JP4337267B2 - Method for producing high white aluminum hydroxide - Google Patents

Method for producing high white aluminum hydroxide Download PDF

Info

Publication number
JP4337267B2
JP4337267B2 JP2001031782A JP2001031782A JP4337267B2 JP 4337267 B2 JP4337267 B2 JP 4337267B2 JP 2001031782 A JP2001031782 A JP 2001031782A JP 2001031782 A JP2001031782 A JP 2001031782A JP 4337267 B2 JP4337267 B2 JP 4337267B2
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
liquid
solution
decolorization
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031782A
Other languages
Japanese (ja)
Other versions
JP2002241128A (en
Inventor
一弘 渡辺
俊博 松葉
秀 圭 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001031782A priority Critical patent/JP4337267B2/en
Publication of JP2002241128A publication Critical patent/JP2002241128A/en
Application granted granted Critical
Publication of JP4337267B2 publication Critical patent/JP4337267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、バイヤー法によって水酸化アルミニウムを製造するに際し、バイヤー工程での着色物質を含むアルミン酸ソーダ溶液から白色度の高い水酸化アルミニウムを製造するための方法に関する。
【0002】
【従来の技術】
水酸化アルミニウムは、工業的には、ボーキサイトを苛性ソーダ溶液で処理して得られたアルミン酸ソーダ溶液に、水酸化アルミニウムの種子を添加してアルミン酸ソーダを加水分解し、水酸化アルミニウムを析出させる、いわゆるバイヤー法により製造されている。
【0003】
析出した水酸化アルミニウムを濾過して回収された濾液(即ち、アルミン酸ソーダ溶液)は、再び新しい原料のボーキサイトを溶解させ、種子を添加し、加水分解して水酸化アルミニウムを析出させる操作を繰り返す。その結果、次第にアルミン酸ソーダ溶液中にボーキサイト由来の着色物質が蓄積し、これに伴って析出する水酸化アルミニウムが着色してくる。
【0004】
このため、白色度の高い水酸化アルミニウムを製造するときには、このようにして調製された水酸化アルミニウムを原料とするバイヤー工程で、水酸化アルミニウムを新しい苛性ソーダ水溶液又は高白色水酸化アルミニウム製造工程内の循環アルミン酸ソーダ溶液中に溶解し、得られたアルミン酸ソーダ水溶液に高白色の水酸化アルミニウムを種子として添加し、再び加水分解を行っている。
しかしながら、たとえこのような製造工程を採用しても、原料水酸化アルミニウム中の着色物質が次第に蓄積してくる。
【0005】
そこで、白色度の高い水酸化アルミニウムを製造するためには、アルミン酸ソーダ溶液から加水分解して水酸化アルミニウムを析出させる前に、原料の水酸化アルミニウム由来の着色物質を分離除去することが必要になり、従来においても、例えば、オゾン等で着色物質を酸化処理する方法(オゾン酸化法)、活性アルミナを用いる方法(活性アルミナ法、特開昭47-8,510号公報)、Mg及びCaの酸化物、水酸化物、炭酸塩、珪酸塩、及び蓚酸塩と、Baの炭酸塩、珪酸塩、蓚酸塩、及び硫酸塩とからなるアルカリ土類金属化合物から選ばれた1種又は2種以上を用いる方法(アルカリ土類金属化合物法、特公昭57-31,527号公報)等の方法が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記オゾン酸化法には簡便であるという利点はあるが、安全性の点で問題があり、また、活性アルミナ法には同時に金属不純物をも除去できるという利点はあるが、製造コストが嵩むという問題があり、しかも、これらいずれの方法も求められる高白色度を達成できないという問題がある。
【0007】
これに対して、アルカリ土類金属化合物法には高白色度を達成できるという利点はあるが、用いる添加物質の粒子径、BET比表面積等の性状や添加量によって、得られる水酸化アルミニウムの白色度が大きく左右されたり、また、仮にアルカリ土類金属化合物法のように、目的とする白色度の高い水酸化アルミニウムが得られたとしても、アルミニウム分がアルミン酸カルシウム(3CA)等として失われるアルミ分ロスが多く、しかも、発生したアルミン酸カルシウムが熱交換器などの工程内配管にスケールとして付着し、工程操業に悪影響を及ぼす等の問題を引き起こし、工業的には改善の余地がある。
【0008】
そこで、本発明者らは、上述した従来方法の場合のような問題がなく、しかも、高い白色度を有する水酸化アルミニウムを工業的に有利に製造することができる方法について鋭意検討した結果、アルミン酸ソーダ溶液中の着色物質を吸着する水酸化マグネシウムの吸着性能を高めるだけでなく、同時に濾過性能を維持できると共にアルミ分及び/又はソーダ分のロスをも可及的に抑制できる方法に到達し、本発明を完成した。
【0009】
従って、本発明の目的は、単に高い白色度を有するだけでなく、濾過性能に優れているほかアルミナ分及び/又はソーダ分のロスを可及的に抑制でき、工業的に有利に水酸化アルミニウムを製造することができる高白色水酸化アルミニウムの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
すなわち、本願の第一の発明は、バイヤー法によって水酸化アルミニウムを製造するに際し、バイヤー工程でのアルミン酸ソーダ溶液中に、脱色剤としてBET比表面積10m2/g以上、平均粒子径2μm以上、及びカルシウム含有量(酸化カルシウム換算)5質量%以下の水酸化マグネシウムを3g/リットル以上の割合で添加し、脱色処理した後に濾過して得られた脱色処理液から水酸化アルミニウムを析出せしめることを特徴とする高白色水酸化アルミニウムの製造方法である。
【0011】
また、本願の第二の発明は、析出させて得られた水酸化アルミニウムを原料とするバイヤー工程でのアルミン酸ソーダ溶液中に脱色剤を添加し、混合して接触処理する混合接触工程と、接触処理後の混合物を固液分離して脱色処理された脱色処理液を回収する固液分離工程と、回収された脱色処理液から水酸化アルミニウムを析出させる析出工程と、析出した水酸化アルミニウムを固液分離して回収する製品回収工程とを有するバイヤー法によって水酸化アルミニウムを製造する方法であり、脱色剤としてBET比表面積10m2/g以上、平均粒子径2μm以上、及びカルシウム含有量(酸化カルシウム換算)5質量%以下の水酸化マグネシウムを3g/リットル以上の割合で添加すると共に、脱色処理液の波長380nm吸光度を測定し、この脱色処理液の波長380nm吸光度測定値により製品回収工程で回収されて混合接触工程に循環される分離回収液の循環使用率を制御することを特徴とする高白色水酸化アルミニウムの製造方法である。
【0012】
本願の第一の発明において、アルミン酸ソーダ溶液と脱色剤とを接触させる混合接触工程で脱色剤として添加される水酸化マグネシウムは、BET比表面積が10m2/g以上、好ましくは14m2/g以上であり、平均粒子径が2μm以上、好ましくは3μm以上であり、また、カルシウム含有量(酸化カルシウム換算)が5質量%以下、好ましくは2質量%以下である。
【0013】
BET比表面積については、10m2/gより小さいと、その脱色性能が不足し、経済的な水酸化マグネシウムの使用量、例えば1〜2.5g/リットルでは所望の白色度(例えば、脱色処理液の380nm吸光度(黄味)0.15以下)を達成することができない。
また、平均粒子径については、2μmより小さくなると、脱色処理後の濾過分離性が著しく低下し、濾過時間が長くなり、また、多数台の濾過機を必要とする等、経済的に負担が増大する。
更に、脱色剤として添加される水酸化マグネシウム中のカルシウム含有量(酸化カルシウム換算)については、5質量%を超えると、酸化カルシウムとアルミン酸ソーダとが反応してアルミン酸カルシウムを生成し、アルミ分ロスが増加するほか、熱交換器等の工程内配管にスケールとして付着し、生産性や作業性が低下する原因になる。
【0014】
本発明方法においては、このような水酸化マグネシウムを脱色剤として混合接触工程でアルミン酸ソーダ溶液中に3g/リットル以上、好ましくは3〜5g/リットルの割合で添加し、脱色処理した後に濾過して得られた脱色処理液から水酸化アルミニウムを析出せしめる。この際に、アルミン酸ソーダ溶液中に添加する水酸化マグネシウムの添加量が3g/リットルより少ないと、脱色効果が得られず所望の白色度を達成できない場合がある。また、添加量の上限については、所望の白色度を達成するという観点からは特に存在しないが、10g/リットル以上添加しても格別な白色度向上効果はない。
【0015】
この混合接触工程での処理条件については、温度については水酸化アルミニウムの析出が起こらない温度、例えば80〜150℃程度までが好適であり、また、接触時間については0.5〜7時間が適当である。
【0016】
また、接触処理後の混合物を固液分離して脱色処理された脱色処理液を回収する固液分離工程では、一般に、真空濾過機、加圧濾過機、砂濾過機等を好適に用いることができ、より好ましくは、ケリーフィルター等の加圧濾過機を用いるのがよい。
【0017】
上記固液分離工程で得られた脱色処理液については、次にこの脱色処理液から水酸化アルミニウムを析出させる析出工程に移送され、従来のバイヤー法と同様に、脱色処理液中に水酸化アルミニウムの種子を添加し、水酸化アルミニウムを析出させる操作が行われる。
【0018】
そして、この析出工程での析出操作に先駆けて、例えば、吸光光度分析法等の手段を用いて脱色処理液の波長380nm吸光度を経時的に又は定期的に測定し、得られた脱色処理液の波長380nm吸光度測定値により製品回収工程で回収されて循環される分離回収液の循環使用率を制御する。
ここで、製品回収工程で回収されて循環される分離回収液の循環使用率とは、高白色水酸化アルミニウムの製造工程に戻す母液量を析出終了段階で得られる希薄アルミン酸ソーダ溶液、製品濾過時の濾液及び濾過して得られた水酸化アルミニウムの洗浄液の合計に対する高白色水酸化アルミニウムの製造工程に戻す母液量の割合を意味する。
【0019】
この脱色処理液の波長380nm吸光度測定値による分離回収液の循環使用率の制御は、製品の水酸化アルミニウムに要求される白色度に応じて任意に設定できるものであるが、例えば、白色度を示す指標の1つである色差計により測定したb値が3以下、好ましくはb値2以下にまで到達させるためには、脱色処理液の波長380nm吸光度測定値が0.15以下のとき分離回収液の循環使用率を100%に、この波長380nm吸光度測定値が0.15を超えるとき所定濃度の新しい苛性ソーダ水溶液を加えて吸光度測定値が0.15となる希釈率に対応する循環使用率に設定し、製品の黄色ばみを制御するのがよい。
【0020】
このようにして析出工程で脱色処理液から水酸化アルミニウムを析出させて得られたスラリーは、次にこのスラリー中から製品の水酸化アルミニウムを回収する製品回収工程に移送され、例えばドラムフィルター等の手段により固液分離されると共に、得られた水酸化アルミニウムについては、付着水中の溶解性着色物質を除去するために、好ましくは精製水により洗浄され、乾燥して製品とされる。
【0021】
一方、この製品回収工程で固液分離操作により回収された分離回収液(例えば、濾液や洗浄液)は、上記析出操作に先駆けて測定された脱色処理液の波長380nm吸光度測定値により制御された割合で混合接触工程に循環され、また、残りの分離回収液は従来の水酸化アルミニウムの製造工程の内液として処理される。
【0022】
本発明方法によって得られる水酸化アルミニウムは、脱色剤としてBET比表面積10m2/g以上、平均粒子径2μm以上、及びカルシウム含有量(酸化カルシウム換算)5質量%以下の水酸化マグネシウムを3g/リットル以上の割合で使用しているで、色差計によるb値3以下、好ましくは2以下にまで到達し、人造大理石の充填剤、歯磨き粉の研磨剤、製紙用の充填材やコーティング材等の用途を始めとして、高白色度が要求される種々の用途に好適に用いられる。
【0023】
本発明方法においては、このように白色度に優れた水酸化アルミニウムを製造することができるだけでなく、脱色剤として平均粒子径2μm以上の水酸化マグネシウムを用いているので、脱色処理後の濾過分離性が著しく向上し、工業的に有利に水酸化アルミニウムを製造することができる。
【0024】
しかも、脱色処理液の波長380nm吸光度測定値により分離回収液の循環使用率を制御すれば、上述した高白色度を維持しながら、アルミ分及び/又はソーダ分のロスを可及的に抑制することができ、更に工業的に有利に高白色水酸化アルミニウムを製造することができる。
【0025】
【発明の実施の形態】
以下、添付図面に示す実施の一例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0026】
図1において、混合接触工程、加熱工程、第一濾過工程、析出工程、及び第二濾過工程からなる本発明の好適な高白色水酸化アルミニウムの製造工程が示されている。
【0027】
混合接触工程では、原料の水酸化アルミニウムと、析出工程で得られた希薄アルミン酸ソーダ溶液と、第二濾過工程で得られた濾液が母液として、また、脱色剤としての水酸化マグネシウムと、新鮮な水酸化ナトリウム溶液とが混合される。
【0028】
また、加熱工程では、混合接触工程で得られた混合物が通常80〜150℃、好ましくは100〜130℃の範囲に加熱され、次いで第一濾過工程では、水酸化アルミニウムが析出しない温度条件で濾過され、脱色処理液と水酸化マグネシウムを主体とする濾滓成分とに固液分離される。
【0029】
第一濾過工程で得られた脱色処理液は、次に析出工程に移送され、この析出工程では、種子として添加される高白色水酸化アルミニウムの存在下に加水分解され、水酸化アルミニウムの結晶が析出し成長する。そして、この析出工程で生成したスラリーは、更に第二濾過工程に導入され、この第二濾過工程で固液分離され、精製水等で洗浄されて製品の高白色水酸化アルミニウムが回収される。
【0030】
【実施例】
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0031】
実施例1
高白色水酸化アルミニウム製造用のバイヤー工程から戻ったアルミン酸ソーダ溶液と、通常の水酸化アルミニウム製造用のバイヤー工程で得られた水酸化アルミニウムの濾過粒とを、Na2O:155g/リットル及びAl23:150g/リットルとなるように混合し、この溶液中にBET比表面積14.1m2/g、平均粒子径2.4μm、及びカルシウム含有量(酸化カルシウム換算)1.1質量%の水酸化マグネシウム〔Mg(OH)2〕3g/リットル(実質Mg(OH)2量:2.97 g/l)を添加し、加圧容器中で攪拌下に130℃、6時間の条件で脱色処理し、次いでブフナーにより濾過して脱色処理液と濾滓成分を得た。
【0032】
得られた脱色処理液について、吸光光度分析法を用いて波長380nmの吸光度測定を行うと共に、残渣成分については、水洗後、X線回折装置によりその成分{水酸化マグネシウム〔Mg(OH)2〕及び/又はアルミン酸カルシウム(3CA)}を確認し、更に、濾過処理の際の濾過性を○:良好、及び×:不良により評価した。
また、上記脱色処理液を用いて実際に水酸化アルミニウムを析出させ、得られた水酸化アルミニウムのb値を色差計で測定した。
結果を表1に示す。
【0033】
実施例2
実施例1で用いた水酸化マグネシウムを5g/リットル(実質Mg(OH)2量:4.95 g/l)用いた以外は、上記実施例1と同様にして脱色処理し、得られた脱色処理液の波長380nm吸光度、残渣成分のX線回折測定、及び濾過性の評価を行った。
結果を表1に示す。
【0034】
比較例1
BET比表面積4.7m2/g、平均粒子径1.4μm、及びカルシウム含有量(酸化カルシウム換算)0.1質量%の水酸化マグネシウム3g/リットル(実質Mg(OH)2量:2.997 g/l)を用いた以外は、上記実施例1と同様にして脱色処理し、得られた脱色処理液の波長380nm吸光度、残渣成分のX線回折測定、及び濾過性の評価を行った。
結果を表1に示す。
【0035】
比較例2
BET比表面積17.6m2/g、平均粒子径4.1μm、及びカルシウム含有量(酸化カルシウム換算)8.4質量%の水酸化マグネシウム3g/リットル(実質Mg(OH)2量:2.75 g/l)を用いた以外は、上記実施例1と同様にして脱色処理し、得られた脱色処理液の波長380nm吸光度、残渣成分のX線回折測定、及び濾過性の評価を行った。
結果を表1に示す。
【0036】
比較例3
BET比表面積20.4m2/g、平均粒子径3.2μm、及びカルシウム含有量(酸化カルシウム換算)0.8質量%の水酸化マグネシウム1g/リットル(実質Mg(OH)2量:0.992 g/l)を用いた以外は、上記実施例1と同様にして脱色処理し、得られた脱色処理液の波長380nm吸光度、残渣成分のX線回折測定、及び濾過性の評価を行った。
結果を表1に示す。
【0037】
比較例4
水酸化マグネシウムを全く用いなかった以外は、上記実施例1と同様にして脱色処理し、得られた脱色処理液の波長380nm吸光度、残渣成分のX線回折測定、及び濾過性の評価を行った。
結果を表1に示す。
【0038】
【表1】

Figure 0004337267
【0039】
実施例3
図1に示す水酸化アルミニウムの製造設備を使用し、ある年の4月から翌年3月にかけて、以下の条件で制御して高白色水酸化アルミニウムの製造を行った。脱色処理液の波長380nm吸光度測定値が0.15以下のとき分離回収液の循環使用率を100%とし、この波長380nm吸光度測定値が0.15を超えるとき濃度約50%の新しい苛性ソーダ水溶液を加えて吸光度測定値が0.15となる希釈率に対応する循環使用率に設定した。
【0040】
この実施例3の操業について、各月毎に反応槽中の原液総量A(水酸化アルミニウムを濾過した後に反応槽に戻された濾液を含む)と、この反応槽中に新たに添加された苛性ソーダ量Bと、これら原液総量Aと新規添加苛性ソーダ量Bとから算出される循環使用率R(%)とを求めると共に、得られた代表的な高白色水酸化アルミニウムについて、バッチ毎にハンター色差計でb値を測定し、月毎にその平均値を求めた。
結果を表2に示す。
【0041】
【表2】
Figure 0004337267
【0042】
【発明の効果】
本発明によれば、単に高い白色度を有する水酸化アルミニウムを製造することができるだけでなく、濾過性能を維持し、また、アルミナ分及び/又はソーダ分のロスを可及的に抑制しつつ、水酸化アルミニウムを工業的に有利に製造することができる。
【図面の簡単な説明】
【図1】 図1は、本発明の好適な実施の形態を示すフローチャートである。[0001]
[Industrial application fields]
The present invention relates to a method for producing aluminum hydroxide having a high whiteness from a sodium aluminate solution containing a coloring substance in a buyer process when producing aluminum hydroxide by the Bayer method.
[0002]
[Prior art]
Aluminum hydroxide is industrially produced by adding aluminum hydroxide seeds to sodium aluminate solution obtained by treating bauxite with caustic soda solution, thereby hydrolyzing sodium aluminate to precipitate aluminum hydroxide. It is manufactured by the so-called buyer method.
[0003]
The filtrate collected by filtering the precipitated aluminum hydroxide (ie, sodium aluminate solution) is again dissolved in the new raw material bauxite, added with seeds, and hydrolyzed to precipitate aluminum hydroxide. . As a result, bauxite-derived coloring substances gradually accumulate in the sodium aluminate solution, and the precipitated aluminum hydroxide is colored accordingly.
[0004]
For this reason, when producing aluminum hydroxide with high whiteness, in the buyer process using aluminum hydroxide prepared in this way as the raw material, aluminum hydroxide is used in a new caustic soda aqueous solution or high white aluminum hydroxide production process. It melt | dissolves in the circulating sodium aluminate solution, The high white aluminum hydroxide is added to the obtained sodium aluminate aqueous solution as a seed, and it hydrolyzes again.
However, even if such a manufacturing process is adopted, the colored substance in the raw material aluminum hydroxide gradually accumulates.
[0005]
Therefore, in order to produce aluminum hydroxide with high whiteness, it is necessary to separate and remove the coloring material derived from the raw material aluminum hydroxide before it is hydrolyzed from the sodium aluminate solution to precipitate aluminum hydroxide. Conventionally, for example, a method of oxidizing a colored substance with ozone or the like (ozone oxidation method), a method using activated alumina (active alumina method, JP 47-8510), oxidation of Mg and Ca 1 type, or 2 or more types selected from alkaline earth metal compounds consisting of a product, hydroxide, carbonate, silicate, and oxalate and Ba carbonate, silicate, oxalate, and sulfate Methods such as a method to be used (alkaline earth metal compound method, Japanese Patent Publication No. 57-31,527) have been proposed.
[0006]
[Problems to be solved by the invention]
However, the ozone oxidation method has an advantage that it is simple, but there is a problem in terms of safety, and the activated alumina method has an advantage that metal impurities can be removed at the same time, but the manufacturing cost increases. In addition, there is a problem that none of these methods can achieve the required high whiteness.
[0007]
In contrast, the alkaline earth metal compound method has an advantage that high whiteness can be achieved. However, even if the target aluminum hydroxide having a high whiteness is obtained as in the alkaline earth metal compound method, the aluminum content is lost as calcium aluminate (3CA) or the like. There is a lot of aluminum loss, and the generated calcium aluminate adheres to the piping in the process such as a heat exchanger as a scale, causing problems such as adversely affecting the process operation, and there is room for improvement industrially.
[0008]
Thus, the present inventors have made extensive studies on a method that can produce industrially advantageous aluminum hydroxide having no white matter and having a high whiteness without the problem as in the conventional method described above. In addition to improving the adsorption performance of magnesium hydroxide that adsorbs colored substances in acid soda solution, it has reached a method that can maintain the filtration performance at the same time and suppress the loss of aluminum and / or soda as much as possible. The present invention has been completed.
[0009]
Therefore, the object of the present invention is not only high whiteness but also excellent filtration performance and can suppress loss of alumina and / or soda as much as possible. It is in providing the manufacturing method of the high white aluminum hydroxide which can be manufactured.
[0010]
[Means for Solving the Problems]
That is, in the first invention of the present application, when producing aluminum hydroxide by the Bayer method, a BET specific surface area of 10 m 2 / g or more, an average particle diameter of 2 μm or more as a decoloring agent in the sodium aluminate solution in the buyer process, And adding calcium hydroxide (calcium oxide equivalent) 5 mass% or less magnesium hydroxide at a rate of 3 g / liter or more, decoloring treatment, and then precipitating aluminum hydroxide from the decoloring solution obtained by filtration. It is the manufacturing method of the characteristic high white aluminum hydroxide.
[0011]
Further, the second invention of the present application is a mixing contact step of adding a decolorizing agent to the sodium aluminate solution in the buyer process using aluminum hydroxide obtained by precipitation as a raw material, mixing and contacting the mixture, and A solid-liquid separation step for recovering the decolorization treatment liquid obtained by subjecting the mixture after the contact treatment to solid-liquid separation, a precipitation step for precipitating aluminum hydroxide from the recovered decolorization treatment solution, and the precipitated aluminum hydroxide A method of producing aluminum hydroxide by a buyer method having a product recovery step of separating and recovering by solid-liquid separation, and having a BET specific surface area of 10 m 2 / g or more, an average particle diameter of 2 μm or more, and a calcium content (oxidation) Calcium) 5 mg% or less magnesium hydroxide was added at a rate of 3 g / liter or more, and the absorbance of the decoloring solution was measured at 380 nm. It is a method for producing high white aluminum hydroxide, characterized by controlling the circulation usage rate of the separated and recovered liquid that is recovered in the product recovery process and circulated to the mixing contact process based on the absorbance measurement value of the decolorization treatment liquid at a wavelength of 380 nm. .
[0012]
In the first invention of the present application, the magnesium hydroxide added as a decoloring agent in the mixing contact step in which the sodium aluminate solution and the decolorizing agent are brought into contact has a BET specific surface area of 10 m 2 / g or more, preferably 14 m 2 / g. The average particle diameter is 2 μm or more, preferably 3 μm or more, and the calcium content (calcium oxide equivalent) is 5 mass% or less, preferably 2 mass% or less.
[0013]
When the BET specific surface area is smaller than 10 m 2 / g, the decolorization performance is insufficient, and the desired whiteness (for example, decolorization treatment liquid is obtained at an economical use amount of magnesium hydroxide, for example, 1 to 2.5 g / liter. 380 nm absorbance (yellowness) of 0.15 or less) cannot be achieved.
In addition, when the average particle size is smaller than 2 μm, the filter separation property after decoloring treatment is remarkably lowered, the filtration time becomes longer, and a large number of filter machines are required. To do.
Furthermore, if the calcium content (calcium oxide equivalent) in magnesium hydroxide added as a decolorizing agent exceeds 5% by mass, calcium oxide and sodium aluminate react to produce calcium aluminate, and aluminum In addition to an increase in minute loss, it adheres to the piping in the process such as a heat exchanger as a scale, leading to reduced productivity and workability.
[0014]
In the method of the present invention, such magnesium hydroxide is added as a decoloring agent to the sodium aluminate solution in a mixing contact step at a rate of 3 g / liter or more, preferably 3 to 5 g / liter, decolorized and then filtered. Aluminum hydroxide is precipitated from the decolorization treatment solution obtained in this way. At this time, if the amount of magnesium hydroxide added to the sodium aluminate solution is less than 3 g / liter, the decoloring effect may not be obtained and the desired whiteness may not be achieved. Further, the upper limit of the addition amount is not particularly present from the viewpoint of achieving desired whiteness, but even if added at 10 g / liter or more, there is no particular whiteness improvement effect.
[0015]
As for the processing conditions in this mixing contact step, the temperature is preferably a temperature at which no aluminum hydroxide precipitates, for example, about 80 to 150 ° C., and the contact time is suitably 0.5 to 7 hours. It is.
[0016]
Further, in the solid-liquid separation step of recovering the decolorization treatment liquid obtained by solid-liquid separation of the mixture after the contact treatment, generally, a vacuum filter, a pressure filter, a sand filter or the like is preferably used. More preferably, a pressure filter such as a Kelly filter is preferably used.
[0017]
The decolorization treatment liquid obtained in the solid-liquid separation step is then transferred from the decolorization treatment solution to a precipitation step for precipitating aluminum hydroxide, and in the decolorization treatment solution, as in the conventional buyer method, To add aluminum seeds and precipitate aluminum hydroxide.
[0018]
Prior to the precipitation operation in this precipitation step, for example, the absorbance at a wavelength of 380 nm is measured over time or periodically using means such as an absorptiometry, and the obtained decolorization treatment liquid The circulation usage rate of the separated and recovered liquid collected and circulated in the product recovery process is controlled by the absorbance measurement value at a wavelength of 380 nm.
Here, the circulating usage rate of the separated and recovered liquid collected and circulated in the product recovery process is a dilute sodium aluminate solution obtained at the end of precipitation, product filtration, and the amount of mother liquor returned to the production process of high white aluminum hydroxide. It means the ratio of the amount of the mother liquor returned to the production process of high white aluminum hydroxide with respect to the total of the time filtrate and the washing solution of aluminum hydroxide obtained by filtration.
[0019]
The control of the circulation usage rate of the separation / recovery liquid based on the measurement value of the absorbance of the decolorized liquid at a wavelength of 380 nm can be arbitrarily set according to the whiteness required for the aluminum hydroxide of the product. In order to reach a b value of 3 or less, preferably a b value of 2 or less, which is one of the indicators shown, separation and recovery when the wavelength 380 nm absorbance measurement value of the decolorization treatment liquid is 0.15 or less When the circulatory usage rate of the liquid is 100%, and the absorbance measurement value at a wavelength of 380 nm exceeds 0.15, a new caustic soda aqueous solution having a predetermined concentration is added to obtain a circulation usage rate corresponding to the dilution rate at which the absorbance measurement value becomes 0.15. Set and control the yellowing of the product.
[0020]
The slurry obtained by precipitating aluminum hydroxide from the decolorizing solution in the precipitation step in this way is then transferred to a product recovery step for recovering the product aluminum hydroxide from the slurry. In addition to solid-liquid separation by means, the obtained aluminum hydroxide is preferably washed with purified water and dried to obtain a product in order to remove soluble coloring substances in the adhering water.
[0021]
On the other hand, the separation / recovery liquid (for example, filtrate or washing liquid) recovered by the solid-liquid separation operation in this product recovery process is controlled by the absorbance measurement value of the wavelength of the decolorization treatment liquid measured prior to the precipitation operation. And the remaining separated and recovered liquid is treated as an internal liquid in a conventional aluminum hydroxide production process.
[0022]
Aluminum hydroxide obtained by the method of the present invention is 3 g / liter of magnesium hydroxide having a BET specific surface area of 10 m 2 / g or more, an average particle diameter of 2 μm or more, and a calcium content (calcium oxide equivalent) of 5% by mass or less as a decolorizing agent. Since it is used at the above ratio, it reaches b value of 3 or less, preferably 2 or less by color difference meter, and uses such as artificial marble filler, toothpaste abrasive, papermaking filler and coating material. First, it is suitably used for various applications where high whiteness is required.
[0023]
In the method of the present invention, not only aluminum hydroxide having excellent whiteness can be produced as described above, but also magnesium hydroxide having an average particle diameter of 2 μm or more is used as a decolorizing agent. Therefore, aluminum hydroxide can be produced industrially advantageously.
[0024]
In addition, if the circulation usage rate of the separation and recovery liquid is controlled by the absorbance measurement value of the wavelength of the decolorization treatment liquid, the loss of aluminum and / or soda is suppressed as much as possible while maintaining the high whiteness described above. In addition, high white aluminum hydroxide can be produced industrially advantageously.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be specifically described based on an example of implementation shown in the accompanying drawings.
[0026]
In FIG. 1, the manufacturing process of the suitable high white aluminum hydroxide of this invention which consists of a mixing contact process, a heating process, a 1st filtration process, a precipitation process, and a 2nd filtration process is shown.
[0027]
In the mixing contact step, the raw material aluminum hydroxide, the diluted sodium aluminate solution obtained in the precipitation step, and the filtrate obtained in the second filtration step are used as a mother liquor, magnesium hydroxide as a decolorizer, and fresh. With the appropriate sodium hydroxide solution.
[0028]
In the heating step, the mixture obtained in the mixing contact step is usually heated to a range of 80 to 150 ° C., preferably 100 to 130 ° C., and then filtered in a temperature condition in which aluminum hydroxide does not precipitate in the first filtration step. Then, it is solid-liquid separated into a decolorization treatment liquid and a filter cake component mainly composed of magnesium hydroxide.
[0029]
The decolorization treatment liquid obtained in the first filtration step is then transferred to the precipitation step, where it is hydrolyzed in the presence of high white aluminum hydroxide added as seeds, and the aluminum hydroxide crystals are formed. Precipitate and grow. And the slurry produced | generated at this precipitation process is further introduce | transduced into a 2nd filtration process, and solid-liquid separation is carried out at this 2nd filtration process, and it wash | cleans with purified water etc., and collects the high white aluminum hydroxide of a product.
[0030]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
[0031]
Example 1
The sodium aluminate solution returned from the buyer process for producing high white aluminum hydroxide and the aluminum hydroxide filter granules obtained in the usual buyer process for producing aluminum hydroxide were mixed with Na 2 O: 155 g / liter and Al 2 O 3 : mixed so as to be 150 g / liter, and BET specific surface area 14.1 m 2 / g, average particle diameter 2.4 μm, and calcium content (calcium oxide conversion) 1.1% by mass in this solution Magnesium hydroxide [Mg (OH) 2 ] 3 g / liter (substantially Mg (OH) 2 amount: 2.97 g / l) was added, and decolorization treatment was carried out in a pressure vessel under stirring at 130 ° C. for 6 hours. Then, the solution was filtered with a Buchner to obtain a decolorization treatment liquid and a filter cake component.
[0032]
The obtained decolorization treatment liquid is subjected to absorbance measurement at a wavelength of 380 nm using an absorptiometric analysis method, and the residual component is washed with water and then its component {magnesium hydroxide [Mg (OH) 2 ] is washed by an X-ray diffractometer. And / or calcium aluminate (3CA)}, and the filterability during the filtration treatment was evaluated by ○: good and x: poor.
Moreover, aluminum hydroxide was actually deposited using the decolorization treatment solution, and the b value of the obtained aluminum hydroxide was measured with a color difference meter.
The results are shown in Table 1.
[0033]
Example 2
Decolorization treatment liquid obtained by performing decolorization treatment in the same manner as in Example 1 except that 5 g / liter of magnesium hydroxide used in Example 1 (substantially Mg (OH) 2 amount: 4.95 g / l) was used. The absorbance at 380 nm, X-ray diffraction measurement of residual components, and evaluation of filterability were performed.
The results are shown in Table 1.
[0034]
Comparative Example 1
BET specific surface area of 4.7 m 2 / g, average particle size of 1.4 μm, and calcium content (calcium oxide equivalent) of 0.1% by mass of magnesium hydroxide 3 g / liter (substantially Mg (OH) 2 amount: 2.997 g / Except that l) was used, decolorization treatment was performed in the same manner as in Example 1 above, and the obtained decolorization solution was subjected to wavelength 380 nm absorbance, X-ray diffraction measurement of residual components, and evaluation of filterability.
The results are shown in Table 1.
[0035]
Comparative Example 2
BET specific surface area of 17.6 m 2 / g, average particle diameter of 4.1 μm, and calcium content (calcium oxide equivalent) of 8.4% by mass of magnesium hydroxide 3 g / liter (substantially Mg (OH) 2 amount: 2.75 g / Except that l) was used, decolorization treatment was performed in the same manner as in Example 1 above, and the obtained decolorization solution was subjected to wavelength 380 nm absorbance, X-ray diffraction measurement of residual components, and evaluation of filterability.
The results are shown in Table 1.
[0036]
Comparative Example 3
BET specific surface area of 20.4 m 2 / g, average particle diameter of 3.2 μm, and calcium content (calcium oxide equivalent) of 0.8% by mass of magnesium hydroxide 1 g / liter (substantially Mg (OH) 2 amount: 0.992 g / Except that l) was used, decolorization treatment was performed in the same manner as in Example 1 above, and the obtained decolorization solution was subjected to wavelength 380 nm absorbance, X-ray diffraction measurement of residual components, and evaluation of filterability.
The results are shown in Table 1.
[0037]
Comparative Example 4
Except that magnesium hydroxide was not used at all, it was decolorized in the same manner as in Example 1 above, and the wavelength of the obtained decolorization solution was measured at 380 nm, X-ray diffraction measurement of residual components, and evaluation of filterability. .
The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004337267
[0039]
Example 3
Using the aluminum hydroxide production facility shown in FIG. 1, high white aluminum hydroxide was produced under the following conditions from April of a certain year to March of the following year. When the 380 nm absorbance measurement value of the decolorization treatment liquid is 0.15 or less, the recycling rate of the separated recovery liquid is 100%. When this wavelength 380 nm absorbance measurement value exceeds 0.15, a new caustic soda aqueous solution having a concentration of about 50% In addition, the circulation usage rate corresponding to the dilution rate at which the absorbance measurement value was 0.15 was set.
[0040]
For the operation of Example 3, the total amount A of the stock solution in the reaction tank (including the filtrate returned to the reaction tank after the aluminum hydroxide was filtered) and caustic soda newly added to the reaction tank every month The amount B, the circulation usage rate R (%) calculated from the total amount A of these stock solutions and the amount of newly added caustic soda B was determined, and the hunter color difference meter was determined for each batch of the obtained representative high white aluminum hydroxide. The b value was measured and the average value was obtained every month.
The results are shown in Table 2.
[0041]
[Table 2]
Figure 0004337267
[0042]
【The invention's effect】
According to the present invention, it is possible not only to produce aluminum hydroxide having high whiteness, but also to maintain filtration performance and to suppress loss of alumina and / or soda as much as possible. Aluminum hydroxide can be produced industrially advantageously.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a preferred embodiment of the present invention.

Claims (4)

バイヤー法によって水酸化アルミニウムを製造するに際し、バイヤー工程でのアルミン酸ソーダ溶液中に、脱色剤としてBET比表面積10m2/g以上、平均粒子径2μm以上、及びカルシウム含有量(酸化カルシウム換算)5質量%以下の水酸化マグネシウムを3g/リットル以上の割合で添加し、脱色処理した後に濾過して得られた脱色処理液から水酸化アルミニウムを析出せしめることを特徴とする高白色水酸化アルミニウムの製造方法。When producing aluminum hydroxide by the buyer method, a BET specific surface area of 10 m 2 / g or more, an average particle size of 2 μm or more, and a calcium content (calcium oxide equivalent) 5 as a decolorizing agent in the sodium aluminate solution in the buyer process Production of high white aluminum hydroxide, characterized in that aluminum hydroxide is precipitated from a decolorization solution obtained by adding magnesium hydroxide of less than mass% at a rate of 3 g / liter or more, decoloring and then filtering. Method. バイヤー工程でのアルミン酸ソーダ溶液中に脱色剤を添加し、混合して接触処理する混合接触工程と、接触処理後の混合物を固液分離して脱色処理された脱色処理液を回収する固液分離工程と、回収された脱色処理液から水酸化アルミニウムを析出させる析出工程と、析出した水酸化アルミニウムを固液分離して回収する製品回収工程とを有するバイヤー法によって水酸化アルミニウムを製造する方法であり、脱色剤としてBET比表面積10m2/g以上、平均粒子径2μm以上、及びカルシウム含有量(酸化カルシウム換算)5質量%以下の水酸化マグネシウムを3g/リットル以上の割合で使用すると共に、脱色処理液の波長380nm吸光度を測定し、この脱色処理液の波長380nm吸光度測定値により製品回収工程で回収されて混合接触工程に循環される分離回収液の循環使用率を制御することを特徴とする高白色水酸化アルミニウムの製造方法。A mixing and contacting process in which a bleaching agent is added to the sodium aluminate solution in the buyer process and mixed to perform contact treatment, and a solid and liquid that collects the decolorized liquid by separating the mixture after the contact treatment into a solid and liquid. A method for producing aluminum hydroxide by a buyer method having a separation step, a precipitation step for precipitating aluminum hydroxide from the recovered decolorization treatment liquid, and a product recovery step for separating and recovering the precipitated aluminum hydroxide by solid-liquid separation And a magnesium hydroxide having a BET specific surface area of 10 m 2 / g or more, an average particle diameter of 2 μm or more, and a calcium content (calcium oxide equivalent) of 5% by mass or less as a decolorizing agent at a rate of 3 g / liter or more, The absorbance at a wavelength of 380 nm of the decolorization treatment liquid is measured, and the product is recovered in the product recovery process based on the measurement value of the absorbance at a wavelength of 380 nm of the decolorization treatment liquid High brightness method for producing aluminum hydroxide and controlling the recycling rate of separation and recovery solution to be circulated in case the contacting step. 脱色処理液の波長380nm吸光度測定値が0.15以下のとき分離回収液の循環使用率を100%に、この波長380nm吸光度測定値が0.15を超えるとき所定濃度の新しい苛性ソーダ水溶液を加えて吸光度測定値が0.15となる希釈率に対応する循環使用率に設定し、製品の黄色ばみを制御する請求項2に記載の高白色水酸化アルミニウムの製造方法。When the 380 nm absorbance measurement value of the decolorization treatment liquid is 0.15 or less, the circulating usage rate of the separated recovery solution is set to 100%. The manufacturing method of the high white aluminum hydroxide of Claim 2 which sets to the circulation usage rate corresponding to the dilution rate from which a light absorbency measured value is set to 0.15, and controls the yellowing of a product. 混合接触工程での脱色剤添加量が3〜5g/リットルの割合である請求項2又は3に記載の高白色水酸化アルミニウムの製造方法。The method for producing high white aluminum hydroxide according to claim 2 or 3 , wherein the amount of decoloring agent added in the mixing contact step is 3 to 5 g / liter.
JP2001031782A 2001-02-08 2001-02-08 Method for producing high white aluminum hydroxide Expired - Fee Related JP4337267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031782A JP4337267B2 (en) 2001-02-08 2001-02-08 Method for producing high white aluminum hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031782A JP4337267B2 (en) 2001-02-08 2001-02-08 Method for producing high white aluminum hydroxide

Publications (2)

Publication Number Publication Date
JP2002241128A JP2002241128A (en) 2002-08-28
JP4337267B2 true JP4337267B2 (en) 2009-09-30

Family

ID=18895813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031782A Expired - Fee Related JP4337267B2 (en) 2001-02-08 2001-02-08 Method for producing high white aluminum hydroxide

Country Status (1)

Country Link
JP (1) JP4337267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA013687B1 (en) * 2005-02-11 2010-06-30 Бхп Биллитон Альюминиум Острейлиэ Пти Лтд. A process for recovering lumina
JP5246510B2 (en) 2008-07-10 2013-07-24 住友化学株式会社 Method for producing decolorized sodium aluminate aqueous solution

Also Published As

Publication number Publication date
JP2002241128A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
EP0424058A1 (en) Method for producing particulate titanium oxides
US8784754B2 (en) Method for preparing high-purity alumina
US3832442A (en) Method for producing alumina hydrates
US3760064A (en) Process for the production of neutral calcium hypochlorite crystals
KR20100007733A (en) Method of producing decolored sodium aluminate solution
US4786482A (en) Bayer process for producing aluminum hydroxide having improved whiteness
JP4337267B2 (en) Method for producing high white aluminum hydroxide
US5888461A (en) Process for purifying sodium aluminate solutions containing sodium oxalate
US4335082A (en) Method of decreasing the organic substance content of alum earth production cycle performed according to the Bayer technology
US2089180A (en) Production of titanium dioxide
US3002809A (en) Method of manufacture of high purity sodium aluminate
US7192568B2 (en) Process for filter aid production in alumina refineries
JPS63502102A (en) Causticizing method for alkaline carbonaceous aqueous solution
CN116081690A (en) Method for producing ammonium polyvanadate from high-sodium high-oxalate vanadium slag
CA1200075A (en) Purification of bayer process liquors
JPS582166B2 (en) Method for removing cobalt from aqueous nickel sulfate solution
KR20050094555A (en) Method for manufacturing extra-fine particle aluminium hydroxides
US1756007A (en) Process for treating mixtures of oxy salts of arsenic, antimony, and tin
US2148283A (en) Preparation of white titanium dioxide pigments
US4282190A (en) Process for the manufacture of iron and aluminum-free zinc chloride solutions
JP4635314B2 (en) Method for producing sodium sulfate
KR20020090188A (en) Manufacturing method of high whiteness aluminium hydroxide
DE3501350C2 (en)
JPH02184651A (en) Method of recovering terephthalic acid
EP0039717B1 (en) A method of preparing water purifying agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees