JPS582166B2 - Method for removing cobalt from aqueous nickel sulfate solution - Google Patents

Method for removing cobalt from aqueous nickel sulfate solution

Info

Publication number
JPS582166B2
JPS582166B2 JP15864879A JP15864879A JPS582166B2 JP S582166 B2 JPS582166 B2 JP S582166B2 JP 15864879 A JP15864879 A JP 15864879A JP 15864879 A JP15864879 A JP 15864879A JP S582166 B2 JPS582166 B2 JP S582166B2
Authority
JP
Japan
Prior art keywords
cobalt
nickel
amount
nickel sulfate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15864879A
Other languages
Japanese (ja)
Other versions
JPS5684323A (en
Inventor
加藤忠士
佐藤正晴
山本修
酒井茂
渡辺勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP15864879A priority Critical patent/JPS582166B2/en
Publication of JPS5684323A publication Critical patent/JPS5684323A/en
Publication of JPS582166B2 publication Critical patent/JPS582166B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明はコバルトを含有する硫酸ニッケルの水溶液に第
2水酸化ニッケルを添加しコバルトを沈殿物として分離
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of adding secondary nickel hydroxide to an aqueous solution of nickel sulfate containing cobalt and separating cobalt as a precipitate.

従来ニッケルの精製工程におけるコバルトイオンの除去
方法としては、 1)コバルトを含有する硫酸ニッケル水溶液及び又は塩
化ニッケル水溶液に炭酸ニッケルまたは消石灰などの中
和剤と塩素ガスなどの酸化剤を添加してコバルトイオン
を3価の水酸化物として沈殿させて除去する方法、 2)硫酸ニッケル水溶液に中和量よりやや過剰の水酸化
ナトリウムを加え、得られたスラリーを電解的に酸化す
ることによって第2水酸化ニッケルとし、得られた沈殿
をコバルトを含有する硫酸ニッケルの水溶液に添加して
、コバルトを沈殿物として分離する方法等がある。
Conventional methods for removing cobalt ions in the nickel refining process include: 1) Adding a neutralizing agent such as nickel carbonate or slaked lime and an oxidizing agent such as chlorine gas to a nickel sulfate aqueous solution and/or nickel chloride aqueous solution containing cobalt to remove cobalt ions. 2) A method in which ions are precipitated and removed as trivalent hydroxide; 2) A slightly excess amount of sodium hydroxide than the neutralization amount is added to an aqueous nickel sulfate solution, and the resulting slurry is electrolytically oxidized to produce secondary water. There is a method of separating the cobalt as a precipitate by adding the resulting precipitate to an aqueous solution of nickel sulfate containing cobalt.

しかしながら1)の方法は硫酸ニッケル水溶液に相当量
の塩素イオンが混入し、これがニッケルの製造工程内の
設備を腐食するので補修コストまたは腐食に耐えるため
の設備の初期投資コストが大幅に嵩むという欠点がある
However, the disadvantage of method 1) is that a considerable amount of chlorine ions are mixed into the nickel sulfate aqueous solution, which corrodes equipment used in the nickel manufacturing process, resulting in a significant increase in repair costs or initial investment costs for equipment to withstand corrosion. There is.

2)の方法の場合には塩素イオンの混入はないが電解酸
化時の電流効率が極度に低いため、効率よく第2水酸化
ニッケルの割合の多い水酸化物が得られず、そのためコ
バルトの除去率が悪いと云うことと、得られる第2水酸
化ニッケルの濾過性が悪いので、濾過洗浄の際に大きな
設備を要する等の欠点がある。
In the case of method 2), there is no contamination of chlorine ions, but the current efficiency during electrolytic oxidation is extremely low, so hydroxide with a high proportion of secondary nickel hydroxide cannot be efficiently obtained, and therefore cobalt removal is difficult. There are drawbacks such as a low filtering rate and poor filterability of the second nickel hydroxide obtained, such as requiring large equipment for filtration and cleaning.

本発明の目的は上記の欠点を解消し、硫酸ニッケル中に
含まれるコバルトを沈殿物として効率良く除去する方法
を提供する事にある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for efficiently removing cobalt contained in nickel sulfate as a precipitate.

この目的を達成するため、本発明は、まずコバルトを含
有する硫酸ニッケル水溶液に添加して、効率よくコバル
トを沈殿させる事のできる第2水酸化ニッケル〔Ni(
OH)3〕の製造法について研究し、さらにその添加方
法等について多くの実験を重ねた結果得られたもので、
硫酸ニッケル水溶液に中和量より少し過剰の水酸化アル
カリ水溶液を加えスラリー状としたのち、ニッケル量に
府し1.2当量以下の次亜塩素酸ナトリウム水溶液を加
えて第2水酸化ニッケルの沈殿を生成させて分離し、該
沈殿をコバルトを含有する硫酸ニッケル水溶液に、該液
中のコバルト量に対しニッケルとして2当量以上、希硫
酸を加えて水溶液のpHを3〜5望ましくは4〜5の範
囲に調整しつゝ添加し、コバルトを沈殿物として分離す
るものである。
In order to achieve this objective, the present invention first develops secondary nickel hydroxide [Ni (
This was obtained through research on the manufacturing method of OH)3 and many experiments on the addition method, etc.
After adding a slightly excess aqueous alkali hydroxide solution to the nickel sulfate aqueous solution to form a slurry, the amount of nickel is adjusted to 1.2 equivalents or less and an aqueous sodium hypochlorite solution is added to precipitate second nickel hydroxide. The precipitate is added to an aqueous solution of nickel sulfate containing cobalt, and diluted sulfuric acid is added in an amount of 2 or more equivalents of nickel based on the amount of cobalt in the solution to adjust the pH of the aqueous solution to 3 to 5, preferably 4 to 5. The amount of cobalt is adjusted to within this range, and cobalt is separated as a precipitate.

以下本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

本発明において第2水酸化ニッケルを製造するための硫
酸ニッケル水溶液としては、原則としてコバルトを含有
しないものが好ましいが数g/l程度のコバルトを含有
するものも使用することができる。
In the present invention, the aqueous nickel sulfate solution for producing the second nickel hydroxide preferably does not contain cobalt, but it is also possible to use a solution containing about several g/l of cobalt.

ニッケルの濃度としては特に限定はないが通常50〜1
509/l程度のものを常温〜60℃で使用するのが望
ましい。
There is no particular limitation on the concentration of nickel, but it is usually 50 to 1.
It is desirable to use one with a concentration of about 509/l at room temperature to 60°C.

硫酸ニッケル水溶液に添加する水酸化アルカリ水溶液と
しては特に限定はないが、後処理等が煩繍とならないよ
うに水酸化ナトリウム又は水酸化カリウムを、例えば2
0〜30重量係の濃度で、常温で硫酸ニッケル水溶液の
pHを11〜12程度にする量を使用するのが好ましい
The alkaline hydroxide aqueous solution to be added to the nickel sulfate aqueous solution is not particularly limited, but sodium hydroxide or potassium hydroxide, for example, 2
It is preferable to use an amount that makes the pH of the nickel sulfate aqueous solution about 11 to 12 at room temperature at a concentration of 0 to 30% by weight.

水酸化アルカリ以外の例えば炭酸ナトリウム等も一応用
いる事ができるが、比較例に見られるよう濾過性は若干
向上するが、コバルトの除去率は大幅に低下する。
Other than alkali hydroxide, such as sodium carbonate, can also be used, but as seen in the comparative example, the filterability is slightly improved, but the cobalt removal rate is significantly lowered.

水酸化アルカリを添加した硫酸ニッケル水溶液は、第1
水酸化ニッケル〔Ni(OH)2〕の沈殿カ生成してス
ラリー状となるが、このスラリー状の溶液は、次に好ま
しくは水で1.5倍程度に希釈し、さらに50〜60℃
に加温したのち次亜塩素酸ナトリウムを、ニッケル量に
対して有効塩素量で1.0〜1.2当量、好ましくは1
.1当量軽く攪拌しながら添加する。
The nickel sulfate aqueous solution to which alkali hydroxide has been added is the first
A precipitate of nickel hydroxide [Ni(OH)2] is formed to form a slurry. Next, this slurry solution is preferably diluted to about 1.5 times with water and further heated to 50 to 60°C.
After heating the sodium hypochlorite to 1.0 to 1.2 equivalents, preferably 1.0 to 1.2 equivalents of available chlorine to the amount of nickel,
.. Add 1 equivalent with gentle stirring.

こ〕でスラリー状の溶液を好ましくは50〜60℃に保
持して反応させるのは生成する沈殿物の濾過性を良くす
るためである。
The reason why the slurry-like solution is preferably maintained at 50 to 60° C. for the reaction is to improve the filterability of the formed precipitate.

こうして生成した水酸化ニッケルの沈殿は少なくとも8
0%の第2水酸化ニッケル〔Ni(OH)3〕を含んで
いる。
The nickel hydroxide precipitate thus formed is at least 8
Contains 0% secondary nickel hydroxide [Ni(OH)3].

ついで上記の沈殿はりパルプ法又は濾過洗浄して母液と
分離したのち、ケーキ状のまま又は空気中で乾燥したの
ち、コバルト沈殿剤として使用する。
Then, it is separated from the mother liquor by the above-mentioned precipitation pulp method or filtration and washing, and then used as a cobalt precipitant either as a cake or after drying in the air.

次に、通常ニッケル50〜150g/l、コバルト数g
/lを含む硫酸ニッケル水溶液に少量の希硫酸を添加し
軽く攪拌しながら液のpHを3〜5好ましくは4〜5の
範囲に保持して、上記の第2水酸化ニッケルをニッケル
として、該水溶液中のコバルト量の2当量以上、好まし
くは3〜4当量添加する。
Next, usually 50 to 150 g/l of nickel and several g of cobalt.
Add a small amount of dilute sulfuric acid to an aqueous solution of nickel sulfate containing /l and maintain the pH of the solution in the range of 3 to 5, preferably 4 to 5, while stirring lightly. It is added in an amount of 2 or more equivalents, preferably 3 to 4 equivalents, of the amount of cobalt in the aqueous solution.

こゝでコバルトを沈殿物として分離するに要する時間は
1時間程度で充分である。
In this case, about one hour is sufficient to separate the cobalt as a precipitate.

第2水酸化ニッケルの沈殿を生成させるために添加する
次亜塩素酸ナトリウムの添加量を有効塩素量で1.2当
量以下、好ましくは1.1当量とするのはそれ以上にな
ると塩素量が増加して好ましくないので必要最低限度と
したものである。
The reason why the amount of sodium hypochlorite added to form a precipitate of secondary nickel hydroxide is set to 1.2 equivalents or less, preferably 1.1 equivalents in terms of effective chlorine amount is that if the amount exceeds that amount, the amount of chlorine increases. Since it would be undesirable to increase the amount, it is set to the minimum necessary level.

また第2水酸化ニッケルを添加する際のコバルト含有硫
酸ニッケル水溶液のpHを、3〜5の範囲に調整する理
由は、ともにその範囲を外れるとコバルトの除去率が低
下するためである。
Further, the reason why the pH of the cobalt-containing nickel sulfate aqueous solution when adding the second nickel hydroxide is adjusted to a range of 3 to 5 is that the removal rate of cobalt decreases when both of the pH values are outside of this range.

その理由については明確ではないがpH5.0以上の場
合は2価の水酸化物によって3価の水酸化物の表面がお
おわれるため、コバルトイオンの酸化が阻害されるため
と推察される。
Although the reason for this is not clear, it is presumed that when the pH is higher than 5.0, the surface of the trivalent hydroxide is covered with the divalent hydroxide, which inhibits the oxidation of cobalt ions.

第2水酸化ニッケルの量をニッケルとしてコバルトの2
当量以上、好ましくは3〜4当量添加する理由は、2当
量以下ではコバルトの除去が不充分となるからであり、
4当量以上は実用上必要がなく徒らに多量のニッケルを
添加すると、コバルトの除去に際し沈殿するコバルトの
沈殿にニッケルの混入率が多くなり好ましくないためで
ある。
The amount of secondary nickel hydroxide is nickel and the amount of cobalt is 2.
The reason for adding at least an equivalent amount, preferably 3 to 4 equivalents, is that if the amount is less than 2 equivalents, the removal of cobalt will be insufficient.
This is because an amount of 4 equivalents or more is not necessary in practice, and adding an unnecessarily large amount of nickel will undesirably increase the mixing rate of nickel in the cobalt precipitate that is precipitated when cobalt is removed.

本発明法の第1工程により得られる第2水酸化ニッケル
は、後述の実施例に見られるように非常に濾過性が良く
、かつ純度も良いので、少量の添加で数g/lのコバル
トを95%以上、濃度として0.1g/l以下まで効率
よく除去することができる。
The second nickel hydroxide obtained by the first step of the method of the present invention has very good filterability and purity as seen in the examples below, so it can contain several g/l of cobalt by adding a small amount. It is possible to efficiently remove 95% or more to a concentration of 0.1 g/l or less.

その添加量を例えば4当量以上とさらに増量すれば除去
率はさらに向上して99%以上、0.01g/l以下の
濃度とすることができる。
If the amount added is further increased, for example, to 4 equivalents or more, the removal rate can be further improved to a concentration of 99% or more and 0.01 g/l or less.

尚本発明はコバルトを含有する塩化ニッケル水溶液中の
コバルトの除去にも応用することができる。
The present invention can also be applied to the removal of cobalt from an aqueous nickel chloride solution containing cobalt.

以下実施例について説明する。Examples will be described below.

実施例 1 125g/lのニッケルを含有するpH1.0の硫酸ニ
ッケル水溶液1lを3lのビーカーに入れ、20重量係
の水酸化ナトリウム水溶液をpH12.0になるまで添
加して、軽く攪拌しつつ30分間処理した。
Example 1 Put 1 liter of nickel sulfate aqueous solution with pH 1.0 containing 125 g/l of nickel into a 3 liter beaker, add 20 parts by weight of sodium hydroxide aqueous solution until the pH reaches 12.0, and add 1 liter of nickel sulfate aqueous solution with pH 1.0 containing 125 g/l of nickel until the pH reaches 12.0. Processed for minutes.

次に得られたスラリーに500mlの水を添加したのち
50℃に保持した湯煎器にビーカー→を入れ、有効塩素
12重量%の次亜塩素酸ナトリウム溶液をニッケルに対
して1.1当量軽く撹拌しながら添加し1時間処理した
のち、生成した沈殿を定性濾紙で軽く濾別し、さらに沈
殿はまた別のビーカーに移し100g/lになるように
水を添加したのち定性濾紙を張ったヌツチェ濾過器を使
用して真空濾過し、さらに空気中で乾燥して第1表に示
す組成の沈殿物を得た。
Next, add 500ml of water to the obtained slurry, then place the beaker in a water bath maintained at 50°C, and lightly stir a sodium hypochlorite solution containing 12% by weight of available chlorine (1.1 equivalent to nickel). After 1 hour of treatment, the formed precipitate was lightly filtered using qualitative filter paper, and the precipitate was transferred to another beaker, water was added to make the concentration 100 g/l, and then Nutsche filtration was performed using qualitative filter paper. The mixture was vacuum filtered using a vacuum filter and further dried in air to obtain a precipitate having the composition shown in Table 1.

つぎにpH5.5,Ni104g/l,Co1.9g/
lの含コバルト硫酸ニッケル水溶液1lを2lビーカー
に取り、第1表の第2水酸化ニッケルのケーキを乾量に
して7〜14g、該ニッケル水溶液に少量の希硫酸を添
加してpHを4.5に調整しながら添加し、所定の時間
処理した。
Next, pH5.5, Ni104g/l, Co1.9g/l
Take 1 liter of cobalt-containing nickel sulfate aqueous solution in a 2-liter beaker, add 7 to 14 g of the second nickel hydroxide cake shown in Table 1 as a dry weight, and add a small amount of dilute sulfuric acid to the nickel aqueous solution to adjust the pH to 4. 5 and was added while adjusting the concentration to 5, and was treated for a predetermined period of time.

その結果を第2表に示す。The results are shown in Table 2.

第2表より明らかなように第2水酸化ニッケルの量によ
り若干処理時間は異なるが何れも96%以上(当初の期
待値は95%以上)のコバルトの除去率が得られた。
As is clear from Table 2, the treatment time differed slightly depending on the amount of secondary nickel hydroxide, but in all cases a cobalt removal rate of 96% or higher (initially expected value was 95% or higher) was obtained.

処理時間はコバルト量に対するニッケルが3倍以上の場
合は30分間で充分満足すべき結果が得られた。
When the amount of nickel was three times or more the amount of cobalt, a treatment time of 30 minutes was enough to give satisfactory results.

実施例 2 実施例1で得た第2水酸化ニッケルを使用して、コバル
ト除去の際の水溶液のpHを4.2〜5.5、処理時間
を60分、第2水酸化ニッケルの使用量を乾量で7g(
コバルト量に対するニッケルの倍率は2倍)とした以外
は実施例1と同様にして脱コバルトの処理を行なった。
Example 2 Using the second nickel hydroxide obtained in Example 1, the pH of the aqueous solution during cobalt removal was 4.2 to 5.5, the treatment time was 60 minutes, and the amount of second nickel hydroxide used was 7g dry weight (
Cobalt removal treatment was carried out in the same manner as in Example 1, except that the ratio of nickel to cobalt amount was 2 times.

その結果を第3表に示す。The results are shown in Table 3.

第3表より明らかなように処理時のpHが5.0以上に
なるとコバルトの除去率が大幅に低下したが、それ以外
は何れも96%以上の除去率が得られた。
As is clear from Table 3, when the pH during treatment was 5.0 or higher, the cobalt removal rate decreased significantly, but in all other cases a removal rate of 96% or higher was obtained.

実施例 3 第2水酸化ニッケルを製造する際の次亜塩素酸ナトリウ
ム水溶液の添加量を変更し、第2水酸化ニッケルの添加
量を14g(乾燥)とした以外は実施例1と同様にして
処理した。
Example 3 The procedure was the same as in Example 1, except that the amount of sodium hypochlorite aqueous solution added when producing second nickel hydroxide was changed, and the amount of second nickel hydroxide added was 14 g (dry). Processed.

尚脱コバルトの処理時間は夫々30分間とした。The cobalt removal treatment time was 30 minutes in each case.

その結果を第4表に示す。The results are shown in Table 4.

第4表に示したように次亜塩素酸ナトリウムの添加量を
増加させてもコバルトの除去率に特に弊害はないが、塩
素量が増加して、装置を腐食するので好ましくない。
As shown in Table 4, increasing the amount of sodium hypochlorite added does not have any particular adverse effect on the cobalt removal rate, but it is not preferable because the amount of chlorine increases and corrodes the equipment.

実施例 4 第2水酸化ニッケルを製造する際の、次亜塩素酸ナトリ
ウム水溶液の有効塩素濃度を変更した以外は実施例1と
同様にして処理した。
Example 4 A process was carried out in the same manner as in Example 1, except that the effective chlorine concentration of the sodium hypochlorite aqueous solution used in producing the second nickel hydroxide was changed.

その結果を第5表に示す。The results are shown in Table 5.

第5表を見て解るように次亜塩素酸濃度が高い方がコバ
ルト除去率が向上する傾向が見られた。
As can be seen from Table 5, there was a tendency for the cobalt removal rate to improve as the hypochlorous acid concentration increased.

比較例 実施例1に使用した硫酸ニッケル水溶液1lに20重量
%の水酸化ナトリウム水溶液をpH値が8〜10となる
ように添加しあるいは炭酸ナトリウムを使用してpH1
2とし、第2水酸化ニッケルの添加量は14g、処理時
間1時間とした以外は実施例1と同様にして処理した。
Comparative Example A 20% by weight aqueous sodium hydroxide solution was added to 1 liter of the nickel sulfate aqueous solution used in Example 1 so that the pH value became 8 to 10, or sodium carbonate was used to adjust the pH to 1.
2, the amount of second nickel hydroxide added was 14 g, and the treatment was performed in the same manner as in Example 1, except that the treatment time was 1 hour.

その結果を第6表に示す。The results are shown in Table 6.

第6表より明らかなように緑沈時のpH値が低い場合と
アルカリとして炭酸塩を使甲した場合にはコバルトの除
去率が大幅に低下した。
As is clear from Table 6, the removal rate of cobalt was significantly reduced when the pH value at the time of green precipitation was low and when carbonate was used as the alkali.

Claims (1)

【特許請求の範囲】 1 硫酸ニッケル水溶液に、中和量よりも少し過剰の水
酸化アルカリ水溶液を加え得られる水酸化ニッケルのス
ラリーに、さらにスラリー中のニッケル量に対し1.2
当量以下の次亜塩素酸ナトリウム水溶液を添加し、生成
する沈殿を分離する第一工程と、第一工程で得られた沈
殿を、コバルトを含有する硫酸ニッケル水溶液に、該液
中のコバルト量に対しニッケルとして2当量以上、pH
3〜5で添加し、コバルトを沈殿物として分離する第二
工程とよりなることを特徴とする硫酸ニッケル水溶液か
らのコバルト除去法。 2 硫酸ニッケル水溶液に水酸化アルカリ水溶液の添加
をpH11−12となるように行なう特許請求の範囲1
項記載の硫酸ニッケル水溶液からのコバルト除去法。
[Claims] 1. To the nickel hydroxide slurry obtained by adding a slightly excess alkali hydroxide aqueous solution to the neutralization amount to the nickel sulfate aqueous solution, 1.2% of the nickel amount in the slurry is added.
A first step of adding an equivalent amount or less of an aqueous sodium hypochlorite solution and separating the resulting precipitate, and adding the precipitate obtained in the first step to an aqueous nickel sulfate solution containing cobalt, depending on the amount of cobalt in the solution. 2 equivalents or more as nickel, pH
A method for removing cobalt from an aqueous nickel sulfate solution, comprising the steps of adding cobalt in steps 3 to 5 and separating cobalt as a precipitate. 2 Claim 1 in which an alkali hydroxide aqueous solution is added to a nickel sulfate aqueous solution so that the pH becomes 11-12.
A method for removing cobalt from an aqueous nickel sulfate solution as described in .
JP15864879A 1979-12-06 1979-12-06 Method for removing cobalt from aqueous nickel sulfate solution Expired JPS582166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15864879A JPS582166B2 (en) 1979-12-06 1979-12-06 Method for removing cobalt from aqueous nickel sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15864879A JPS582166B2 (en) 1979-12-06 1979-12-06 Method for removing cobalt from aqueous nickel sulfate solution

Publications (2)

Publication Number Publication Date
JPS5684323A JPS5684323A (en) 1981-07-09
JPS582166B2 true JPS582166B2 (en) 1983-01-14

Family

ID=15676293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15864879A Expired JPS582166B2 (en) 1979-12-06 1979-12-06 Method for removing cobalt from aqueous nickel sulfate solution

Country Status (1)

Country Link
JP (1) JPS582166B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546912B2 (en) * 1997-04-30 2004-07-28 住友金属鉱山株式会社 Purification method of nickel sulfate by acidic organic extractant
JP3440752B2 (en) * 1997-04-30 2003-08-25 住友金属鉱山株式会社 Purification method of nickel sulfate containing cobalt
JP3546911B2 (en) * 1997-04-30 2004-07-28 住友金属鉱山株式会社 Purification method of high purity nickel sulfate
CN1067659C (en) * 1998-12-11 2001-06-27 清华大学 Tech. for preparing high density spherical nickel hydroxide by controlled crystallizing process
JP5962404B2 (en) * 2012-10-02 2016-08-03 三菱マテリアルテクノ株式会社 Iron separation method
CN103601257B (en) * 2013-11-08 2015-01-28 江西赣锋锂业股份有限公司 Method for removing cobalt and manganese by using nickel sulfate solution prepared from nickelous hydroxide
CN104229906B (en) * 2014-09-28 2016-01-06 梅州环保设备有限公司 The method and apparatus of the nickel-containing waste water preparation plating level single nickel salt utilizing surface treatment process to produce

Also Published As

Publication number Publication date
JPS5684323A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
CN113184820A (en) Method for preparing iron phosphate by using titanium dioxide byproduct ferrous sulfate
JPS582166B2 (en) Method for removing cobalt from aqueous nickel sulfate solution
JP3299291B2 (en) Method for obtaining a metal hydroxide having a low fluoride content
DE1812332B2 (en) PROCESS FOR FELLING MANGANE, IRON AND / OR COBALT FROM SOLUTIONS THEREOF
US4006216A (en) Preparation of nickel black
JP3945216B2 (en) Waste acid gypsum manufacturing method
JPH05319825A (en) Production of cuprous oxide
JP3994227B2 (en) Treatment method for concentrated phosphoric acid-containing wastewater
JPS6048452B2 (en) Method for removing cobalt from nickel sulfate aqueous solution
CN111039448B (en) Method for removing manganese impurities in acidic solution by ozone
JPS59373A (en) Treatment of fluorine-contg. waste water
RU2714201C1 (en) Extraction of oxalic acid from industrial ferric oxalate
US4282190A (en) Process for the manufacture of iron and aluminum-free zinc chloride solutions
JPS5950031A (en) Method for purifying iron oxide powder
JP4337267B2 (en) Method for producing high white aluminum hydroxide
KR0124823B1 (en) PRODUCING METHOD OF Zn-Ni FERRITE MATERIAL
RU2209768C2 (en) Method for preparing potassium sulfate
US1592063A (en) Process of preparing concentrated sulphite cellulose extract containing magnesium compounds
US3890243A (en) Removal of cobalt from nickel salt solutions
RU1789509C (en) Method of producing manganese carbonate
JPS596814B2 (en) Method for manufacturing vanadium compounds using molten iron alloy refining slag as raw material
SU1404552A1 (en) Method of regenerating spent entching solution
CN116534822A (en) Method for preparing ferric phosphate by using titanium dioxide waste acid by using chlorination process and application of method
CN114561542A (en) Method for improving copper recovery rate in iron-containing copper waste liquid
SU1313805A1 (en) Method for producing iron from sulfuric-acid solutions