JP4296706B2 - Method for producing palladium powder - Google Patents

Method for producing palladium powder Download PDF

Info

Publication number
JP4296706B2
JP4296706B2 JP2000349210A JP2000349210A JP4296706B2 JP 4296706 B2 JP4296706 B2 JP 4296706B2 JP 2000349210 A JP2000349210 A JP 2000349210A JP 2000349210 A JP2000349210 A JP 2000349210A JP 4296706 B2 JP4296706 B2 JP 4296706B2
Authority
JP
Japan
Prior art keywords
palladium
palladium powder
powder
complex
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000349210A
Other languages
Japanese (ja)
Other versions
JP2002155306A (en
Inventor
直人 佐伯
輝彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000349210A priority Critical patent/JP4296706B2/en
Publication of JP2002155306A publication Critical patent/JP2002155306A/en
Application granted granted Critical
Publication of JP4296706B2 publication Critical patent/JP4296706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パラジウムの塩化物錯体を含む塩化物溶液より、パラジウムを湿式法で還元しパラジウム粉末を製造する方法に関する。
【0002】
【従来の技術】
パラジウムは、主に触媒や貴金属合金の原料として利用されている。このパラジウムは、白金鉱、イリドスミン鉱などのパラジウムを含有する原料鉱石から精製されたり、パラジウムを使用した使用済み廃触媒、そして銅やニッケルの電解精製で発生する電解スライムから回収され精製されている。
【0003】
この電解スライムからのパラジウム回収において、パラジウムはスライム中に多量に含まれる銀と同様に挙動し、粗銀中に濃縮することが知られている。この粗銀よりパラジウムを分離回収する方法は、まず粗銀を電解精製により銀を精製し回収する。この粗銀の電解精製時に発生する銀電解スライムを硝酸で溶解し、該硝酸溶液中に溶解した銀を塩化銀として除去し、次に脱硝し、さらにアンモニア水を加えてパラジウム以外の不純物を水酸化物として沈殿させる。この沈殿した水酸化物を除去した後、塩酸を加え、粗ジクロロジアンミンパラジウム錯体としてパラジウムを沈殿させる。
【0004】
このようにして得られた粗ジクロロジアンミンパラジウム錯体を必要に応じてアンモニア水により溶解し、塩酸を加えて沈殿形成を繰り返すことにより高純度化する。さらに、上記の方法で高純度化されたジクロロジアンミンパラジウム錯体を水中に懸濁させ、ヒドラジン等の還元剤を加えて還元し、パラジウム粉末を製造していた。
【0005】
このジクロロジアンミンパラジウム錯体を水中に懸濁させた溶液のpHは、通常5程度であり、この溶液にヒドラジン等の還元剤を添加し、パラジウム粉末を生成させても、生成反応中のpHは、5〜6程度でほぼ変化しない。しかし、反応終期において、過剰の還元剤が溶液中に残留した場合には、pHが徐々に上昇し、8〜9以上となる。
【0006】
しかし、上記方法により得られたパラジウム粉は、粒子が非常に小さいために飛散性が高く、取り扱い性が悪いという問題があった。たとえば、ナイロン袋等に封入する場合、封入口の開閉時にパラジウム粉が飛散するため環境衛生上好ましくなく、また、ナイロン袋にパラジウム粉が付着するため、この付着したパラジウム粉を回収するために、ナイロン袋を焼却するなどの処理が必要であり、操作上煩雑であるという問題があった。
【0007】
一方、高純度化されたジクロロジアンミンパラジウム錯体を、水素雰囲気下で焙焼する製造方法も実施されている。この方法によると、粗大なパラジウム粉末が得られるが、焙焼時に塩化アンモニウム塩の白煙が多量に発生し環境衛生上の問題があった。
【0008】
これらの問題を解決する方法として、たとえば、特開平10−130703号公報記載の湿式還元法による粒子の大きいパラジウム粉末を製造する方法が提案されている。この方法は、パラジウムの塩化物錯体を含む塩化物溶液にアンモニアを添加してpHを8〜10に調整した後、ヒドラジン等の還元剤を加えパラジウム粉末を得る方法である。
【0009】
この方法によれば、従来の湿式還元法で得られるパラジウム粉末より、粒子サイズが大きく飛散性の少ないパラジウム粉末を得ることが出来る。しかし、還元して得られたパラジウム粉末の30%程度が攪拌機や槽壁に団子状に付着するため、還元処理毎に付着したパラジウム粉末を人力で掻き落とすという作業が必要となり、生産性の面からはあまり効率の良い生産方法とは言えなかった。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上記の問題点を解消するパラジウム粉末の製造方法、すなわち、湿式還元法により粒度の大きいパラジウム粉末を効率よく製造する方法を提供することである。
【0011】
【課題を解決するための手段】
本発明によるパラジウム粉末の製造方法は、銀電解スライムを溶解し、該溶液中の銀を塩化銀として除去し、さらにアンモニア水を加えてパラジウム以外の不純物を水酸化物として沈殿させ、この沈殿した水酸化物を除去した後、塩酸を加え、粗ジクロロジアンミンパラジウム錯体としてパラジウムを沈殿させ、この得られた粗ジクロロジアンミンパラジウム錯体をアンモニア水により溶解し、塩酸を加えて沈殿形成を繰り返すことにより高純度化し、この高純度化されたジクロロジアンミンパラジウム錯体を水中に懸濁させ、還元剤を加えて湿式で還元してパラジウム粉末を製造する方法において、高純度化された前記ジクロロアンミンパラジウム錯体を含む塩化物溶液に、アンモニア水を添加して溶液のpHを7.5<pH<8.0に調整した後、一部未溶解のジクロロジアンミンパラジウム錯体を残した状態の該溶液に、ヒドラジン、抱水ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジンから選択される少なくとも1種である還元剤を加えパラジウムを還元することを特徴とするパラジウム粉末の製造方法である。
【0012】
【発明の実施の形態】
上記課題を解決するため、設備費の安価な湿式還元法により、大きな粒子のパラジウム粉末が得られる条件を種々検討した。その結果、該ジクロロジアンミンパラジウム錯体を湿式で還元する条件を該ジクロロジアンミンパラジウム錯体にアンモニア水を添加し、pHを7.5<pH<8.0に調整した溶液に還元剤を加えて還元することで、上記問題点を解決するパラジウム粉末を得ることができた。すなわち、従来よりも粒子サイズが大きくなりその結果、飛散性が少なく、付着性も小さい取扱いの容易なパラジウム粉が得られることを見いだした。
【0013】
通常、ジクロロジアンミンパラジウム錯体からパラジウム粉末を得る方法は、上記したように水中に懸濁し、ヒドラジン等の還元剤を加え還元する。この還元されたパラジウム粉末の粒度を観察すると、0.1〜1ミクロン程度の一次粒子が凝集した、30〜50ミクロンの凝集体である。また、苛性ソーダでpHを上昇させて還元しても同様の粒子サイズのパラジウム粉末しか得られず、アンモニア水に溶解した場合のみ粒子の大きなパラジウム粉が得られる。
【0014】
この理由は、明らかではないが、通常生成する粒子の大きさは、還元反応時の核の発生量と発生した粒子の成長の速度で決定される。よって、本発明による方法で得られるジクロロジアンミンパラジウム錯体をアンモニア水に溶解した錯体は、非常に安定であり、したがって還元時の核の発生量が抑制される一方で成長の度合いが大きくなるものと推定される。
【0015】
ジクロロジアンミンパラジウム錯体を水に懸濁させると前記したように、通常pH5程度を示す。これにアンモニア水を添加すると前記パラジウム錯体がpHの上昇と共に溶解し、pH8以上で完全に溶解する。
【0016】
しかし、本発明においては、アンモニア水で調整する溶液のpHを7.5〜8.0とする。この理由は、pH8.0以上とした場合、ジクロロジアンミンパラジウム錯体をアンモニア水に完全に溶解させた後に、ヒドラジン等の還元剤を用いて還元することとなり、粒子サイズの大きなパラジウム粉が得られるが、使用した攪拌羽根や槽壁にパラジウム粉が団子上に付着し、付着したパラジウム粉を除去する作業が必要となるという不都合が生じるからである。
【0017】
このような現象は、アンモニアを含有する溶液中でジクロロジアンミンパラジウム錯体が非常に安定であることから、溶液中で結晶成長の核が発生しにくく、比較的核が発生し易い槽壁や攪拌羽根上で核が発生し、これが成長してゆくためと推定される。
【0018】
本発明では、この現象を抑制するため、ジクロロジアンミンパラジウム錯体をアンモニアを加えた溶液中で完全に溶解させず、一部未溶解のパラジウム錯体を残した状態で還元を行うこととした。このような手段を用いることにより、前記未溶解のジクロロジアンミンパラジウム錯体が、まず還元され核を生成する。この核上に還元されたパラジウムが成長するため、槽壁や攪拌羽根上に付着することなく、粒子サイズの大きなパラジウム粉が得られる。
【0019】
一方、pHを7.5以下とした場合は、槽壁や攪拌羽根上にパラジウム粉が付着することはないが、粒子サイズが小さくなり、取扱い時の飛散性の高いパラジウム粉しか得られないのである。
【0020】
また、還元する温度は、低いと反応が十分進みにくく、逆に高いとヒドラジン等の還元剤添加時に反応が激しく危険である。よって、温度範囲は、20〜80℃程度が好ましくは、40〜70℃程度がさらに好ましい。用いる還元剤には、ヒドラジン、抱水ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジン等いずれでも使用することができる。
【0021】
【実施例】
(実施例1)
50kg(wet)のジクロロジアンミンパラジウム錯体を容量容量500リットルのFRP製タンクに装入し、50℃の純水を150リットル添加し、さらに、24%のアンモニア水を16kg添加して前記パラジウム錯体の一部が未溶解になる程度に溶解した。この溶液のpHを測定したところ7.5であった。次に、溶液のパラジウム濃度が0.01g/リットル以下になるまで60%抱水ヒドラジンを添加して前記パラジウム錯体を還元し、内径60cmのデンバー濾過機で濾過してパラジウム粉末として回収した。
【0022】
還元させたパラジウム粉末は槽壁や攪拌羽根への付着もなく容易に回収可能であった。また、回収したパラジウム粉末は、飛散性が少なくナイロン袋等への付着も見られず取り扱い性の良いものであった。
【0023】
得られたパラジウム粉末の粒子サイズは、50%粒径で97.7μmであり、嵩密度は、4.65g/ccであった。
【0024】
(比較例1)
アンモニア水を添加しなかったこと以外は、実施例と同様にジクロロジアンミンパラジウム錯体を容量500リットルのFRP製タンクに装入し温度50℃の純水を150リットル添加して、前記パラジウム錯体のケーキをスラリーとした。このスラリーのpHを測定したところ約5であった。次に、溶液のパラジウム濃度が0.01g/リットル以下になるまで60%抱水ヒドラジンを添加し、パラジウムをパラジウム粉末として回収した。
【0025】
この回収したパラジウム粉末は、乾燥させてナイロン袋に封入する等のハンドリング時に粉末の飛散があり、取り扱い性が悪いものであった。また、得られたパラジウム粉末の粒子サイズは、50%粒径で17μmであり、嵩密度は、0.83g/ccと粒径は小さく、嵩密度の小さなパラジウム粉末であった。
【0026】
(比較例2)
50kg(wet)のジクロロジアンミンパラジウム錯体を容量容量500リットルのFRP製タンクに装入し、50℃の純水を150リットル添加し、さらに、24%のアンモニア水を21kg添加して前記パラジウム錯体を完全に溶解した。この溶液のpHを測定したところ9.5であった。次に、溶液のパラジウム濃度が0.01g/リットル以下になるまで60%抱水ヒドラジンを添加して前記パラジウム錯体を還元し、内径60cmのデンバー濾過機で濾過してパラジウム粉末として回収した。
【0027】
還元されたパラジウム粉末の約30%が、槽壁や攪拌羽根へ団子状に付着し、パラジウム粉末の回収にステンレス製のへらで掻き落とす作業が必要であり、非常に作業性の悪いものであった。
【0028】
【発明の効果】
本発明によるパラジウム粉末の製造方法によれば、従来の方法に比較して粒子が大きく、取り扱いの容易なパラジウム粉末が経済的に得られる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing palladium powder by reducing palladium by a wet method from a chloride solution containing a palladium chloride complex.
[0002]
[Prior art]
Palladium is mainly used as a raw material for catalysts and noble metal alloys. This palladium is refined from raw material ores containing palladium such as platinum ore, iridosmine ore, recovered from spent waste catalyst using palladium, and electrolytic slime generated by electrolytic refining of copper and nickel. .
[0003]
In this palladium recovery from electrolytic slime, it is known that palladium behaves in the same manner as silver contained in a large amount in the slime and concentrates in the crude silver. In the method of separating and recovering palladium from this crude silver, first, the crude silver is purified and recovered by electrolytic purification. The silver electrolytic slime generated during the electrolytic purification of the crude silver is dissolved with nitric acid, the silver dissolved in the nitric acid solution is removed as silver chloride, then denitrated, and ammonia water is further added to remove impurities other than palladium. Precipitate as oxide. After removing the precipitated hydroxide, hydrochloric acid is added to precipitate palladium as a crude dichlorodiammine palladium complex.
[0004]
The crude dichlorodiammine palladium complex thus obtained is dissolved in aqueous ammonia as necessary, and purified by adding hydrochloric acid to repeat the formation of a precipitate, thereby increasing the purity. Furthermore, suspending the highly purified Jikuroroji ammine palladium complex in the manner described above in water, and reduced by adding a reducing agent such as hydrazine, it was prepared palladium powder.
[0005]
The pH of the solution in which the dichlorodiammine palladium complex is suspended in water is usually about 5. Even if a reducing agent such as hydrazine is added to this solution to produce palladium powder, the pH during the production reaction is Almost no change at 5-6. However, when excess reducing agent remains in the solution at the end of the reaction, the pH gradually rises to 8-9 or more.
[0006]
However, the palladium powder obtained by the above method has a problem that the particles are very small, so that the scattering property is high and the handling property is poor. For example, when encapsulating in a nylon bag or the like, palladium powder scatters when opening and closing the sealing port, which is not preferable for environmental hygiene, and because the palladium powder adheres to the nylon bag, in order to collect this adhered palladium powder, A treatment such as incineration of the nylon bag is necessary, and there is a problem that the operation is complicated.
[0007]
On the other hand, a production method in which a highly purified dichlorodiammine palladium complex is roasted in a hydrogen atmosphere has also been implemented. According to this method, coarse palladium powder can be obtained, but a large amount of white smoke of ammonium chloride salt is generated at the time of roasting, which causes a problem in environmental hygiene.
[0008]
As a method for solving these problems, for example, a method for producing a palladium powder having large particles by a wet reduction method described in JP-A-10-130703 has been proposed. In this method, ammonia is added to a chloride solution containing a palladium chloride complex to adjust the pH to 8 to 10, and then a reducing agent such as hydrazine is added to obtain palladium powder.
[0009]
According to this method, it is possible to obtain a palladium powder having a larger particle size and less scattering than a palladium powder obtained by a conventional wet reduction method. However, since about 30% of the palladium powder obtained by reduction adheres to the stirrer and the tank wall in a dumpling form, it is necessary to manually scrape off the palladium powder adhering to each reduction treatment, which is a factor in productivity. Was not a very efficient production method.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing palladium powder that solves the above problems, that is, a method for efficiently producing palladium powder having a large particle size by a wet reduction method.
[0011]
[Means for Solving the Problems]
In the method for producing palladium powder according to the present invention, silver electrolytic slime is dissolved, silver in the solution is removed as silver chloride, and ammonia water is further added to precipitate impurities other than palladium as hydroxides. After removing the hydroxide, hydrochloric acid is added to precipitate palladium as a crude dichlorodiammine palladium complex. The obtained crude dichlorodiammine palladium complex is dissolved in aqueous ammonia, and hydrochloric acid is added to repeat precipitation formation. In a method of producing a palladium powder by purifying and suspending this highly purified dichlorodiammine palladium complex in water, adding a reducing agent and reducing it wet, the highly purified dichloroammine palladium complex is included. the chloride solution, the pH of the solution was adjusted to 7.5 <pH <8.0 by the addition of aqueous ammonia And then, the solution of the state of left-dichloro-diammine palladium complex some undissolved, hydrazine, hydrazine hydrate, hydrazine hydrochloride, reducing the palladium added reducing agent is at least one selected from hydrazine sulfate Is a method for producing palladium powder.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, various conditions for obtaining large-particle palladium powder were studied by a wet reduction method with low equipment costs. As a result, the conditions for reducing the dichlorodiammine palladium complex in a wet condition are reduced by adding ammonia water to the dichlorodiammine palladium complex and adding a reducing agent to the solution adjusted to pH <7.5 <pH <8.0. As a result, a palladium powder that solves the above problems could be obtained. That is, it has been found that the particle size becomes larger than before, and as a result, an easily handled palladium powder with less scattering and less adhesion is obtained.
[0013]
Usually, a method for obtaining palladium powder from a dichlorodiammine palladium complex is suspended in water as described above, and reduced by adding a reducing agent such as hydrazine. When the particle size of the reduced palladium powder is observed, it is an aggregate of 30 to 50 microns in which primary particles of about 0.1 to 1 microns are aggregated. Moreover, even if it reduces by raising pH with caustic soda, only the palladium powder of the same particle size is obtained, and a palladium powder with a big particle | grain is obtained only when melt | dissolving in ammonia water.
[0014]
The reason for this is not clear, but the size of particles that are usually generated is determined by the amount of nuclei generated during the reduction reaction and the rate of growth of the generated particles. Therefore, the complex obtained by dissolving the dichlorodiammine palladium complex obtained in the method according to the present invention in ammonia water is very stable, and therefore the amount of nuclei generated during reduction is suppressed while the degree of growth is increased. Presumed.
[0015]
When the dichlorodiammine palladium complex is suspended in water, the pH is usually about 5 as described above. When ammonia water is added thereto, the palladium complex dissolves with an increase in pH, and completely dissolves at pH 8 or higher.
[0016]
However, in the present invention, the pH of the solution adjusted with aqueous ammonia is set to 7.5 to 8.0. The reason for this is that when the pH is 8.0 or higher, the dichlorodiammine palladium complex is completely dissolved in ammonia water and then reduced using a reducing agent such as hydrazine, and a palladium powder having a large particle size is obtained. However, the palladium powder adheres on the dumpling to the used stirring blade and the tank wall, and there is a disadvantage that it is necessary to remove the adhered palladium powder.
[0017]
This phenomenon is caused by the fact that the dichlorodiammine palladium complex is very stable in a solution containing ammonia. It is presumed that the nucleus is generated above and grows.
[0018]
In the present invention, in order to suppress this phenomenon, the dichlorodiammine palladium complex is not completely dissolved in a solution to which ammonia is added, but reduction is performed in a state where a partially undissolved palladium complex remains. By using such means, the undissolved dichlorodiammine palladium complex is first reduced to produce nuclei. Since reduced palladium grows on the nucleus, palladium powder having a large particle size can be obtained without adhering to the tank wall or the stirring blade.
[0019]
On the other hand, when the pH is 7.5 or less, the palladium powder does not adhere to the tank wall or the stirring blade, but the particle size is reduced, and only palladium powder with high scatterability during handling can be obtained. is there.
[0020]
On the other hand, if the temperature for reduction is low, the reaction does not proceed sufficiently, whereas if it is high, the reaction is severe and dangerous when a reducing agent such as hydrazine is added. Therefore, the temperature range is preferably about 20 to 80 ° C, more preferably about 40 to 70 ° C. As the reducing agent to be used, any of hydrazine, hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate and the like can be used.
[0021]
【Example】
Example 1
50 kg (wet) of dichlorodiammine palladium complex is charged into an FRP tank having a capacity of 500 liters, 150 liters of pure water at 50 ° C. is added, and 16 kg of 24% ammonia water is further added. Was dissolved to such an extent that a part of it became undissolved. The pH of this solution was measured and found to be 7.5. Next, the palladium complex was reduced by adding 60% hydrazine hydrate until the palladium concentration of the solution became 0.01 g / liter or less, and the solution was filtered through a Denver filter having an inner diameter of 60 cm and recovered as palladium powder.
[0022]
The reduced palladium powder could be easily recovered without adhering to the tank wall or stirring blade. Further, the collected palladium powder had a good handleability with little scattering and no adhesion to a nylon bag or the like.
[0023]
The particle size of the obtained palladium powder was 97.7 μm at a 50% particle size, and the bulk density was 4.65 g / cc.
[0024]
(Comparative Example 1)
Except that ammonia water was not added, the dichlorodiammine palladium complex was charged into an FRP tank having a capacity of 500 liters and 150 liters of pure water at a temperature of 50 ° C. was added in the same manner as in the examples, and the palladium complex cake. It was used as a slurry. The pH of this slurry was measured and found to be about 5. Next, 60% hydrazine hydrate was added until the palladium concentration of the solution was 0.01 g / liter or less, and palladium was recovered as palladium powder.
[0025]
The recovered palladium powder was scattered during handling, such as being dried and sealed in a nylon bag, and was poor in handleability. The obtained palladium powder had a 50% particle size of 17 μm, a bulk density of 0.83 g / cc, a small particle size and a small bulk density.
[0026]
(Comparative Example 2)
50 kg (wet) of dichlorodiammine palladium complex is charged into an FRP tank having a capacity of 500 liters, 150 liters of pure water at 50 ° C. is added, and 21 kg of 24% ammonia water is further added. Was completely dissolved. The pH of this solution was measured and found to be 9.5. Next, the palladium complex was reduced by adding 60% hydrazine hydrate until the palladium concentration of the solution became 0.01 g / liter or less, and the solution was filtered through a Denver filter having an inner diameter of 60 cm and recovered as palladium powder.
[0027]
About 30% of the reduced palladium powder adheres to the tank walls and stirring blades in a dumpling form, and it is necessary to scrape the palladium powder with a stainless steel spatula, which is very poor in workability. It was.
[0028]
【The invention's effect】
According to the method for producing palladium powder according to the present invention, palladium powder which is large in particle size and easy to handle as compared with the conventional method can be obtained economically.

Claims (2)

ジクロロジアンミンパラジウム錯体を含む塩化物溶液に、アンモニア水を添加して溶液のpHを7.5<pH<8.0に調整した後、一部未溶解のジクロロジアンミンパラジウム錯体を残した状態の該溶液に還元剤を加え、ジクロロジアンミンパラジウム錯体を湿式で還元してパラジウム粉末を得ることを特徴とするパラジウム粉末の製造方法。Ammonia water is added to the chloride solution containing the dichlorodiammine palladium complex to adjust the pH of the solution to 7.5 <pH <8.0 , and then the partially dissolved dichlorodiammine palladium complex remains. the solution to the reducing agent was added, the production method of palladium powder and obtaining a reduction to palladium powder dichloro-diammine palladium complex in wet. 還元剤が、ヒドラジン、抱水ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジンから選択される少なくとも1種である請求項1記載のパラジウム粉末の製造方法。The method for producing palladium powder according to claim 1, wherein the reducing agent is at least one selected from hydrazine, hydrazine hydrate, hydrazine hydrochloride, and hydrazine sulfate.
JP2000349210A 2000-11-16 2000-11-16 Method for producing palladium powder Expired - Lifetime JP4296706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349210A JP4296706B2 (en) 2000-11-16 2000-11-16 Method for producing palladium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349210A JP4296706B2 (en) 2000-11-16 2000-11-16 Method for producing palladium powder

Publications (2)

Publication Number Publication Date
JP2002155306A JP2002155306A (en) 2002-05-31
JP4296706B2 true JP4296706B2 (en) 2009-07-15

Family

ID=18822658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349210A Expired - Lifetime JP4296706B2 (en) 2000-11-16 2000-11-16 Method for producing palladium powder

Country Status (1)

Country Link
JP (1) JP4296706B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2411796C (en) * 2002-11-13 2006-07-25 Chemical Vapour Metal Refining Inc. Purification of metals from mixtures thereof
JP5140053B2 (en) * 2009-09-30 2013-02-06 田中貴金属工業株式会社 Method for producing palladium nitrate solution
JP6051953B2 (en) * 2013-03-04 2016-12-27 住友金属鉱山株式会社 Method for producing platinum powder
CN110539003B (en) * 2019-08-09 2022-10-28 英特派铂业股份有限公司 Production method of palladium powder for removing palladium mirror

Also Published As

Publication number Publication date
JP2002155306A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
CN107827089A (en) Method for separating and recovering tellurium dioxide in cuprous telluride compound waste
JPH11506808A (en) Copper matte electrowinning method
JP4296706B2 (en) Method for producing palladium powder
AU2194995A (en) Precious metal extraction process
CN111057846A (en) Method for separating and recovering cobalt, copper and iron in white alloy
JPS585250B2 (en) Method for producing a concentrated nickel solution from a nickel-cobalt solution
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JPH10130703A (en) Production of palladium powder
JP4071041B2 (en) Regeneration method of copper alloy pickling waste liquid
JP3407600B2 (en) Silver extraction and recovery method
JP2011252224A (en) Fine copper powder, and method for production thereof
JP4468568B2 (en) Water treatment flocculant, method for producing the same, and water treatment method
JPH10226828A (en) Method for refining rhodium from rhodium-containing precipitate
JP3696525B2 (en) Copper fine powder manufacturing method
JP2020132988A (en) Method for recovering tungsten
WO2015027888A1 (en) Nickel hydroxide product and preparation method thereof
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
JP2002233882A (en) Method for recovering heavy metal from heavy metal- containing aqueous solution
JPH11229053A (en) Production of high purity gold
JP3666337B2 (en) How to recover palladium
JP2015117387A (en) Method for producing high-purity platinum powder
JP2506487B2 (en) Purification method of palladium complex
JP2013067841A (en) Method for removing copper ion in nickel chloride aqueous solution and method for producing electrolytic nickel
JP3843165B2 (en) Method for removing antimony from hydrofluoric acid solution containing Ta / Nb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4296706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

EXPY Cancellation because of completion of term