JPH11229053A - Production of high purity gold - Google Patents

Production of high purity gold

Info

Publication number
JPH11229053A
JPH11229053A JP10038241A JP3824198A JPH11229053A JP H11229053 A JPH11229053 A JP H11229053A JP 10038241 A JP10038241 A JP 10038241A JP 3824198 A JP3824198 A JP 3824198A JP H11229053 A JPH11229053 A JP H11229053A
Authority
JP
Japan
Prior art keywords
gold
nitric acid
solution
acid
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10038241A
Other languages
Japanese (ja)
Inventor
Yoshiaki Manabe
善昭 真鍋
Hisashi Fujita
寿 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10038241A priority Critical patent/JPH11229053A/en
Publication of JPH11229053A publication Critical patent/JPH11229053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply and efficiently producing high purity gold having >=99.999 wt.% purity from a desilverized deposit generated by the nitric acid extraction of silver electrolysis anode slime by a reduction process. SOLUTION: Gold is recovered by adding nitric acid to a chloroauric acid solution of the desilverized deposit to dissolve further gold remaining in a residue to lower free hydrochloric acid concentration, diluting with water >=1.5 times the volume, filtering to remove the residue and reducing to. The quantity of nitric acid to be added is controlled to about 0.1-0.4 liten industrial 63 wt.% nitric acid per 1kg desilverized deposit and the chlorauric acid solution after the addition of nitric acid is preferably kept at 60-90 deg.C for 1-3 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子材料のボンデ
ィングワイヤー等に使用されるような99.999重量
%クラスの高純度金を、電解精製によらず、銀電解より
得られたアノードスライムを硝酸抽出により脱銀処理し
た沈澱物から還元法により製造する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing 99.999% by weight of high-purity gold, such as used for bonding wires of electronic materials, by using anode slime obtained by silver electrolysis regardless of electrolytic purification. The present invention relates to a method for producing a precipitate desilvered by nitric acid extraction by a reduction method.

【0002】[0002]

【従来の技術】従来から、銀電解のアノードスライムか
ら、純度99.999重量%以上の金を製造する方法と
しては、一般的にWohlwill法による電解精製法
が行われている。この方法は、銀アノードスライムを硝
酸抽出処理してAu95〜98重量%、銀1〜3重量%
の脱銀沈澱物を得た後、これを陽極用原金板とし、陰極
に純度99.99重量%以上の純金板を用いて、交流と
直流の重畳による電流で電解する方法である。
2. Description of the Related Art Conventionally, as a method for producing gold having a purity of 99.999% by weight or more from an anode slime of silver electrolysis, an electrolytic refining method by the Wohllwill method is generally performed. In this method, silver anode slime is subjected to a nitric acid extraction treatment to obtain 95 to 98% by weight of Au and 1 to 3% by weight of silver.
After the desilvered precipitate is obtained, this is used as an original metal plate for an anode, and a pure metal plate having a purity of 99.99% by weight or more is used as a cathode and electrolysis is carried out by superimposing an alternating current and a direct current.

【0003】しかし、この電解精製方法では、陰極に純
度99.99重量%以上の電着金が得られるが、99.9
99重量%以上の純度とはならないため、再度電解精製
する必要がある。具体的には、得られた電着金を陽極用
原金板とし、且つまたその電着金を溶解した塩化金酸溶
液を電解液として、再度上記と同様な電解精製を繰り返
して、純度99.999重量%以上の電着金を得るもの
である。
However, in this electrolytic refining method, an electrodeposit having a purity of 99.99% by weight or more can be obtained at the cathode, but 99.9% by weight is obtained.
Since the purity does not become 99% by weight or more, it is necessary to carry out electrolytic purification again. Specifically, the obtained electrodeposited metal was used as an original metal plate for an anode, and the chloroauric acid solution in which the electrodeposited metal was dissolved was used as an electrolytic solution. It is intended to obtain electrodeposition of not less than .999% by weight.

【0004】こうした電解精製法に対して、上記の硝酸
抽出による脱銀抽出物を塩酸と過酸化水素で溶解して塩
化金酸溶液とし、これを還元することにより高純度の金
を製造する方法が提案されている(例えば米国特許第3
892557号)。また、この金の還元においては、還
元析出電位が金と接近しているやパラジウムの析出によ
る汚染を防ぐため、塩化金酸溶液を精密濾過後、金の還
元反応を80〜95%の時点で中止する方法が知られて
いる(特開平6−57348号公報)。
In contrast to such an electrolytic purification method, a method for producing high-purity gold by dissolving the above-described desilvered extract obtained by nitric acid extraction with hydrochloric acid and hydrogen peroxide to form a chloroauric acid solution and reducing the solution. (For example, US Patent No. 3)
No. 892557). Further, in this reduction of gold, in order to prevent the reduction deposition potential from approaching gold and to prevent contamination due to the deposition of palladium, the chloroauric acid solution is subjected to microfiltration, and then the reduction reaction of gold is reduced to 80 to 95%. A method for stopping the operation is known (JP-A-6-57348).

【0005】[0005]

【発明が解決しようとする課題】上記した金の電解精製
法は、純度99.999重量%以上の高品位の金が得ら
れるものの、電解液の管理が必要であるうえ、精製に要
する時間が長いため、工程内に滞留する金量が多くな
り、消費するエネルギーが多大であり、これらに伴う労
働力及び経費が極めて過大になる等の問題点を有してい
る。
The above-described electrorefining method of gold can obtain high-grade gold having a purity of 99.999% by weight or more, but requires the management of an electrolytic solution and the time required for the purification. Since it is long, the amount of gold staying in the process increases, consuming a large amount of energy, and the labor and cost associated therewith are extremely large.

【0006】一方、塩化金酸溶液を直接還元して高純度
金を得る還元法では、上記電解精製法のような問題はな
く、また99.99重量%レベルの還元金を得ることが
できる。しかしながら、得られる還元金中に不純物とし
て銀やシリカが10〜100ppmの単位で含まれるた
め、純度99.999重量%を満足できるレベルの高純
度金を得ることは困難であった。
On the other hand, the reduction method for obtaining high-purity gold by directly reducing a chloroauric acid solution does not have the same problems as the electrolytic refining method described above, and can obtain 99.99% by weight of reduced gold. However, since the resulting reduced gold contains silver or silica as an impurity in a unit of 10 to 100 ppm, it has been difficult to obtain high-purity gold at a level satisfying a purity of 99.999% by weight.

【0007】具体的には、銀電解のアノードスライムを
硝酸抽出により脱銀処理し、この脱銀沈澱物に塩酸と過
酸化水素を加えて金を溶解した塩化金酸溶液は、Au:
100〜300g/l、Ag:0.010〜0.150g
/l、Pt:1〜3g/l、Pd:0.1〜0.5g/
l、Rh:0.001〜0.03g/l、Si:0.00
5〜0.010g/lを含み、遊離塩酸濃度は2〜3モ
ル/lである。
Specifically, the anodic slime of silver electrolysis is desilvered by extraction with nitric acid, and hydrochloric acid and hydrogen peroxide are added to the desilvered precipitate to dissolve gold.
100 to 300 g / l, Ag: 0.010 to 0.150 g
/ L, Pt: 1-3 g / l, Pd: 0.1-0.5 g /
1, Rh: 0.001 to 0.03 g / l, Si: 0.00
5 to 0.010 g / l and a free hydrochloric acid concentration of 2 to 3 mol / l.

【0008】この塩化金酸溶液を精密濾過し、ヒドラジ
ン等の公知の還元剤で溶液の中の金を80〜95%まで
還元すると、得られる金には主要不純物としてAg及び
Siが10〜100ppmの範囲で含有されるため、純
度99.99重量%が金品位の限界であり、それ以上に
高純度の金を得ることはできなかった。
This chloroauric acid solution is subjected to microfiltration, and gold in the solution is reduced to 80 to 95% with a known reducing agent such as hydrazine. When the resulting gold contains 10 to 100 ppm of Ag and Si as main impurities. , A purity of 99.99% by weight is the limit of gold quality, and gold with a higher purity could not be obtained.

【0009】本発明は、かかる従来の事情に鑑み、還元
法によって、簡便に且つ効率良く、純度99.999重
量%以上の高純度金を製造する方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method for easily and efficiently producing high-purity gold having a purity of 99.999% by weight or more by a reduction method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、銀電解アノードスライムの硝酸抽出によ
る脱銀沈澱物から塩酸と過酸化水素で金を溶解し、得ら
れた塩化金酸溶液から還元剤により金を還元回収する方
法において、還元前の塩化金酸溶液に硝酸を添加するこ
とにより、残渣中に残存する金を溶解して該溶液中の遊
離塩酸濃度を低下させた後、濾過して残渣を除き、還元
することを特徴とする高純度金の製造方法を提供する。
In order to achieve the above object, the present invention provides a method for dissolving gold with hydrochloric acid and hydrogen peroxide from a desilvered precipitate obtained by extracting nitric acid from a silver electrolytic anode slime with hydrochloric acid and hydrogen peroxide. In the method of reducing and recovering gold from a solution using a reducing agent, nitric acid is added to a chloroauric acid solution before reduction to dissolve the gold remaining in the residue and reduce the free hydrochloric acid concentration in the solution. And a method for producing high-purity gold, which comprises removing a residue by filtration and reducing the same.

【0011】本発明方法においては、塩化金酸溶液中の
遊離塩酸濃度を1モル/リットル以下に低下させること
が好ましい。また、塩化金酸溶液への硝酸の添加量は脱
銀沈澱物1kgに対して工業用63重量%の硝酸で0.
1〜0.4リットルであることが好ましく、硝酸添加後
の塩化金酸溶液を60℃〜90℃にて1〜3時間保持す
ることが好ましい。
In the method of the present invention, the concentration of free hydrochloric acid in the chloroauric acid solution is preferably reduced to 1 mol / liter or less. The amount of nitric acid added to the chloroauric acid solution was 0.1% with 63% by weight of industrial nitric acid per 1 kg of desilvered precipitate.
The volume is preferably 1 to 0.4 liter, and the chloroauric acid solution after addition of nitric acid is preferably maintained at 60 ° C to 90 ° C for 1 to 3 hours.

【0012】更に、本発明においては、上記のごとく硝
酸を添加した後の塩化金酸溶液を水で1.5倍以上の容
積に希釈して、溶液中の遊離塩酸濃度を一層低下させた
後、濾過して残渣を除き、還元することが好ましい。
Further, in the present invention, as described above, the chloroauric acid solution to which nitric acid has been added is diluted to 1.5 times or more with water to further reduce the free hydrochloric acid concentration in the solution. It is preferable to remove the residue by filtration and to reduce the residue.

【0013】[0013]

【発明の実施の形態】銀電解アノードスライムの脱銀沈
澱物中の金を塩酸と過酸化水素で溶解する反応は、下化
学式1で示すように先ず塩酸と過酸化水素が反応して塩
素が発生し、次にこの塩素が化学式2に示すように金と
反応する結果、金がクロロ錯体となって溶解すると考え
られる。通常、塩酸と過酸化水素は化学式1及び2に示
す反応に必要な量の1〜2倍当量を添加する。
BEST MODE FOR CARRYING OUT THE INVENTION In a reaction for dissolving gold in a desilvered precipitate of a silver electrolytic anode slime with hydrochloric acid and hydrogen peroxide, first, as shown in the following chemical formula 1, hydrochloric acid and hydrogen peroxide react to form chlorine. It is considered that the chlorine is generated and then reacts with the gold as shown in the chemical formula 2, so that the gold is dissolved as a chloro complex. Usually, hydrochloric acid and hydrogen peroxide are added in amounts equivalent to 1 to 2 times the amounts required for the reactions shown in Chemical Formulas 1 and 2.

【0014】[0014]

【化1】3HCl+1.5H22=3H2O+1.5Cl2 Embedded image 3HCl + 1.5H 2 O 2 = 3H 2 O + 1.5Cl 2

【化2】Au+1.5Cl2+HCl=H(AuCl4)Embedded image Au + 1.5Cl 2 + HCl = H (AuCl 4 )

【0015】上記の塩酸と過酸化水素による金の溶解反
応では、過酸化水素で分解できる塩酸及び金の溶解で消
費できる塩酸には限界があるため、得られる塩化金酸溶
液には通常2〜3モル/l程度の遊離塩酸が残存する。
このため、残存する遊離塩酸により、銀がAgCl2 -
クロロ錯体となって溶解し、後の還元において析出する
金中に不純物として混入するものと推測される。また、
シリカはゲルの状態で溶解し、濾過によっても充分補足
されないため、銀と同様に、金の還元時に混入する。
In the above-described gold dissolution reaction using hydrochloric acid and hydrogen peroxide, hydrochloric acid which can be decomposed with hydrogen peroxide and hydrochloric acid which can be consumed by dissolving gold have a limit. About 3 mol / l of free hydrochloric acid remains.
Therefore, the free hydrochloric acid remaining, silver AgCl 2 - to dissolve a chloro complex, in gold deposited in the reduction of post is assumed to be mixed as an impurity. Also,
Silica dissolves in a gel state and is not sufficiently captured even by filtration, so that it is mixed in with gold during reduction, like silver.

【0016】そこで本発明では、塩酸と過酸化水素で金
を溶解した塩化金酸化溶液に、硝酸を添加することによ
って、下記化学式3に示すように、未溶解の金を更に硝
酸と塩酸で溶解させる。このとき、塩酸が消費されて溶
液中の遊離塩酸濃度が低下するので、銀の溶解度が低下
し、不純物である銀を析出させることができる。銀の溶
解度を低下させて銀を析出させるためには、塩化金酸溶
液中の遊離塩酸濃度を1モル/リットル以下とすること
が好ましく、0.5モル/リットル以下が更に好まし
い。
Therefore, in the present invention, as shown in the following chemical formula 3, undissolved gold is further dissolved in nitric acid and hydrochloric acid by adding nitric acid to a gold chloride oxidation solution in which gold is dissolved in hydrochloric acid and hydrogen peroxide. Let it. At this time, hydrochloric acid is consumed and the concentration of free hydrochloric acid in the solution decreases, so that the solubility of silver decreases and silver, which is an impurity, can be precipitated. In order to precipitate silver by lowering the solubility of silver, the concentration of free hydrochloric acid in the chloroauric acid solution is preferably 1 mol / l or less, more preferably 0.5 mol / l or less.

【0017】[0017]

【化3】3HNO3+13HCl+4Au=3NOCl
+6H2O+4H(AuCl4)
3HNO 3 + 13HCl + 4Au = 3NOCl
+ 6H 2 O + 4H (AuCl 4 )

【0018】また、この場合の硝酸添加量としては、銀
電解アノードスライムを硝酸抽出した脱銀沈澱物に対し
て、工業用63重量%の硝酸を0.1〜0.4リットル/
kgの範囲が好ましい。硝酸添加量が0.1リットル/
kg未満では銀析出の効果が充分でなく、また0.4リ
ットル/kgより多いと硝酸根が残留し、後に金を還元
するとき窒素酸化物(NOx)として多量に発生するた
め好ましくない。
The amount of nitric acid to be added in this case is 0.1 to 0.4 liter / 63% by weight of industrial nitric acid based on the desilvered precipitate obtained by extracting the silver electrolytic anode slime with nitric acid.
A range of kg is preferred. The amount of nitric acid added is 0.1 liter /
If it is less than kg, the effect of silver precipitation is not sufficient, and if it is more than 0.4 liter / kg, nitrate is left undesirably generated in a large amount as nitrogen oxide (NOx) when gold is reduced later.

【0019】更に驚くべきことに、この硝酸の添加によ
って、塩化金酸溶液中のシリカも銀と同様に減少するこ
とが判明した。その原因は明らかではないが、ゲル状の
シリカが脱水されて、後の精密濾過により除去されやす
い形態に変化するためと考えられる。
It was further surprisingly found that the addition of nitric acid reduces silica in chloroauric acid solution as well as silver. Although the cause is not clear, it is considered that the silica gel is dehydrated and changes to a form that can be easily removed by the subsequent microfiltration.

【0020】上記化学式3の反応を促進させるために
は、硝酸添加後の溶液の温度を60〜90℃に保持する
ことが好ましい。溶液の温度が60℃より低いと充分に
反応が進行しないか又は反応の進行に時間がかかり、9
0℃以上に加熱しても効果に顕著な差がない。反応の終
結は温度により異なり、上記60〜90℃の温度範囲で
は、通常1〜3時間で反応が終結する。
In order to promote the reaction of the above formula 3, the temperature of the solution after the addition of nitric acid is preferably maintained at 60 to 90 ° C. If the temperature of the solution is lower than 60 ° C., the reaction does not proceed sufficiently or the reaction takes time,
There is no remarkable difference in the effect even when heating to 0 ° C. or more. The termination of the reaction varies depending on the temperature. In the above temperature range of 60 to 90 ° C., the reaction is usually completed in 1 to 3 hours.

【0021】本発明では、上記した硝酸の添加を行った
後、更に塩化金酸溶液を水で希釈することができる。こ
の水での希釈により遊離塩酸濃度が下がり、銀の溶解度
が更に減少するため、析出による脱銀が一層進行する。
この場合、希釈度合いを増すことにより遊離塩酸濃度は
減少し、1.5倍程度の希釈で脱銀の効果が得られ、他
の不純物元素も比例して減少するが、希釈の度合が増す
と金も同様に濃度が薄くなるため、2倍程度に希釈する
ことが最も望ましい。それ以上に希釈しても、金還元後
の排水量が増加するのみで、脱銀に顕著な差は見られな
い。
In the present invention, after the addition of nitric acid as described above, the chloroauric acid solution can be further diluted with water. The dilution with water lowers the concentration of free hydrochloric acid and further reduces the solubility of silver, so that desilvering by precipitation proceeds further.
In this case, the concentration of free hydrochloric acid is reduced by increasing the degree of dilution, and the effect of desilvering is obtained with a dilution of about 1.5 times, and other impurity elements are reduced in proportion, but when the degree of dilution increases, It is most desirable to dilute gold about twice as much as gold also has a reduced concentration. Even if the dilution is further increased, the amount of wastewater after gold reduction only increases, and there is no remarkable difference in desilvering.

【0022】硝酸添加と、所望により希釈を行った後、
塩化金酸溶液を精密濾過して、未溶解残渣を取り除く。
この場合に使用する濾過材は、特に指定しないが、粒子
の捕捉と濾過速度等を考慮すると、0.2μm程度の目
開きの濾過材が好適である。
After adding nitric acid and, if desired, diluting,
The chloroauric acid solution is microfiltered to remove undissolved residues.
The filter medium used in this case is not particularly specified, but a filter medium having a mesh size of about 0.2 μm is preferable in consideration of the capturing of particles and the filtration speed.

【0023】このように処理した後の塩化金酸溶液の組
成は、Au:50〜150g/l、Ag:≦0.001
g/l、Pt:0.5〜1.5g/l、Pd:0.05〜
0.3g/l、Rh:≦0.015g/l、Si:<0.
002g/lとなり、Ag及びSiの含有量が顕著に低
下している。また、溶液中の遊離塩酸濃度は0.7〜1.
0モル/l程度である。
The composition of the chloroauric acid solution after such treatment is as follows: Au: 50 to 150 g / l, Ag: ≦ 0.001
g / l, Pt: 0.5-1.5 g / l, Pd: 0.05-1.5
0.3 g / l, Rh: ≤ 0.015 g / l, Si: <0.
002 g / l, and the contents of Ag and Si are significantly reduced. The concentration of free hydrochloric acid in the solution is 0.7 to 1.0.
It is about 0 mol / l.

【0024】その後、この塩化金酸溶液に溶解している
金を、公知の還元剤を用いて還元することにより析出さ
せる。還元剤としては、例えば、ヒドラジン、亜流酸ガ
ス、亜流酸ソーダのような比較的弱い還元剤を用いるこ
とが好ましい。また、金の還元反応を80〜95%の時
点で止めることにより、PtやPdなどの不純物を混入
を防ぐことができる。この還元反応の終点は、予め金濃
度を分析して還元剤の添加量を決定するか、又は酸化還
元電位で決定することができる。
Thereafter, the gold dissolved in the chloroauric acid solution is precipitated by reduction using a known reducing agent. As the reducing agent, for example, it is preferable to use a relatively weak reducing agent such as hydrazine, sulphite gas or sodium sulphite. Further, by stopping the reduction reaction of gold at the point of 80 to 95%, contamination of impurities such as Pt and Pd can be prevented. The end point of the reduction reaction can be determined in advance by analyzing the gold concentration to determine the amount of the reducing agent to be added, or by determining the oxidation-reduction potential.

【0025】[0025]

【実施例】実施例1 銀電解アノードスライムを硝酸で抽出処理し、濾過し
て、Au:97.8重量%、Ag:0.9重量%、Pt:
0.7重量%、Pd:0.1重量%、Rh:0.4重量
%、Si:<0.1重量%)の組成の脱銀沈澱物を得
た。この脱銀沈澱物400gを各ビーカーに入れ、それ
ぞれ35重量%塩酸を700ml加え、液温を40℃に
調整した後、更に35重量%過酸化水素水370mlを
4時間かけて定量ポンプで徐々に添加し、金を溶解して
塩化金酸溶液を得た。このとき液温は85℃まで上昇し
た。
EXAMPLE 1 A silver electrolytic anode slime was extracted with nitric acid, filtered and subjected to Au: 97.8% by weight, Ag: 0.9% by weight, Pt:
A desilvered precipitate having a composition of 0.7% by weight, Pd: 0.1% by weight, Rh: 0.4% by weight, Si: <0.1% by weight) was obtained. 400 g of the desilvered precipitate was placed in each beaker, 700 ml of 35% by weight hydrochloric acid was added to each beaker, the liquid temperature was adjusted to 40 ° C., and 370 ml of 35% by weight hydrogen peroxide solution was gradually added with a metering pump over 4 hours. Was added and gold was dissolved to obtain a chloroauric acid solution. At this time, the liquid temperature rose to 85 ° C.

【0026】得られた各塩化金酸溶液に、工業用63重
量%硝酸を、下記表1に示すように脱銀澱物1kg当た
り0.1〜0.4リットル添加し、液度を90℃として1
時間保持した。次に、溶液の容量が2倍になるように水
を加え、放置して冷却した。その後、この溶液を目開き
0.2μmのメンブランフィルターで精密濾過し、濾液
中の金の90%が還元する量のヒドラジンを4重量%に
薄めて添加し、金を還元析出させた。
To each of the obtained chloroauric acid solutions, 0.1 to 0.4 liters of industrial-grade 63% by weight nitric acid was added per 1 kg of desilvered precipitate as shown in Table 1 below. As one
Hold for hours. Next, water was added so that the volume of the solution was doubled, and the solution was left to cool. Thereafter, the solution was microfiltered with a membrane filter having an aperture of 0.2 μm, and hydrazine in an amount such that 90% of gold in the filtrate was reduced was added to 4% by weight, and gold was reduced and precipitated.

【0027】各試料ごとに、このようにして得られた還
元金を回収して温水で洗浄し、乾燥した後、還元金の品
位を分析した。得られた各還元金の品位を下記表1にま
とめて示した。また、比較例として、硝酸の添加及び又
は水による希釈を行わない以外は上記と同様に実施した
試料についても、得られた還元金の品位を分析し、表1
に併せて示した。
For each sample, the reduced gold thus obtained was collected, washed with warm water and dried, and then the quality of the reduced gold was analyzed. The grades of the obtained reduced gold are summarized in Table 1 below. In addition, as a comparative example, the quality of the obtained reduced gold was analyzed with respect to a sample that was performed in the same manner as described above except that addition of nitric acid and / or dilution with water were not performed.
Are also shown.

【0028】[0028]

【表1】 硝酸添加 還 元 金 品 位 (不純物ppm) 試料 (l/kg) 希釈 Au(wt%) Ag Pt Pd Rh Si 1 0.1 有り 99.999 4 3 1 1 <1 2 0.2 有り 99.999 2 3 1 <1 <1 3 0.3 有り 99.999 1 1 1 <1 <1 4 0.4 有り 99.999 1 1 <1 <1 <1 5 0.1 無し 99.999 15 3 1 1 2 6* 無し 無し 99.992 51 3 1 1 25 7* 無し 有り 99.996 8 1 1 <1 27 (注)表中の*を付した試料は比較例である。[Table 1] Reduction of nitric acid added Grade (ppm of impurities) Sample (l / kg) Diluted Au (wt%) Ag Pt Pd Rh Si 1 0.1 Yes 99.999 4 3 1 1 <1 20.2 Yes 99.999 2 3 1 < 1 <1 3 0.3 Yes 99.999 1 1 1 <1 <1 4 0.4 Yes 99.999 1 1 <1 <1 <1 5 0.1 No 99.999 15 3 1 1 2 6 * No No 99.992 51 3 1 1 25 7 * No Yes 99.996 8 1 1 <127 Note: Samples marked with * in the table are comparative examples.

【0029】表1の結果から、塩化金酸溶液に硝酸添加
して脱銀処理した試料は、いずれも回収された還元金の
品位が99.999重量%以上の純度を有していること
が分かる。
From the results shown in Table 1, it can be seen that all of the samples subjected to the desilvering treatment by adding nitric acid to the chloroauric acid solution have a purity of the recovered reduced gold of 99.999% by weight or more. I understand.

【0030】実施例2 上記実施例1と同じ電解アノードスライムの硝酸抽出に
よる脱銀沈澱物を使用し、その25kgを150リット
ルのFRP槽に入れ、35重量%塩酸44リットルと、
35重量%過酸化水素水23リットルを加えて溶解し
た。液温を60℃とした後、工業用68重量%硝酸を7
リットル添加し、窒素酸化物特有の赤いガスが発生しな
くなるまで撹拌した。
Example 2 Using the same desilvering precipitate obtained by extracting nitric acid from the electrolytic anode slime as in Example 1 above, 25 kg thereof was put into a 150 liter FRP tank, and 44 liters of 35% by weight hydrochloric acid were added.
23 liters of a 35% by weight aqueous hydrogen peroxide solution was added and dissolved. After the liquid temperature was adjusted to 60 ° C., 68% by weight of industrial nitric acid was
One liter was added, and the mixture was stirred until no red gas peculiar to nitrogen oxides was generated.

【0031】その後、水を加えて2倍の容量まで希釈
し、一夜放置して冷却し、直径60cmのデンバー濾過
器で粗濾過後、目開き0.2μmのカートリッジフィル
ターで精密濾過した。得られた濾液の組成を分析したと
ころ、Au:151g/l、Ag:<1mg/l、P
t:423mg/l、Pd:99mg/l、Rh:<1
mg/l、Si:<1mg/lであった。
Thereafter, water was added to dilute to twice the volume, and the mixture was allowed to stand overnight, cooled, coarsely filtered with a Denver filter having a diameter of 60 cm, and then finely filtered with a cartridge filter having openings of 0.2 μm. When the composition of the obtained filtrate was analyzed, Au: 151 g / l, Ag: <1 mg / l, P
t: 423 mg / l, Pd: 99 mg / l, Rh: <1
mg / l, Si: <1 mg / l.

【0032】この濾液を4リットルとり、4重量%に薄
めたヒドラジンを液中の金の90%を還元できる量だけ
添加して、金を還元した。還元後、溶液を濾過し、2リ
ットルの温水でレパルプ洗浄し、再度濾過して還元金を
乾燥し、得られた還元金の品位を分析したところ、9
9.999重量%であった。
Four liters of the filtrate was taken, and hydrazine diluted to 4% by weight was added in an amount capable of reducing 90% of the gold in the solution to reduce gold. After the reduction, the solution was filtered, washed with depulp with 2 liters of warm water, filtered again to dry the reduced gold, and the quality of the obtained reduced gold was analyzed.
It was 9.999% by weight.

【0033】[0033]

【発明の効果】本発明によれば、従来の金電解精製によ
らず、また還元法では高純度な金を回収することが不可
能であったのに対し、簡便な方法により銀やシリカの混
入を防ぎ、還元法によって99.999%以上の高純度
の金を短時間で効率良く回収することができる。
According to the present invention, it is impossible to recover high-purity gold by a conventional method without using the conventional gold electrorefining and by a reduction method. Prevention of contamination and high-purity gold of 99.999% or more can be efficiently recovered in a short time by the reduction method.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銀電解アノードスライムの硝酸抽出によ
る脱銀沈澱物から塩酸と過酸化水素で金を溶解し、得ら
れた塩化金酸溶液から還元剤により金を還元回収する方
法において、還元前の塩化金酸溶液に硝酸を添加するこ
とにより、残渣中に残存する金を溶解して該溶液中の遊
離塩酸濃度を低下させた後、濾過して残渣を除き、還元
することを特徴とする高純度金の製造方法。
1. A method for dissolving gold with hydrochloric acid and hydrogen peroxide from a desilvered precipitate obtained by extracting nitric acid from a silver electrolytic anode slime with nitric acid, and reducing and recovering gold with a reducing agent from the obtained chloroauric acid solution, the method comprising: By adding nitric acid to the chloroauric acid solution of the above, the remaining gold in the residue is dissolved to reduce the free hydrochloric acid concentration in the solution, and then the residue is removed by filtration and reduced. Manufacturing method of high purity gold.
【請求項2】 塩化金酸溶液中の遊離塩酸濃度を1モル
/リットル以下に低下させることを特徴とする、請求項
1に記載の高純度金の製造方法。
2. The method for producing high-purity gold according to claim 1, wherein the concentration of free hydrochloric acid in the chloroauric acid solution is reduced to 1 mol / liter or less.
【請求項3】 硝酸の添加量が、前記脱銀沈澱物1kg
に対して工業用63重量%硝酸で0.1〜0.4リットル
であることを特徴とする、請求項1又は2に記載の高純
度金の製造方法。
3. The amount of nitric acid added is 1 kg of the desilvered precipitate.
The method for producing high-purity gold according to claim 1 or 2, characterized in that the amount of the industrial-grade 63 wt% nitric acid is 0.1 to 0.4 liter.
【請求項4】 硝酸添加後の塩化金酸溶液を60℃〜9
0℃にて1〜3時間保持することを特徴とする、請求項
1〜3のいずれかに記載の高純度金の製造方法。
4. A chloroauric acid solution after addition of nitric acid is heated to 60 ° C. to 9 ° C.
The method for producing high-purity gold according to any one of claims 1 to 3, wherein the method is held at 0 ° C for 1 to 3 hours.
【請求項5】 硝酸添加後の塩化金酸溶液を水で1.5
倍以上の容積に希釈した後、濾過して残渣を除き、還元
することを特徴とする、請求項1〜4のいずれかにに記
載の高純度金の製造方法。
5. The chloroauric acid solution after the addition of nitric acid is mixed with water for 1.5 times.
The method for producing high-purity gold according to any one of claims 1 to 4, wherein after diluting to a volume twice or more, filtration is performed to remove a residue, and reduction is performed.
JP10038241A 1998-02-20 1998-02-20 Production of high purity gold Pending JPH11229053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10038241A JPH11229053A (en) 1998-02-20 1998-02-20 Production of high purity gold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10038241A JPH11229053A (en) 1998-02-20 1998-02-20 Production of high purity gold

Publications (1)

Publication Number Publication Date
JPH11229053A true JPH11229053A (en) 1999-08-24

Family

ID=12519821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10038241A Pending JPH11229053A (en) 1998-02-20 1998-02-20 Production of high purity gold

Country Status (1)

Country Link
JP (1) JPH11229053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310699A1 (en) * 2003-03-10 2004-09-30 OTB Oberflächentechnik in Berlin GmbH & Co. Process for fine refining gold
DE10310641A1 (en) * 2003-03-10 2004-09-30 OTB Oberflächentechnik in Berlin GmbH & Co. Gold refining process
KR100939577B1 (en) 2007-09-21 2010-01-29 트랜 탐 Chemistry processing of high purity gold from low grade gold scraps
JP2014080682A (en) * 2012-09-27 2014-05-08 Dowa Eco-System Co Ltd Method for recovering gold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310699A1 (en) * 2003-03-10 2004-09-30 OTB Oberflächentechnik in Berlin GmbH & Co. Process for fine refining gold
DE10310641A1 (en) * 2003-03-10 2004-09-30 OTB Oberflächentechnik in Berlin GmbH & Co. Gold refining process
DE10310699B4 (en) * 2003-03-10 2007-04-05 OTB Oberflächentechnik in Berlin GmbH & Co. Process for the fine refining of gold
KR100939577B1 (en) 2007-09-21 2010-01-29 트랜 탐 Chemistry processing of high purity gold from low grade gold scraps
JP2014080682A (en) * 2012-09-27 2014-05-08 Dowa Eco-System Co Ltd Method for recovering gold

Similar Documents

Publication Publication Date Title
JP3879126B2 (en) Precious metal smelting method
CN102041393A (en) Silver anode mud treatment process
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
TWI428451B (en) Valuable metal recovery method from lead-free waste solder
JPH0382720A (en) Method for recovering indium
JP2003201526A (en) Method of refining ruthenium
JP2001316736A (en) Method for recovering silver
US4198231A (en) Recovery and separation of gadolinium and gallium
JP2002069684A (en) Method for recovering indium
JP5200588B2 (en) Method for producing high purity silver
JPH11229053A (en) Production of high purity gold
CN110592391A (en) Method for purifying crude gold powder
JP2685755B2 (en) Gold refining equipment
JP2791161B2 (en) Method for recovering silver from silver-containing nitric acid solution
JP4842426B2 (en) Method for producing high purity silver
JP3704266B2 (en) How to recover bismuth
JP2777955B2 (en) Desilvering or silver recovery method
JP2011195935A (en) Method for separating and recovering platinum group element
JP3309801B2 (en) How to collect gold
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JPH02294495A (en) Purified solution for obtaining ultrahigh purity copper and electrolyzing method
JP3753554B2 (en) Silver recovery method
JP2000038692A (en) Production of high purity silver
JP3837879B2 (en) Method for reducing and precipitating metal ions