, with respect to wastewater containing 50 mg / L (0.91 mMol / L) of manganese, amino acids are added in the range of 1.4 mMol / L to 2 mMol / L.
なお、更に分子量の大きいアミノ酸やさらにはタンパク質を加えてもよいと考えられるが、分子量が大きすぎるとマンガン酸化細菌が栄養素として取り込むのが困難になる傾向がある上に、これら分子量の大きなアミノ酸は一般に効果で、工業的な排水処理などの用途に用いるには、コストがかかりすぎるため現実的ではない。 It is considered that amino acids with higher molecular weights and proteins may be added, but if the molecular weight is too high, manganese-oxidizing bacteria tend to be difficult to take up as nutrients. In general, it is effective, and it is not practical to use it for industrial wastewater treatment or the like because it is too costly.
(グルコース)
マンガン酸化細菌を含む培養液には、マンガン酸化細菌に細胞構成成分としての炭素源および活動するためのエネルギー源としてグルコース(分子量180)もしくは相当する炭化水素を添加することがよい。
(glucose)
In the culture solution containing manganese-oxidizing bacteria, it is preferable to add glucose (molecular weight 180) or a corresponding hydrocarbon as a carbon source as a cell constituent and an energy source for activity to the manganese-oxidizing bacteria.
図4に示すように、グルコースの添加量とマンガン低減量とは線形の関係にある。グルコース添加量が0.4mMol/Lのときにマンガン低減量は約60△Mn(mg/L)であり、グルコース添加量が1mMol/Lのときにマンガン低減量は約75△Mn(mg/L)である。
上記から明らかなように、グルコースは0.4mMol/L以上の量を添加する必要がある。上記のアミノ酸の場合と同じように含有するマンガンのモル濃度に対しては、0.2倍となる。
グルコースの濃度が0.4mMol/Lを下回るなど低すぎると、マンガン酸化細菌の活動が弱くなり、増殖に寄与しなくなり、その結果マンガン低減量は低下する。
As shown in FIG. 4, the added amount of glucose and the manganese reduction amount have a linear relationship. When the glucose addition amount is 0.4 mMol / L, the manganese reduction amount is about 60 ΔMn (mg / L), and when the glucose addition amount is 1 mMol / L, the manganese reduction amount is about 75 ΔMn (mg / L). ).
As is apparent from the above, glucose needs to be added in an amount of 0.4 mMol / L or more. It becomes 0.2 times with respect to the molar concentration of manganese contained like the case of said amino acid.
If the concentration of glucose is too low, such as below 0.4 mMol / L, the activity of the manganese-oxidizing bacteria becomes weak and does not contribute to growth, resulting in a decrease in the amount of manganese reduction.
一方、グルコース濃度が高すぎると、過剰のグルコースが雑菌の栄養源にもなって雑菌が必要以上に増殖し、その結果マンガン酸化細菌の増殖を阻害することになるため好ましくない。特にグルコースの添加量が1mMol/Lを超えると、必要なコストは次亜塩素酸ソーダを用いて酸化する場合のコストを超えてしまう。このため添加量は1mMol/L以下とすることが好ましい。マンガンのモル濃度に対しては、0.6倍となる。
つまりマンガンのモル濃度の0.2倍〜0.6倍のモル濃度となる量のグルコースを添加することが好ましい。
On the other hand, if the glucose concentration is too high, excess glucose becomes a nutrient source for germs and the germs grow more than necessary, resulting in inhibition of the growth of manganese-oxidizing bacteria. In particular, when the added amount of glucose exceeds 1 mMol / L, the necessary cost exceeds the cost in the case of oxidizing using sodium hypochlorite. For this reason, the addition amount is preferably 1 mMol / L or less. The molar concentration of manganese is 0.6 times.
That is, it is preferable to add an amount of glucose that is 0.2 to 0.6 times the molar concentration of manganese.
(予備工程)
マンガン濃度が60mg/Lを超える高濃度の排水に対してマンガン酸化細菌を利用してマンガンを酸化することも可能である。しかし、処理に必要な多量のマンガン酸化細菌を培養して確保し、マンガン酸化細菌が処理するのに必要な反応時間を確保できる設備の大きさを勘案すると、予備工程として60mg/Lの濃度までアルカリによってマンガン濃度を低減しておき、その次に本発明を適用してマンガン酸化細菌を用いてマンガン除去する方法が効率的である。
(Preliminary process)
It is also possible to oxidize manganese using manganese-oxidizing bacteria against high-concentration wastewater having a manganese concentration exceeding 60 mg / L. However, taking into account the size of equipment that can secure a large amount of manganese-oxidizing bacteria necessary for the treatment and secure the reaction time necessary for the treatment with manganese-oxidizing bacteria, the preliminary process has a concentration of 60 mg / L. An effective method is to reduce the manganese concentration with an alkali and then apply the present invention to remove manganese using manganese-oxidizing bacteria.
<実施例1>
フィリピン国パラワン島バタラザ,リオツバ(Rio Tuba,Bataraza,Palawan 5306,Philippines)に所在するコーラルベイニッケルコーポレーション社(Coral Bay Nickel Corporation)のニッケル酸化鉱の湿式製錬プラントの排水処理設備の排水路配管から採取したマンガン酸化細菌を含むスラッジを水分込みで約1g採取し、これを250mlの純水中に懸濁させた。
<Example 1>
From the drainage pipes of the wastewater treatment facility of the nickel oxide ore wet smelting plant of Coral Bay Nickel Corporation, located in Bataraza, Riowana, Palawan Island, Philippines About 1 g of the collected sludge containing manganese-oxidizing bacteria was collected with water, and suspended in 250 ml of pure water.
次に、栄養素としてグルコースを1mMol/L(マンガンの0.6倍)、およびアミノ酸として分子量が133.1のアスパラギン酸のナトリウム塩を4mMol/L(同2.2倍)添加し、溶液を撹拌した。 Next, 1 mMol / L of glucose as a nutrient (0.6 times that of manganese) and 4 mMol / L of sodium aspartate having a molecular weight of 133.1 as an amino acid (2.2 times the same) are added, and the solution is stirred. did.
次にこの溶液にマンガン濃度が1.8mMol/L相当となる量に相当する硫酸マンガンを添加し、混合して始液とした。始液のマンガン濃度は100mg/Lとなる。 Next, manganese sulfate corresponding to an amount corresponding to a manganese concentration of 1.8 mMol / L was added to this solution and mixed to prepare an initial solution. The manganese concentration of the starting solution is 100 mg / L.
この始液を温度30℃に維持し、14日間撹拌を継続した。
始液に含まれたマンガン濃度は、撹拌を開始してから1時間程度の初期時間で急激に1.8から1.4mMol/L(76mg/L)まで低下する初期状態を呈し、その後は14日間かけて検出下限すなわち事実上0mMol/Lまで低下した。
つまり14日間でマンガン酸化細菌によりマンガンを1.4mMol/Lだけ低減させることができた。
The starting liquid was maintained at a temperature of 30 ° C., and stirring was continued for 14 days.
The manganese concentration contained in the starting solution exhibits an initial state in which the concentration rapidly decreases from 1.8 to 1.4 mMol / L (76 mg / L) in an initial time of about 1 hour after the start of stirring. It decreased to the lower detection limit, that is, practically 0 mMol / L over the day.
That is, manganese could be reduced by 1.4 mMol / L by manganese oxidizing bacteria in 14 days.
(実施例1に基づくマンガン酸化細菌の活動の評価)
上記実施例1の結果は添加したマンガン酸化細菌が増殖活動し、溶液中のマンガンを酸化除去したためと考えられる。
(Evaluation of the activity of manganese-oxidizing bacteria based on Example 1)
The result of Example 1 is considered to be because the added manganese-oxidizing bacteria proliferated and oxidized and removed manganese in the solution.
<実施例2>
アミノ酸としてアスパラギン酸の代わりに分子量が141のグルタミン酸のナトリウム塩4mMol/Lを添加した以外は、実施例1と同じ条件で14日間撹拌を実施した。この時のマンガン濃度の変化は初期期間で1.8から1.5mMol/L(84mg/L)まで低下し、その後14日経過後は検出下限、すなわち事実上0mMol/Lとなった。
<Example 2>
Stirring was carried out for 14 days under the same conditions as in Example 1 except that 4 mMol / L of glutamic acid sodium salt having a molecular weight of 141 was added as an amino acid instead of aspartic acid. At this time, the change in manganese concentration decreased from 1.8 to 1.5 mMol / L (84 mg / L) in the initial period, and then reached the lower detection limit, that is, practically 0 mMol / L after 14 days.
<比較例1>
アミノ酸としてアスパラギン酸の代わりに分子量が75のグリシン4mMol/Lを添加した以外は、実施例1と同じ条件で14日間撹拌を実施した。この時のマンガン濃度の変化は初期状態で1.8から1.3mMol/Lに低下し、その後14日経過後には0.2mMol/Lとなった。この時の変化量は1.1mMol/L(60mg/L)だった。
<Comparative Example 1>
Stirring was carried out for 14 days under the same conditions as in Example 1 except that glycine 4 mMol / L having a molecular weight of 75 was added as an amino acid instead of aspartic acid. The change in manganese concentration at this time decreased from 1.8 to 1.3 mMol / L in the initial state, and then became 0.2 mMol / L after 14 days. The amount of change at this time was 1.1 mMol / L (60 mg / L).
(実施例1、2と比較例1に基づくアミノ酸分子量の評価)
実施例1、2と比較例1の対比から、分子量が大きすぎるアミノ酸は製造が難しいことや経済的に妥当でなく、アミノ酸としては分子量が概ね90以上のアラニンやグルタミン酸ナトリウムなどを用いるのが望ましいことがわかる。
(Evaluation of amino acid molecular weight based on Examples 1 and 2 and Comparative Example 1)
From the comparison between Examples 1 and 2 and Comparative Example 1, it is difficult to produce an amino acid having a too high molecular weight, and it is not economically appropriate. I understand that.
<比較例2>
アミノ酸としてアスパラギン酸を1mMol/Lとなる量を添加した以外は実施例1と同じ条件で14日間撹拌実施した。この時のマンガン濃度は初期状態で1.8から1.4mMol/Lに低下し、その後14日経過後には0.9mMol/Lとなった。0.5mMol/L(27mg/L)しかマンガン濃度は低下せず、マンガン酸化細菌の活性化が不十分で濃度の下がり方は実施例1と比較すると鈍くなった。
<Comparative example 2>
Stirring was carried out for 14 days under the same conditions as in Example 1 except that aspartic acid was added in an amount of 1 mMol / L as an amino acid. The manganese concentration at this time decreased from 1.8 to 1.4 mMol / L in the initial state, and then became 0.9 mMol / L after 14 days. The manganese concentration decreased only by 0.5 mMol / L (27 mg / L), the activation of the manganese-oxidizing bacteria was insufficient, and the method of decreasing the concentration became dull compared to Example 1.
(実施例1と比較例2に基づくアミノ酸添加量の評価)
図3に示したアミノ酸添加量の関係から、マンガン低減量(ΔMn)を60mg/L以上確保するには、アミノ酸は概ね3mMol/L以上の量を添加することが望ましいことがわかる。
マンガンの初期の濃度1.8mMol/Lと比較すると、マンガン濃度に対して1.6倍以上のモル濃度量の添加が望ましいこととなる。
(Evaluation of amino acid addition amount based on Example 1 and Comparative Example 2)
From the relationship of the amino acid addition amount shown in FIG. 3, it can be seen that it is desirable to add the amino acid in an amount of about 3 mMol / L or more in order to secure a manganese reduction amount (ΔMn) of 60 mg / L or more.
Compared to the initial manganese concentration of 1.8 mMol / L, it is desirable to add a molar concentration of 1.6 times or more with respect to the manganese concentration.
<比較例3>
栄養素としてグルコースを全く添加しなかったこと以外は実施例1と同じ条件で 14日間撹拌を継続した。この時のマンガン濃度の変化は初期状態で1.8から1.4mMol/Lまで低下し、その後14日経過後には0.4mMol/Lとなった。この時の変化量は0.9mMol/L(濃度52mg/L)だった。
<Comparative Example 3>
Stirring was continued for 14 days under the same conditions as in Example 1 except that no glucose was added as a nutrient. The change in manganese concentration at this time decreased from 1.8 to 1.4 mMol / L in the initial state, and then became 0.4 mMol / L after 14 days. The amount of change at this time was 0.9 mMol / L (concentration 52 mg / L).
(実施例1と比較例3に基づくグルコース添加の評価)
比較例3を実施例1と対比すると、マンガン濃度の低下は認められるが、マンガン酸化細菌の活性化が不十分で、マンガン濃度の下がり方は実施例1と比較すると鈍く、グルコースを添加することの有効性が確認された。
(Evaluation of glucose addition based on Example 1 and Comparative Example 3)
When Comparative Example 3 is compared with Example 1, a decrease in manganese concentration is observed, but activation of manganese-oxidizing bacteria is insufficient, and the method of decreasing manganese concentration is dull compared to Example 1, and glucose is added. The effectiveness of was confirmed.
(まとめ)
図4に示したグルコースの添加量の関係から、マンガン低減量(ΔMn)を60mg/L以上とするためには、グルコースを概ね0.4mMol/L程度添加することが必要となる。しかし過剰に添加しても前述のように雑菌の繁殖によってマンガン酸化細菌の活性化が鈍化するなど逆効果であり、上限は1mMol/Lとすることが好ましい。
マンガン濃度は1.8mMol/Lから低減していくので、グルコースはマンガンの0.2倍当量以上、0.6倍当量以下の量を添加することが効果的となる。
(Summary)
From the relationship of the addition amount of glucose shown in FIG. 4, it is necessary to add approximately 0.4 mMol / L of glucose in order to reduce the manganese reduction amount (ΔMn) to 60 mg / L or more. However, even if it is added in excess, it has an adverse effect such as the activation of manganese-oxidizing bacteria being slowed by the propagation of various bacteria as described above, and the upper limit is preferably 1 mMol / L.
Since the manganese concentration is decreased from 1.8 mMol / L, it is effective to add glucose in an amount of 0.2 to 0.6 times the amount of manganese.
本発明のマンガン除去方法はあらゆる排水からマンガンを除去することに適用できるが、ニッケル酸化鉱石の湿式製錬プロセスにおける排水のような大量の排水中からのマンガンの除去に好適である。 The manganese removal method of the present invention can be applied to removing manganese from any wastewater, but is suitable for removing manganese from a large amount of wastewater such as wastewater in a hydrometallurgical process of nickel oxide ore.
Claims (4)
ことを特徴とする排水からのマンガンの除去方法。 A method for removing manganese from wastewater containing manganese by manganese oxidizing bacteria, comprising adding an amino acid having a molecular weight of 90 or more and glucose.
ことを特徴とする請求項1記載の排水からのマンガンの除去方法。 The method for removing manganese from waste water according to claim 1, wherein the amino acid is added in an amount such that the molar concentration of manganese is 1.6 to 2.2 times the molar concentration of manganese in the waste water.
ことを特徴とする請求項1記載の排水からのマンガンの除去方法。 The method for removing manganese from wastewater according to claim 1, wherein the amount of glucose added is an amount that provides a molar concentration of 0.2 to 0.6 times the molar concentration of manganese in the wastewater.
ことを特徴とする排水からのマンガンの除去方法。 As a preliminary step, alkali is added to the wastewater containing manganese in advance to adjust the pH, the manganese concentration is reduced to 65 mg / L or less, and the wastewater obtained in the preliminary step is used for the treatment according to claim 1. A method for removing manganese from wastewater.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040695 WO2018096962A1 (en) | 2016-11-22 | 2017-11-13 | Method for removing manganese from wastewater |
AU2017365413A AU2017365413B2 (en) | 2016-11-22 | 2017-11-13 | Method for removing manganese from wastewater |
PH12018501442A PH12018501442A1 (en) | 2016-11-22 | 2018-07-05 | Method for removing manganese from wastewater |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016226541 | 2016-11-22 | ||
JP2016226541 | 2016-11-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018086643A true JP2018086643A (en) | 2018-06-07 |
JP6956971B2 JP6956971B2 (en) | 2021-11-02 |
Family
ID=62494052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017101302A Active JP6956971B2 (en) | 2016-11-22 | 2017-05-23 | How to remove manganese from wastewater |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6956971B2 (en) |
AU (1) | AU2017365413B2 (en) |
PH (1) | PH12018501442A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418151A (en) * | 1977-07-08 | 1979-02-09 | Kajiyama Kankiyou Gijiyutsu Ke | Method of removing iron and manganese dissolved in water |
JPS5952583A (en) * | 1982-09-18 | 1984-03-27 | Dowa Mining Co Ltd | Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria |
JPH04235792A (en) * | 1991-01-11 | 1992-08-24 | Toyo Plant:Kk | Treatment of ground water |
US5441641A (en) * | 1992-07-13 | 1995-08-15 | Vail; William J. | Process for removing manganese from solutions including aqueous industrial waste |
JP2001224364A (en) * | 1998-12-28 | 2001-08-21 | Natl Inst Of Advanced Industrial Science & Technology Meti | New microorganism |
JP2002543978A (en) * | 1999-05-12 | 2002-12-24 | ドウグルモン・エス・アー | Method, apparatus and use of said method for the biological removal of metallic elements present in water in the ionized state |
WO2011074586A1 (en) * | 2009-12-15 | 2011-06-23 | 国立大学法人岡山大学 | Novel microorganism capable of producing oxide |
JP2016049019A (en) * | 2014-08-28 | 2016-04-11 | 公立大学法人 滋賀県立大学 | Method for enhancing lignin decomposing power of homobasidiomycetes |
JP2016168029A (en) * | 2015-03-13 | 2016-09-23 | 国立大学法人広島大学 | Enrichment culture method of manganese oxidation bacteria, method for generation of bio-manganese oxidation materials, recovery method of metals, and microbial community |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69221316D1 (en) * | 1991-10-25 | 1997-09-04 | Univ Queensland | Method and device for removing manganese from water. |
-
2017
- 2017-05-23 JP JP2017101302A patent/JP6956971B2/en active Active
- 2017-11-13 AU AU2017365413A patent/AU2017365413B2/en active Active
-
2018
- 2018-07-05 PH PH12018501442A patent/PH12018501442A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418151A (en) * | 1977-07-08 | 1979-02-09 | Kajiyama Kankiyou Gijiyutsu Ke | Method of removing iron and manganese dissolved in water |
JPS5952583A (en) * | 1982-09-18 | 1984-03-27 | Dowa Mining Co Ltd | Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria |
JPH04235792A (en) * | 1991-01-11 | 1992-08-24 | Toyo Plant:Kk | Treatment of ground water |
US5441641A (en) * | 1992-07-13 | 1995-08-15 | Vail; William J. | Process for removing manganese from solutions including aqueous industrial waste |
JP2001224364A (en) * | 1998-12-28 | 2001-08-21 | Natl Inst Of Advanced Industrial Science & Technology Meti | New microorganism |
JP2002543978A (en) * | 1999-05-12 | 2002-12-24 | ドウグルモン・エス・アー | Method, apparatus and use of said method for the biological removal of metallic elements present in water in the ionized state |
WO2011074586A1 (en) * | 2009-12-15 | 2011-06-23 | 国立大学法人岡山大学 | Novel microorganism capable of producing oxide |
JP2016049019A (en) * | 2014-08-28 | 2016-04-11 | 公立大学法人 滋賀県立大学 | Method for enhancing lignin decomposing power of homobasidiomycetes |
JP2016168029A (en) * | 2015-03-13 | 2016-09-23 | 国立大学法人広島大学 | Enrichment culture method of manganese oxidation bacteria, method for generation of bio-manganese oxidation materials, recovery method of metals, and microbial community |
Non-Patent Citations (1)
Title |
---|
BOHU TSING: "Biological Low-pH- Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 82(10), JPN6017050375, May 2016 (2016-05-01), US, pages 3009 - 3021, ISSN: 0004478811 * |
Also Published As
Publication number | Publication date |
---|---|
AU2017365413B2 (en) | 2019-10-03 |
PH12018501442A1 (en) | 2019-03-04 |
JP6956971B2 (en) | 2021-11-02 |
AU2017365413A1 (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5229416B1 (en) | Manganese recovery method | |
RU2008130946A (en) | HEMATITIS DEPOSIT | |
EP3478863B1 (en) | Recovery of heavy metals by selective precipitation | |
CN111018192A (en) | Method for preparing high-purity ferrous iron by using heavy metal ions in ferrous solution precipitated by sodium sulfide solid | |
US10414680B2 (en) | Method for the biological treatment of sulphate containing waste water, via reduction of sulphate to sulphide then its oxidation to elemental sulphur | |
US6852305B2 (en) | Process for the production of hydrogen sulphide from elemental sulphur and use thereof in heavy metal recovery | |
JP3895926B2 (en) | Process for producing hydrogen sulfide from elemental sulfur and its use in heavy metal recovery | |
WO2018096962A1 (en) | Method for removing manganese from wastewater | |
JP2018086643A (en) | Method for removing manganese from drainage | |
JP2017159222A (en) | Method for removing arsenic | |
KR101662144B1 (en) | Method and System for separating useful metals from mine drainage using hydrogen sulfide gas | |
JP7176686B2 (en) | Manganese removal method | |
JP5719320B2 (en) | Zinc recovery method from galvanizing waste liquid | |
AU2017362828B2 (en) | Method for removing manganese | |
KR20100032986A (en) | Leaching method of valuable metal from spent catalyst with sulfur oxidizing bacteria | |
AU2016311670B2 (en) | Method for removing manganese from wastewater | |
JP5739366B2 (en) | Method for reducing selenate compound, method for separating and recovering selenium | |
WO2018092694A1 (en) | Method for removing manganese | |
JP6277940B2 (en) | Cadmium-containing wastewater treatment method | |
JP6269960B2 (en) | Cadmium-containing wastewater treatment method | |
JP2014184388A (en) | Method for treating biomass, and biomass treatment device | |
JPH10202300A (en) | Method for removing heavy metals from sewage sludge | |
KR20160132635A (en) | Bioleaching from highly concentrated arsenic mine tailing using the sulfur-oxidizing bacteria | |
JP2016123314A (en) | Novel selenium reduction microorganisms and selenium treatment method using microorganisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210609 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210609 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210618 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6956971 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |