JPH01319203A - Titanium boride paste and pattern forming method using same - Google Patents

Titanium boride paste and pattern forming method using same

Info

Publication number
JPH01319203A
JPH01319203A JP15126188A JP15126188A JPH01319203A JP H01319203 A JPH01319203 A JP H01319203A JP 15126188 A JP15126188 A JP 15126188A JP 15126188 A JP15126188 A JP 15126188A JP H01319203 A JPH01319203 A JP H01319203A
Authority
JP
Japan
Prior art keywords
titanium boride
paste
calcium oxide
powder
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15126188A
Other languages
Japanese (ja)
Inventor
Mineharu Tsukada
峰春 塚田
Koji Omote
孝司 表
Nobuo Kamehara
亀原 伸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15126188A priority Critical patent/JPH01319203A/en
Publication of JPH01319203A publication Critical patent/JPH01319203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To obtain a low resistance circuit wiring material by adding metal aluminum and calcium oxide to titanium boride paste whose main component is impalpable powder of titanium boride. CONSTITUTION:An organic solvent is added to titanium boride, metal aluminum, calcium oxide powder and pasted. This titanium paste is printed on a green sheet of aluminum nitride and a pattern is formed, and thereafter baked integrally to produce internal wiring material. Then oxygen contained in the titanium boride is reacted with the metal aluminum melted at a high temperature to form alumina, and the formed alumina is reacted with the calcium oxide at a higher temperature to produe a liquid phase of calcium aluminate and this liquid phase having a high vapor pressure is evaporated away by further temperature raising process to remove the oxygen. Thus, the impurity, is removed from the titanium boride powder and a circuit wiring with a very electric resistance can be formed.

Description

【発明の詳細な説明】 〔概 要〕 硼化チタンペーストとそれを用いたパターン形成方法に
関し、 硼化チタンの粉末に含有される酸素を除去して、電気抵
抗の低い回路配線材料、特に窒化アルミニウム回路基板
の内部配線材料を提供することを目的とし、 硼化チタンを主成分とし、これに金属アルミニウムと酸
化カルシウムを添加したペーストとこれを用いたパター
ン形成方法として構成する。
[Detailed Description of the Invention] [Summary] Regarding a titanium boride paste and a pattern forming method using the same, oxygen contained in titanium boride powder is removed to form circuit wiring materials with low electrical resistance, especially nitrided The purpose is to provide an internal wiring material for aluminum circuit boards, and consists of a paste containing titanium boride as the main component, to which metal aluminum and calcium oxide are added, and a pattern forming method using this paste.

〔産業上の利用分野〕[Industrial application field]

本発明は硼化チタンペースト及びこれを用いた硼化チタ
ンパターンの形成方法に係る。
The present invention relates to a titanium boride paste and a method for forming a titanium boride pattern using the same.

〔従来の技術〕[Conventional technology]

窒化アルミニウムは、高い熱伝導性とシリコンに近い熱
膨張を有することから、LSIパッケージや多層回路基
板などの材料として有望視されている。この配線材料と
して硼化チタンが注目されている。硼化チタンは、Wな
どに比べ、電気抵抗が低く、また、高融点であるため、
高温で焼成しなければならない窒化アルミニウム回路基
板の内部配線材料として適しているからである。
Aluminum nitride has high thermal conductivity and thermal expansion close to that of silicon, so it is seen as a promising material for LSI packages, multilayer circuit boards, and the like. Titanium boride is attracting attention as a material for this wiring. Titanium boride has lower electrical resistance and higher melting point than W etc.
This is because it is suitable as an internal wiring material for aluminum nitride circuit boards that must be fired at high temperatures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

硼化チタンは高融点であるため、焼結性を向上させるに
は微粉末を用いなければならないが、硼化チタンは非常
に硬いため粉砕によって微細化するのが困難であり、そ
のため酸素量が増大して、電気抵抗が本来期待される値
より大きくなるという問題があった。
Titanium boride has a high melting point, so fine powder must be used to improve its sinterability, but titanium boride is extremely hard and difficult to grind into fine powder, so the amount of oxygen is low. There was a problem in that the electrical resistance increased and the electrical resistance became larger than the originally expected value.

そこで、本発明は硼化チタンを用いた配線の抵抗を低減
するために、硼化チタンの粉末に含有される酸素を除去
し、抵抗の低い回路配線材料を提供することを目的とす
る。
Therefore, an object of the present invention is to remove oxygen contained in titanium boride powder and provide a circuit wiring material with low resistance in order to reduce the resistance of wiring using titanium boride.

〔課題を解決するための手段及び作用〕本発明では、不
可避的に酸素を含有する硼化チタンの微粉末を主成分と
する硼化チタンペーストに金属アルミニウムと酸化カル
シウムを添加することにより、この問題を解決した。
[Means and effects for solving the problem] In the present invention, metallic aluminum and calcium oxide are added to a titanium boride paste whose main component is fine powder of titanium boride, which inevitably contains oxygen. Problem solved.

すなわち、硼化チタンに含まれる酸素を高温(660℃
以上)で溶融した金属アルミニウムと反応させアルミナ
を生成させ、さらに高い温度(1400℃以上)で、生
成したアルミナと酸化カルシウムを反応させて、アルミ
ン酸カルシウム(Can・2A1203)の液相を発生
させ、蒸気圧の高いこの液相をさらなる昇温過程で蒸発
飛散させることにより、酸素を除去するようにした。
In other words, the oxygen contained in titanium boride is heated to high temperature (660°C).
above) to generate alumina, and at a higher temperature (1400°C or higher), the generated alumina and calcium oxide are reacted to generate a liquid phase of calcium aluminate (Can・2A1203). This liquid phase, which has a high vapor pressure, is evaporated and scattered during a further heating process to remove oxygen.

金属アルミニウムの量はアルミナを形成するのに必要な
、酸素に対して、モル比で2:3以上であればよい。酸
化カルシウムの量は、アルミン酸カルシウムを形成する
のに必要な量以上(金属アルミニウムに対してモル比で
1=4以上)あれば良い。これらの量は用いる硼化チタ
ンの粉末に依存するが、一般的には、硼化チタン100
重量部に対して金属アルミニウムは0.5〜12重量部
、好ましくは1〜10重量部、酸化カルシウムは0.5
〜6重量部、好ましくは1〜5重量部で用いられる。硼
化チタン粉末の酸素含有量は通常0.5〜3重量%程度
である。
The amount of metal aluminum may be in a molar ratio of 2:3 or more to oxygen, which is necessary to form alumina. The amount of calcium oxide may be at least the amount necessary to form calcium aluminate (molar ratio of 1=4 or more with respect to metal aluminum). These amounts depend on the titanium boride powder used, but generally titanium boride 100
Metal aluminum is 0.5 to 12 parts by weight, preferably 1 to 10 parts by weight, and calcium oxide is 0.5 parts by weight.
~6 parts by weight, preferably 1 to 5 parts by weight. The oxygen content of titanium boride powder is usually about 0.5 to 3% by weight.

硼化チタン、金属アルミニウム、酸化カルシウムをペー
スト化するには有機バインダー、有機溶剤、可塑剤など
、一般のペースト作成に用いられる成分と混練すればよ
い。硼化チタンなどの固体粉末と有機バインダーなどと
の混合割合も常法によればよいが、一般的には固形分が
70〜9Qwt%、好ましくは75〜35wt%になる
ようにする。
To make a paste of titanium boride, aluminum metal, and calcium oxide, it is sufficient to knead them with components commonly used for making pastes, such as an organic binder, an organic solvent, and a plasticizer. The mixing ratio of solid powder such as titanium boride and organic binder may be determined by a conventional method, but generally the solid content is 70 to 9 Qwt%, preferably 75 to 35 wt%.

この硼化チタンペーストは、とりわけ窒化アルミニウム
回路基板用の特に内部配線材料として適している。すな
わち、窒化アルミニウムのグリーンシート上にこの硼化
チタンペーストを印刷しパターン形成後、グリーンシー
トを積層し、一体焼成することによって硼化チタンを内
部配線材料とした窒化アルミニウム多層回路基板が作製
される。
This titanium boride paste is particularly suitable as an internal wiring material, especially for aluminum nitride circuit boards. That is, after printing this titanium boride paste on an aluminum nitride green sheet to form a pattern, the green sheets are laminated and integrally fired to produce an aluminum nitride multilayer circuit board using titanium boride as an internal wiring material. .

こうして高温焼成される窒化アルミニウムの焼成温度に
耐え、かつその温度で緻密化する硼化チタン配線材料が
得られる。
In this way, a titanium boride wiring material that can withstand the firing temperature of aluminum nitride and becomes dense at that temperature is obtained.

この硼化チタンペーストは、しかしながら、窒化アルミ
ニウム以外の基板材料と組合せて使用することもでき、
また硬質セラミック基板上にパターンを形成するために
用いてもよい。
This titanium boride paste, however, can also be used in combination with substrate materials other than aluminum nitride,
It may also be used to form patterns on hard ceramic substrates.

この硼化チタンペーストの焼成条件は、基本的に従来の
硼化チタンペーストの焼成条件と同じでよいが、代表的
には下記の条件が採用される。
The firing conditions for this titanium boride paste may basically be the same as those for conventional titanium boride pastes, but the following conditions are typically employed.

温度: 1800〜2000℃ 雰囲気:N2又はAr 時間:3〜24h 圧 カニ常圧 本発明によれば、硼化チタンに含有する酸素を有効に除
去できるため、回路配線の電気抵抗を低減でき、理論値
に近づけることができる。
Temperature: 1800-2000°C Atmosphere: N2 or Ar Time: 3-24h Pressure Normal pressure According to the present invention, since oxygen contained in titanium boride can be effectively removed, the electrical resistance of circuit wiring can be reduced, and the theoretical value can be approached.

〔実施例〕〔Example〕

平均粒径1.0虜、酸素含有量2wt%の硼化チタン粉
末200gに、粒径4趨の金属アルミニウム粉末を8g
添加し、さらに粒径3虜の酸化カルシウム粉末を4g添
加した。次に、有機バインダ、有機溶剤を添加して、ボ
ールミルにより混合し、さらにらいかい機、三本ロール
ミルにより、混練してペーストを作製した。
8 g of metal aluminum powder with 4 particle sizes is added to 200 g of titanium boride powder with an average particle size of 1.0 mm and an oxygen content of 2 wt%.
Furthermore, 4 g of calcium oxide powder with a particle size of 3 mm was added. Next, an organic binder and an organic solvent were added and mixed using a ball mill, and further kneaded using a sieve machine and a three-roll mill to prepare a paste.

このペーストを厚さ300βの窒化アルミニウムグリー
ンシートにスクリーン印刷して、幅150−1厚み30
趨のパターンを形成した。このグリーンシートを中間層
に入れて、10層の積層体を作製し、600℃の窒素雰
囲気中で脱脂した。次に、1800℃の窒素中で5h焼
成した。
This paste was screen printed on an aluminum nitride green sheet with a thickness of 300β and a width of 150-1 and a thickness of 30
A trend pattern was formed. This green sheet was placed in an intermediate layer to produce a 10-layer laminate, which was degreased in a nitrogen atmosphere at 600°C. Next, it was fired for 5 hours in nitrogen at 1800°C.

焼成後、内部配線の電気抵抗を測定した。また、このペ
ーストを単独で焼成した試料を用いて酸素量を分析した
。これらの結果を表1に示す。
After firing, the electrical resistance of the internal wiring was measured. In addition, the amount of oxygen was analyzed using a sample obtained by firing this paste alone. These results are shown in Table 1.

比較のために上記実施例と同一の硼化チタン粉末のみを
用い、金属アルミニウムおよび酸化カルシウムは添加せ
ずに、有機バインダ、有機溶剤を添加して実施例と同様
にペーストを作製した。このペーストを、実施例と同様
にスクリーン印刷から焼成までの工程を経て試料を作製
した。焼成機電気抵抗を測定した。また、同様にペース
トのみを焼成し、酸素量を測定した。この結果も合わせ
て表1に示す。
For comparison, a paste was prepared in the same manner as in the example, using only the same titanium boride powder as in the above example, without adding metal aluminum and calcium oxide, and adding an organic binder and an organic solvent. A sample was prepared from this paste through the steps from screen printing to firing in the same manner as in the example. The electrical resistance of the firing machine was measured. Further, only the paste was fired in the same manner, and the amount of oxygen was measured. The results are also shown in Table 1.

表1 〔発明の効果〕 以上説明した様に、本発明によれば、硼化チタン粉末か
ら不純物の酸素を除去し、極めて電気抵抗の低い回路配
線を形成することができる。
Table 1 [Effects of the Invention] As explained above, according to the present invention, impurity oxygen can be removed from titanium boride powder, and circuit wiring with extremely low electrical resistance can be formed.

Claims (2)

【特許請求の範囲】[Claims] 1.硼化チタンを主成分とし、これに金属アルミニウム
と酸化カルシウムを添加したことを特徴とする硼化チタ
ンペースト。
1. A titanium boride paste whose main ingredient is titanium boride, to which metal aluminum and calcium oxide are added.
2.窒化アルミニウムグリーンシート上に請求項1記載
の硼化チタンペーストを塗布する工程と、該窒化アルミ
ニウムグリーンシートを焼成する工程を含むことを特徴
とする窒化アルミニウム基板上に硼化チタンパターンを
形成する方法。
2. A method for forming a titanium boride pattern on an aluminum nitride substrate, comprising the steps of applying the titanium boride paste according to claim 1 on an aluminum nitride green sheet, and firing the aluminum nitride green sheet. .
JP15126188A 1988-06-21 1988-06-21 Titanium boride paste and pattern forming method using same Pending JPH01319203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15126188A JPH01319203A (en) 1988-06-21 1988-06-21 Titanium boride paste and pattern forming method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15126188A JPH01319203A (en) 1988-06-21 1988-06-21 Titanium boride paste and pattern forming method using same

Publications (1)

Publication Number Publication Date
JPH01319203A true JPH01319203A (en) 1989-12-25

Family

ID=15514795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15126188A Pending JPH01319203A (en) 1988-06-21 1988-06-21 Titanium boride paste and pattern forming method using same

Country Status (1)

Country Link
JP (1) JPH01319203A (en)

Similar Documents

Publication Publication Date Title
JPS6341165B2 (en)
US5250358A (en) Palladium thick film resistor containing boron nitride
JPH01319203A (en) Titanium boride paste and pattern forming method using same
JP3526710B2 (en) Circuit board manufacturing method
US5932043A (en) Method for flat firing aluminum nitride/tungsten electronic modules
JPH01167291A (en) Metallized composition for ceramic
JPS60245152A (en) Seized substrate for mounting semiconductor device and manufacture thereof
JPH027495A (en) Manufacture of aluminum nitride multilayer board
JPH01155685A (en) Manufacture of maltilayer substrate of aluminum nitride
JP2002231049A (en) Conductive paste
JPH0233808A (en) Conductor paste composition
JP2003069217A (en) Method for manufacturing circuit board
JP3316923B2 (en) Method for producing aluminum nitride sintered body having metallized layer
JPH01155686A (en) Multilayer substrate of aluminum nitride and manufacture thereof
JP2531716B2 (en) Beryllia Ceramic Metallizing Paste
JPH07257973A (en) Aluminum nitride sintered compact, production and use thereof
JPS63213302A (en) Electric resistor and manufacture of the same
JPH0231496A (en) Manufacture of aluminum nitride wiring board
JPH01120001A (en) Electric resistor and its manufacture
JPH0336790A (en) Baking of multilayer aluminum nitride circuit board
JPH03295878A (en) Metallizing structure for ceramics and its production
JPS63215551A (en) Electric resistor and manufacture
JPS6117656B2 (en)
JPH04132771A (en) Electrically conductive paste
JPH0428124B2 (en)