JP4071041B2 - Regeneration method of copper alloy pickling waste liquid - Google Patents

Regeneration method of copper alloy pickling waste liquid Download PDF

Info

Publication number
JP4071041B2
JP4071041B2 JP2002148015A JP2002148015A JP4071041B2 JP 4071041 B2 JP4071041 B2 JP 4071041B2 JP 2002148015 A JP2002148015 A JP 2002148015A JP 2002148015 A JP2002148015 A JP 2002148015A JP 4071041 B2 JP4071041 B2 JP 4071041B2
Authority
JP
Japan
Prior art keywords
waste liquid
tin
copper alloy
copper
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002148015A
Other languages
Japanese (ja)
Other versions
JP2003342763A (en
Inventor
正輝 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002148015A priority Critical patent/JP4071041B2/en
Publication of JP2003342763A publication Critical patent/JP2003342763A/en
Application granted granted Critical
Publication of JP4071041B2 publication Critical patent/JP4071041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【産業上の利用分野】
本発明は銅合金酸洗廃液の再生方法に関する。
【0002】
【従来技術】
銅合金はその表面に生成した酸化膜や微細な欠陥を取り除くことを目的として酸で洗うことが多い。酸には硫酸や硫酸に過酸化水素を混合した硫酸系の酸(以降混酸と称する)や、塩酸、場合によってはフッ酸やその他界面活性剤などの添加剤を用いる場合がある。
【0003】
例えば、銅合金の圧延工場の場合では、圧延→焼鈍酸洗→圧延と加工と熱処理を組み合わせて銅合金を圧延していくが、この焼鈍酸洗工程において酸洗を利用している。
【0004】
この様な焼鈍酸洗工程では硫酸系の酸を使用することが多い。酸濃度は3〜30%であることが多いが、焼鈍時の酸化雰囲気や銅合金の種類によってはこの範囲をはずれたり、特殊な添加剤を使用したりすることがある。
【0005】
酸洗工程では酸化銅や金属銅が酸によって溶解される。
Cu + H2SO4 → CuSO4 + H2
CuO + H2SO4 → CuSO4 + H2O
この反応の結果、酸洗液中に銅イオンが蓄積して、最終的には銅が溶解できなくなる。通常この酸は一般排水として廃棄するために中和沈殿処理を施して排水する。廃酸中の金属分は中和時に水酸化物となり、汚泥に含まれて排出される。
【0006】
この廃酸中には有価物である銅や合金成分が多量に含まれているため、これを回収すると共に、元の硫酸を再生することが広く試みられている。
最も簡単な方法に不溶性アノードを使用した、脱銅電解法がある。これは鉛合金やチタンに白金をめっきしたアノードを用いることで、アノード反応を酸素発生反応とし、カソードに銅およびその他の金属を析出させることで、脱銅および硫酸再生を行うものである。特開平5−238707にはアノードに過酸化鉛電極または鉛合金を用いることで硫酸を再生するとともに硫酸中の有機物を同時にアノードで酸化分解する方法が紹介されている。ただし、この特許では廃酸中の有機物を分解することが主目的で、液中の金属イオン除去方法については触れられていない。
【0007】
これ以外にも、隔膜もしくはイオン交換膜を用いて電解時のイオンの移動を制御して、電解再生液の品質を高める方法や、拡散透析膜を用いて酸成分のみを回収する方法等が広く用いられている。
【0008】
【発明が解決しようとする課題】
ところが、実際の酸洗工程で発生する廃酸中には主要成分以外の物質が多く含まれている。特に錫を合金成分として含んでいる燐青銅等の合金を酸洗処理した場合、その廃酸中には錫イオンが存在する。この錫イオンは時間と共に酸化物や水酸化物となり、非常に細かい固形物となることが多い。
【0009】
普通に酸を廃棄する場合には、中和処理時に錫以外の銅イオン等も水酸化物とするため、錫イオンや錫酸化物、水酸化物が含まれていても大きな問題は無い。
しかし、この酸を再利用する場合には大きな問題となる。細かい固形物となった錫酸化物、水酸化物は沈降性が低く、溶液中に懸濁した状態になりやすい。従って電解再生した場合でも、溶液中に残留することが多く、繰り返し酸を使用していると、酸中に非常に多くの錫の固形物が蓄積する。
【0010】
この錫固形物は、酸槽の壁面にこびりついたり、配管内部にこびりついたりして酸洗設備に悪影響を与える。特に酸をノズルを用いてスプレーして使用する設備の場合、ノズル詰まりの原因となるため、非常に問題である。
【0011】
また、電解再生以外の再生法でも、膜を使う再生法では、錫固形物が膜の目詰まりの原因となるため、再生する前に錫固形物および錫イオンを除去する必要がある。
【0012】
ところが、前述の様に錫イオンは微細な酸化物、水酸化物の固形物となることが多いため、濾過処理をした場合には濾材の閉塞が発生し、濾別することが非常に難しかった。
【0013】
また、沈降分離するにも、なかなか沈殿せず、遠心分離等で強制的に沈降させて処理する必要があり、高額の設備投資が必要であった。
また、これらの方法では錫イオンを除去することは出来ず、分離後の液中に存在する錫イオンが後の工程で固形物になってしまう不具合があった。
特許第3173440号には、酸化錫粉末を作る場合に、硝酸アンモニュウム溶液に金属錫を溶解した溶液を50℃以上にすることでメタ錫酸となって沈降するため、その反応を促進するために60℃から70℃で熟成することが示されている。ただし、当該特許の目的は酸化錫を作製することで、溶液には硝酸を用いていること、錫以外の金属イオンが存在していないこと等であり、本特許のように硫酸を主体とした酸で、しかもその他イオンとして、Cu、Zn、Ni等が混在した中で錫が選択的に沈降するかは明らかではなかった。
【0014】
更に銅が、高品位に、効率良く回収できることも把握出来無かった。
また処理後の硫酸酸性の液が、酸洗用の液として、再利用できると言うことも把握できていなかった。
【課題を解決するための手段】
本発明者等は、廃酸を再生利用するためにはこの錫イオンを除去することが必要と考え、鋭意研究を重ねた結果、廃酸を40℃以上に加熱しながら沈降処理を行うことで、錫イオンを効率的に除去できることを見出した。
【0015】
すなわち、
(1)錫イオンおよび錫化合物を含む銅合金酸洗廃液の再生方法において、廃液を40℃以上に加熱して錫イオンを錫酸化物もしくは水酸化物として選択的に沈降分離処理する前処理を施した後に、再生処理する銅合金酸洗廃液の再生方法。
【0016】
(2)錫イオンおよび錫化合物を含む銅合金酸洗廃液の再生方法において、廃液を40℃以上に加熱して錫イオンを錫酸化物もしくは水酸化物として選択的に沈降分離処理する前処理を施した後に、電解採取により銅を回収し、銅回収後の酸液を再利用する銅合金酸洗廃液の再生方法。
【0017】
(3)上記(1)又は(2)記載の銅合金酸洗廃液の再生方法において廃液の主成分が硫酸である銅合金酸洗廃液の再生方法。
(4)上記(3)記載のの銅合金酸洗廃液の再生方法において加熱処理中に空気もしくは酸素をエアレーションし、その後に沈降分離する銅合金酸洗廃液の再生方法。
【0018】
【作用】
廃酸中の錫イオンは時間と共に酸化されて酸化錫もしくは水酸化錫となる。しかし、常温においてその速度は遅く、また、生成する粒子は細かいため、液中に懸濁した状態となる。
【0019】
ところが、温度を高くするとその酸化速度が速くなるとともに、生成物の粒子径が大きくなるため、沈降しやすくなる。また、広く知られている様に温度が高いほど懸濁物の沈降速度も速くなるため、より固形物を沈降分離しやすくなる。この2つの効果により、錫イオンを錫酸化物もしくは水酸化物とすることと、その分離を簡単に安価に実施することができる。
【0020】
錫イオンの酸化速度を高めるために、加熱時にエアレーションすることは有効である。ただし、エアレーションは必須ではなく、エアレーションせずにも沈降分離することが可能である。また、エアレーションを行うと液を撹拌することになり、反応後に沈降させるバッチ処理を行うか、連続で行う場合は反応槽と沈殿槽を別にする必要がある。さらに、エアーの代わりに酸素を使用するとエアレーションの流量を低減することが可能である。
【0021】
例えば、図1に示す様に65℃で加熱沈降した場合には、沈降時間とともに上澄み中に含まれる錫イオン濃度が減少し、24時間で0.5g/Lまで減少できる。また、図1には示していないが、エアレーションを行うとこの沈降時間を半分以下に短縮できる。
【0022】
さらに、廃酸を再利用するときに悪影響を及ぼすのは主に錫イオンであるため、それ以外のイオンが残留していても、酸洗には大きな影響を与えない利点がある。すなわち、燐青銅以外の黄銅や洋白といった他の合金を酸洗した場合に混入するZnやNiといったイオンは、本特許の前処理方法では除去できないが、たとえ残留したとしても酸洗に大きな悪影響は及ぼさない。発明者が試験した結果では、Znは最大20g/Lまで、Niは5g/Lまで存在しても、酸洗能力に問題はなかった。ただし、ZnやNiイオンが蓄積するとその分だけCuの溶解度が低下するため、極端に不純物イオンが高くなるのは好ましくない。そこで、一部を排出して蓄積イオンを一定量以下にしたり、陰イオン交換膜を隔膜として利用した陽イオン除去電解を行ったりして、不純物イオンを除去することが望ましい。例えば再生液のZn濃度を5g/L以下、Ni濃度を1g/L以下に制御した場合には、新液を用いたのと同等の酸洗能力を得ることができた。
また、不溶性陽極を用いて電解して銅イオンを電着除去する工程ではほとんど銅が電着し、ZnやNi等は共析しないことが多い。しかし、Snは細かい固形物が懸濁している関係上、電着物に巻き込んでしまうことがあり、得られる銅品位が低下することがあった。
今回の方法の様に事前にSnを除去することにより、電着して回収する銅品位は95%以上となり、再利用がしやすい。電着銅の再利用法としては、銅製錬工程の転炉に投入する方法や、不純物の品位が既知の場合には、銅合金の溶解原料する方法等が挙げられる。
【0023】
【本発明の実施の形態】
【実施例】
(実施例1)
表1に示す組成の銅合金の焼鈍酸洗ラインの硫酸廃液を60℃で1日加熱沈降処理した。その結果、錫成分が沈殿し、上澄みの成分は表2に示す成分となり、錫イオン濃度を5g/Lから0.5g/Lまで減少させることが出来た。
【0024】
この上澄みをアノードに不溶性アノードのチタン白金めっき材をカソードに純銅の板を用いて10A/dmで電解したところ銅濃度を3g/Lまで低減できた。電解で得られた電着物の組成は97%以上の銅であった。また、電解後の液中の亜鉛およびニッケルイオン濃度は、電解前と同じであった。
【0025】
この電解再生硫酸を用いて、焼鈍酸洗行ったところ、新液と同様に問題なく酸洗が可能であった。
【表1】

Figure 0004071041
【0026】
【表2】
Figure 0004071041
【0027】
(実施例2)
実施例1の廃酸を60℃で、1m3の廃酸に対して1L/minの流量のエアーでエアレーションを1時間施した後、12時間沈降処理した。その結果、上澄み中の錫イオン濃度は0.4g/Lとなり、実施例1と同様に電解再生した液を焼鈍酸洗に用いた結果、問題は生じなかった。
【0028】
(実施例3)
実施例2のエアーを酸素に変更し、流量を0.2L/minに減少した以外は実施例2と同様に試験した。その結果、上澄み中の錫イオン濃度は0.5g/Lとなり、実施例1と同様に電解再生した液を焼鈍酸洗に用いた結果、問題は生じなかった。
【0029】
(比較例1)
実施例1の廃酸を用いて、加熱沈降処理を行わないこと以外は同じ条件で廃酸を電解再生し、その再生硫酸を用いて焼鈍酸洗を行った。その結果、酸洗槽で酸を散布しているスプレーノズルに錫の固形物が詰まり、酸洗ムラ異常が発生した。
【0030】
【発明の効果】
本発明を用いることで
(1)錫含有の廃酸を容易に再利用することが可能である。
(2)その他イオンとして、Cu、Zn、Ni等が混在した中で錫を選択的に沈降除去することができる。
【0031】
(3)錫除去後の処理液から、更に銅が、高品位に、効率良く回収できる。
(4)また処理後の硫酸酸性の液が、酸洗用の液として、再利用できる。
【図面の簡単な説明】
【図1】は、35℃〜65℃で沈降処理した場合の上澄みの錫濃度変化を示す。[0001]
[Industrial application fields]
The present invention relates to a method for recycling a copper alloy pickling waste liquid.
[0002]
[Prior art]
Copper alloys are often washed with acid for the purpose of removing oxide films and fine defects formed on the surface. As the acid, sulfuric acid or sulfuric acid mixed with hydrogen peroxide in sulfuric acid (hereinafter referred to as mixed acid), hydrochloric acid, and in some cases, additives such as hydrofluoric acid and other surfactants may be used.
[0003]
For example, in the case of a copper alloy rolling mill, a copper alloy is rolled by a combination of rolling → annealing pickling → rolling, processing and heat treatment, and pickling is used in this annealing pickling process.
[0004]
In such an annealing pickling process, sulfuric acid is often used. The acid concentration is often 3 to 30%, but depending on the oxidizing atmosphere during annealing and the type of copper alloy, this range may be off or special additives may be used.
[0005]
In the pickling process, copper oxide and metallic copper are dissolved by the acid.
Cu + H2SO4 → CuSO4 + H2
CuO + H2SO4 → CuSO4 + H2O
As a result of this reaction, copper ions accumulate in the pickling solution, and finally copper cannot be dissolved. Usually, this acid is drained after being subjected to neutralization precipitation to be discarded as general waste water. The metal content in the waste acid becomes a hydroxide during neutralization, and is discharged in sludge.
[0006]
Since this waste acid contains a large amount of valuable copper and alloy components, it has been widely attempted to recover the original sulfuric acid while recovering it.
The simplest method is a copper removal electrolysis method using an insoluble anode. In this method, an anode in which platinum is plated on a lead alloy or titanium is used, the anode reaction is an oxygen generation reaction, and copper and other metals are deposited on the cathode, thereby performing copper removal and sulfuric acid regeneration. JP-A-5-238707 introduces a method of regenerating sulfuric acid by using a lead peroxide electrode or a lead alloy for the anode and simultaneously oxidizing and decomposing organic substances in the sulfuric acid at the anode. However, in this patent, the main purpose is to decompose organic substances in the waste acid, and no mention is made of a method for removing metal ions in the liquid.
[0007]
In addition to this, there are a wide variety of methods such as controlling the movement of ions during electrolysis using a diaphragm or ion exchange membrane to improve the quality of the electrolytic regeneration solution, and recovering only the acid component using a diffusion dialysis membrane. It is used.
[0008]
[Problems to be solved by the invention]
However, the waste acid generated in the actual pickling process contains many substances other than the main components. In particular, when an alloy such as phosphor bronze containing tin as an alloy component is pickled, tin ions are present in the waste acid. These tin ions become oxides and hydroxides with time, and often become very fine solids.
[0009]
When the acid is normally discarded, since copper ions other than tin are also converted into hydroxides during the neutralization treatment, there is no major problem even if tin ions, tin oxide, or hydroxides are included.
However, when this acid is reused, it becomes a big problem. Tin oxides and hydroxides that have become fine solids have low sedimentation properties and tend to be suspended in a solution. Therefore, even when regenerated electrolytically, it often remains in the solution, and if an acid is repeatedly used, a very large amount of tin solids accumulate in the acid.
[0010]
This tin solid sticks to the wall surface of the acid tank or sticks to the inside of the pipe, which adversely affects the pickling equipment. In particular, in the case of equipment that uses acid sprayed with a nozzle, it causes nozzle clogging, which is a serious problem.
[0011]
Further, even in a regeneration method other than electrolytic regeneration, in a regeneration method using a film, tin solids cause clogging of the film. Therefore, it is necessary to remove tin solids and tin ions before regeneration.
[0012]
However, as described above, tin ions often become fine oxides and hydroxide solids, so that when filtration was performed, the filter medium was clogged and was very difficult to separate. .
[0013]
In addition, sedimentation does not readily settle, and it is necessary to perform forced sedimentation by centrifugation or the like, which requires a large capital investment.
Further, these methods cannot remove tin ions, and there is a problem that tin ions present in the liquid after separation become solid matter in a later step.
In Patent No. 3173440, when making tin oxide powder, the solution of metal tin dissolved in ammonium nitrate solution is precipitated to metastannic acid by raising the temperature to 50 ° C. or more, so that the reaction is promoted. It has been shown to age at 60 ° C to 70 ° C. However, the purpose of this patent is to produce tin oxide, that is, nitric acid is used in the solution, metal ions other than tin do not exist, etc., and sulfuric acid is mainly used as in this patent. It was not clear whether tin precipitated selectively in the presence of acids and other ions such as Cu, Zn, and Ni.
[0014]
Furthermore, it was impossible to grasp that copper could be recovered efficiently with high quality.
Moreover, it has not been understood that the sulfuric acid solution after the treatment can be reused as a pickling solution.
[Means for Solving the Problems]
The present inventors consider that it is necessary to remove this tin ion in order to recycle the waste acid, and as a result of earnest research, as a result of carrying out a precipitation treatment while heating the waste acid to 40 ° C or higher. The present inventors have found that tin ions can be efficiently removed.
[0015]
That is,
(1) In a method for reclaiming a copper alloy pickling waste liquid containing tin ions and a tin compound, a pretreatment for selectively precipitating and separating tin ions as tin oxide or hydroxide by heating the waste liquid to 40 ° C. or higher. A method of reclaiming a copper alloy pickling waste liquid that is reclaimed after being applied.
[0016]
(2) In a method for regenerating a copper alloy pickling waste liquid containing tin ions and a tin compound, a pretreatment for selectively precipitating and separating the tin ions as tin oxide or hydroxide by heating the waste liquid to 40 ° C. or higher. A method for reclaiming a copper alloy pickling waste liquid in which copper is collected by electrolytic collection after application and the acid solution after copper recovery is reused.
[0017]
(3) A method for regenerating a copper alloy pickling waste liquid, wherein the main component of the waste liquid is sulfuric acid in the method for regenerating a copper alloy pickling waste liquid according to (1) or (2).
(4) The method for regenerating a copper alloy pickling waste liquid according to (3), wherein air or oxygen is aerated during the heat treatment, and then settled and separated.
[0018]
[Action]
Tin ions in the spent acid are oxidized with time to become tin oxide or tin hydroxide. However, at a normal temperature, the speed is slow, and the generated particles are fine so that they are suspended in the liquid.
[0019]
However, the higher the temperature, the faster the oxidation rate and the larger the particle size of the product. In addition, as is widely known, the higher the temperature, the faster the sedimentation rate of the suspension, which makes it easier to settle and separate solids. Due to these two effects, it is possible to easily and inexpensively separate the tin ions from tin oxide or hydroxide.
[0020]
In order to increase the oxidation rate of tin ions, it is effective to aerate during heating. However, aeration is not essential, and sedimentation can be performed without aeration. Further, when aeration is performed, the liquid is agitated, and batch processing for sedimentation after the reaction is performed, or in the case of continuous operation, it is necessary to separate the reaction tank and the precipitation tank. Furthermore, if oxygen is used instead of air, the flow rate of aeration can be reduced.
[0021]
For example, as shown in FIG. 1, in the case of heat precipitation at 65 ° C., the concentration of tin ions contained in the supernatant decreases with the sedimentation time, and can be reduced to 0.5 g / L in 24 hours. Moreover, although not shown in FIG. 1, when aeration is performed, the sedimentation time can be reduced to half or less.
[0022]
Furthermore, since it is mainly tin ions that adversely affect the reuse of waste acid, there is an advantage that even if other ions remain, the pickling is not greatly affected. In other words, ions such as Zn and Ni mixed when pickling other alloys such as brass and iron white other than phosphor bronze cannot be removed by the pretreatment method of this patent. Does not reach. As a result of testing by the inventors, there was no problem in pickling ability even when Zn was present up to 20 g / L and Ni was present up to 5 g / L. However, since accumulation of Zn and Ni ions reduces the solubility of Cu by that amount, it is not preferable that impurity ions become extremely high. Therefore, it is desirable to remove impurity ions by discharging a part of the accumulated ions to a certain amount or less, or by performing cation removal electrolysis using an anion exchange membrane as a diaphragm. For example, when the Zn concentration of the regenerated solution was controlled to 5 g / L or less and the Ni concentration was controlled to 1 g / L or less, the pickling ability equivalent to that using the new solution could be obtained.
In addition, in the process of electrolyzing and removing copper ions by electrolysis using an insoluble anode, copper is almost electrodeposited, and Zn, Ni and the like are often not co-deposited. However, Sn may be entrained in the electrodeposit due to the suspension of fine solids, and the resulting copper quality may be reduced.
By removing Sn in advance as in this method, the copper grade recovered by electrodeposition is over 95%, making it easy to reuse. Examples of the method for reusing electrodeposited copper include a method of putting it into a converter in a copper smelting process, and a method of dissolving a copper alloy when the quality of impurities is known.
[0023]
[Embodiments of the Invention]
【Example】
Example 1
The sulfuric acid waste liquid of the annealing pickling line of the copper alloy having the composition shown in Table 1 was subjected to heat precipitation at 60 ° C. for 1 day. As a result, the tin component precipitated, and the supernatant component became the component shown in Table 2, and the tin ion concentration could be reduced from 5 g / L to 0.5 g / L.
[0024]
When the supernatant was electrolyzed at 10 A / dm 2 using an insoluble anode titanium platinum plating material as the anode and a pure copper plate as the cathode, the copper concentration could be reduced to 3 g / L. The composition of the electrodeposit obtained by electrolysis was 97% or more copper. Moreover, the zinc and nickel ion concentration in the liquid after electrolysis was the same as before electrolysis.
[0025]
When this electrolytically regenerated sulfuric acid was used for annealing pickling, it could be pickled without problems as with the new solution.
[Table 1]
Figure 0004071041
[0026]
[Table 2]
Figure 0004071041
[0027]
(Example 2)
The waste acid of Example 1 was aerated at 60 ° C. for 1 hour with 1 L / min of air with respect to 1 m 3 of waste acid, and then settled for 12 hours. As a result, the tin ion concentration in the supernatant became 0.4 g / L. As a result of using the electrolytically regenerated solution for annealing pickling as in Example 1, no problem occurred.
[0028]
(Example 3)
The test was performed in the same manner as in Example 2 except that the air in Example 2 was changed to oxygen and the flow rate was reduced to 0.2 L / min. As a result, the tin ion concentration in the supernatant became 0.5 g / L. As a result of using the electrolytically regenerated solution for annealing pickling as in Example 1, no problem occurred.
[0029]
(Comparative Example 1)
Using the waste acid of Example 1, the waste acid was electrolytically regenerated under the same conditions except that the heat precipitation treatment was not performed, and annealing pickling was performed using the regenerated sulfuric acid. As a result, the spray nozzle spraying the acid in the pickling tank was clogged with solid matter of tin, and abnormal pickling was generated.
[0030]
【The invention's effect】
By using the present invention, (1) the waste acid containing tin can be easily reused.
(2) Tin can be selectively precipitated and removed in the presence of Cu, Zn, Ni, etc. as other ions.
[0031]
(3) Copper can be efficiently recovered with high quality from the treatment liquid after removing tin.
(4) The sulfuric acid solution after treatment can be reused as a pickling solution.
[Brief description of the drawings]
FIG. 1 shows changes in tin concentration in the supernatant when sedimentation is performed at 35 ° C. to 65 ° C. FIG.

Claims (4)

錫イオンおよび錫化合物を含む銅合金酸洗廃液の再生方法において、廃液40℃以上に加熱して錫イオンを錫酸化物もしくは水酸化物として選択的に沈降分離処理する前処理を施した後に、再生処理することを特徴とする銅合金酸洗廃液の再生方法。In the method for regenerating a copper alloy pickling waste liquid containing tin ions and a tin compound, after the waste liquid is heated to 40 ° C. or more and subjected to a pretreatment for selective precipitation separation of tin ions as tin oxide or hydroxide , A method for reclaiming a copper alloy pickling waste liquid, characterized by performing a regeneration treatment. 錫イオンおよび錫化合物を含む銅合金酸洗廃液の再生方法において、廃液を40℃以上に加熱して錫イオンを錫酸化物もしくは水酸化物として選択的に沈降分離処理する前処理を施した後に、電解採取により銅を回収し、銅回収後の酸液を再利用することを特徴とする銅合金酸洗廃液の再生方法。In a method for regenerating a copper alloy pickling waste liquid containing tin ions and a tin compound, after the waste liquid is heated to 40 ° C. or more and subjected to a pre-treatment for selective precipitation separation of tin ions as tin oxide or hydroxide A method for reclaiming a copper alloy pickling waste liquid, wherein copper is recovered by electrolytic collection and the acid solution after copper recovery is reused. 請求項1又は2の銅合金酸洗廃液の再生方法において廃液の主成分が硫酸であることを特徴とする銅合金酸洗廃液の再生方法。The method for regenerating a copper alloy pickling waste liquid according to claim 1 or 2, wherein the main component of the waste liquid is sulfuric acid. 請求項3の銅合金酸洗廃液の再生方法において加熱処理中に空気もしくは酸素をエアレーションし、その後に沈降分離することを特徴とする銅合金酸洗廃液の再生方法。4. A method for regenerating a copper alloy pickling waste liquid according to claim 3, wherein air or oxygen is aerated during the heat treatment, and thereafter the precipitate is separated by settling.
JP2002148015A 2002-05-22 2002-05-22 Regeneration method of copper alloy pickling waste liquid Expired - Fee Related JP4071041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148015A JP4071041B2 (en) 2002-05-22 2002-05-22 Regeneration method of copper alloy pickling waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148015A JP4071041B2 (en) 2002-05-22 2002-05-22 Regeneration method of copper alloy pickling waste liquid

Publications (2)

Publication Number Publication Date
JP2003342763A JP2003342763A (en) 2003-12-03
JP4071041B2 true JP4071041B2 (en) 2008-04-02

Family

ID=29766768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148015A Expired - Fee Related JP4071041B2 (en) 2002-05-22 2002-05-22 Regeneration method of copper alloy pickling waste liquid

Country Status (1)

Country Link
JP (1) JP4071041B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043655A (en) * 2004-08-09 2006-02-16 Japan Organo Co Ltd Water treating apparatus and operation method therefor
FI120052B (en) * 2007-04-13 2009-06-15 Yara Suomi Oy A method for treating and reusing an etching solution
JP5393214B2 (en) * 2009-03-24 2014-01-22 新日鉄住金エンジニアリング株式会社 Pickling method for copper-based materials
JP5481233B2 (en) * 2010-03-04 2014-04-23 Dowaメタルテック株式会社 Recycling method of waste liquid containing Sn ion
KR20130069419A (en) 2011-12-15 2013-06-26 미쓰비시 마테리알 가부시키가이샤 Method of removing oxide film on surface of copper or copper-base alloy and copper or copper-base alloy recovered using the method
KR101440816B1 (en) 2014-04-21 2014-09-18 대진대학교 산학협력단 Recovery method of nitric acid and valuable metal from spent solder solution

Also Published As

Publication number Publication date
JP2003342763A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
KR102096976B1 (en) Systems and methods for continuous alkaline lead acid battery recycling
CN103781923A (en) Process for purifying zinc oxide
CN111455189B (en) Method for leaching copper from tin-copper slag
JPS604892B2 (en) How to recover metal from copper refining anode slime
JP2004315865A (en) Method for recovering tin from tin-containing material
JP5591749B2 (en) Method for recovering tellurium from alkaline leaching residue containing tellurium
JP4071041B2 (en) Regeneration method of copper alloy pickling waste liquid
JP6983083B2 (en) A method for removing SiO2 from a slurry containing silver and SiO2 and a method for purifying silver.
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
JP6475403B2 (en) How to recover tellurium
JP6373772B2 (en) Method for recovering indium and gallium
JP2012214307A (en) Method for recovering tellurium
CN112126791A (en) Method for recycling high-purity copper from metal waste
JPH073500A (en) Method for recovering and regenerating tin plating solution
CN111286609A (en) Method for separating and purifying lead, zinc, cadmium and copper based on ammonium complex system
JP4787951B2 (en) Method for electrolytic purification of silver
RU2779554C1 (en) Method for producing refined silver from intermediate products of precious metal production containing silver in the form of chloride
CN219342235U (en) System for recycling lead from scrap copper electrolysis anode slime
RU2795912C1 (en) Method for processing tin-plated copper waste
JP3613443B2 (en) Method for dissolving and extracting tantalum and / or niobium-containing alloys
JP7420001B2 (en) Method for producing metal cadmium
KR101752727B1 (en) Method for recovering tin from tin residue
JP2017119623A (en) Method for recovering tellurium
JPH05320972A (en) Method for separating and recovering copper from ferroscrap
US20050042156A1 (en) Method of recovery of metals from etching solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees