JPH01318218A - Manufacture of magnetic alloy - Google Patents

Manufacture of magnetic alloy

Info

Publication number
JPH01318218A
JPH01318218A JP15190188A JP15190188A JPH01318218A JP H01318218 A JPH01318218 A JP H01318218A JP 15190188 A JP15190188 A JP 15190188A JP 15190188 A JP15190188 A JP 15190188A JP H01318218 A JPH01318218 A JP H01318218A
Authority
JP
Japan
Prior art keywords
ingot
alloy
cooling
boron
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15190188A
Other languages
Japanese (ja)
Other versions
JP2631513B2 (en
Inventor
Toshiaki Yamagami
利昭 山上
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Tatsuya Shimoda
達也 下田
Nobuyasu Kawai
河合 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP63151901A priority Critical patent/JP2631513B2/en
Publication of JPH01318218A publication Critical patent/JPH01318218A/en
Application granted granted Critical
Publication of JP2631513B2 publication Critical patent/JP2631513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To achieve high performance by melting an alloy which basically consists of a rare-earth element, a transition metal and boron, performing cooling in a specific temperature range at a specific cooling rate, and performing a hot processing and heat treatment. CONSTITUTION:An alloy consisting of a rare-earth element, a transition metal and boron is melted and cast and then gradually cooling ingot within a temperature range of 800 to 200 deg.C to avoid a casting effect. If the cooling rate is faster than 5 deg.C/sec, a great thermal distortion results in the ingot. On the other hand, if it is slower than 0.1 deg.C/sec, it takes one hour or more for the ingot to be cooled. Thus, a magnet with anisotropy of high magnetic performance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素と遷移金属、及びボロンを基本成分
とする磁性合金、とくに機械的配向性を有する永久磁石
とその製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic alloy whose basic components are rare earth elements, transition metals, and boron, and in particular to a permanent magnet having mechanical orientation and a method for manufacturing the same. .

[従来の技術] 磁性合金は、永久磁石を始め一般家庭の各種電気製品か
ら大型コンピューターの周辺末端機器まで幅広い分野で
使用されている重要な電気、電子材料の一つである。最
近の電気製品の小型化、高効率化の要求にともない、永
久磁石も益々高性能化が求められている。
[Prior Art] Magnetic alloys are important electrical and electronic materials that are used in a wide range of fields, from permanent magnets and other household appliances to peripheral end devices for large computers. With the recent demand for smaller size and higher efficiency of electrical products, permanent magnets are also required to have increasingly higher performance.

現在使用されている永久磁石のうち代表的なものはアル
ニコ、ハードフェライト及び希土類−遷移金属系磁石で
ある。特に、希土類(以下、Rと略す。)−遷移金属(
以下、TMと略す。)系単石であるR−Co系永久磁石
や、R−Fe−B系永久磁石は高い磁気性能が得られる
ので従来から多くの研究開発が行なわれている。
Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, rare earths (hereinafter abbreviated as R)-transition metals (
Hereinafter, it will be abbreviated as TM. ) type single-stone R-Co-based permanent magnets and R-Fe-B-based permanent magnets have been extensively researched and developed since they provide high magnetic performance.

従来、これらR−T M−B系永久磁石の製造法に関し
ては以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these RT M-B permanent magnets as shown in the following literature.

(1)粉末冶金に基づく焼結による方法。(1) A sintering method based on powder metallurgy.

(文献1、文献2) (2)非晶質合金を製造するのに用いる急冷薄体装置で
、厚さ30μm程度の急冷薄片を作り、その薄片を樹脂
結合法で磁石にするメルトスピニング法による急冷薄片
を用いた樹脂結合法。
(Reference 1, Reference 2) (2) Using the melt spinning method, a quenched flake with a thickness of about 30 μm is made using a quenched thin body device used to produce amorphous alloys, and the flake is made into a magnet using a resin bonding method. Resin bonding method using quenched flakes.

(文献3、文献4) (3)上記(2)の方法で使用した急冷薄片を2段階の
ホットプレスで機械的配向処理を行なう方法。    
(文献4、文献5) (4)鋳造インゴットを500℃以上の温度で熱間加工
をする事により結晶粒を微細化し、またその結晶軸を特
定の方向に配向せしめて該鋳造合金を磁気的に異方性化
する方法。  (文献6)ここで、 文献1;特開昭59−46008号公報文献2; M、
 Sagawa、 S、 Fujimura、 N、 
Togawa。
(References 3 and 4) (3) A method in which the rapidly cooled flakes used in the method (2) above are mechanically oriented in a two-stage hot press.
(Reference 4, Reference 5) (4) By hot working the cast ingot at a temperature of 500°C or higher, the crystal grains are made finer and the crystal axes are oriented in a specific direction to make the cast alloy magnetically How to make it anisotropic. (Document 6) Here, Document 1; JP-A-59-46008 Document 2; M,
Sagawa, S., Fujimura, N.
Togawa.

H,Yamamoto and Y、 Matuura
;J、 Appl、 Phys。
H, Yamamoto and Y, Matsuura
;J, Appl, Phys.

Vol、 55(605March 1984 p20
83文献3;特開昭59−211549号公報文献4;
 R,W、 Lee ;Appl、 Phys、 Le
tt、 Vol、 46(8)15 April 19
85 p790文献5;特開昭60−100402号公
報文献6;特開昭62−276803号公報[発明が解
決しようとする課題] 前述の従来技術を用いることにより、一応R−TM−B
系永久磁石は製造できるが、これらの製造方法には次の
ような欠点を有している。
Vol, 55 (605March 1984 p20
83 Document 3; JP-A-59-211549 Document 4;
R, W, Lee; Appl, Phys, Le
tt, Vol, 46(8)15 April 19
85 p790 document 5; JP-A-60-100402 document 6; JP-A-62-276803 [Problem to be solved by the invention] By using the above-mentioned conventional technology, R-TM-B
Although permanent magnets can be manufactured, these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にする事が必須であるが
、R−T M−B系合金は酸素に対して非常に活性であ
り、そのため、粉末にするという工程を経ると表面積が
増え、酸化が激しくなり焼結体中の酸素濃度はどうして
も高くなってしまう。また、粉末を成形するときに、例
えばステアリン欣亜鉛のような成形助材を使用しなけれ
ばならない。これは焼結工程で前もって取り除かれるの
ではあるが、数刻は磁石の中に炭素の形で残ってしまう
In the sintering method (1), it is essential to turn the alloy into powder, but R-T M-B alloys are very active against oxygen, so if you go through the process of turning them into powder, The surface area increases, oxidation becomes more intense, and the oxygen concentration in the sintered body inevitably increases. Also, when molding the powder, molding aids such as stearin and zinc must be used. Although this is removed beforehand during the sintering process, it remains in the form of carbon within the magnet for several moments.

この炭素はR−TM−B系磁石の磁気性能を低下させて
しまい好ま17<ない。
This carbon degrades the magnetic performance of the R-TM-B magnet, and is therefore not preferred.

成形助材を加えてプレス成形した後の成形体はグリーン
体と言われる。これは大変脆く、ハンドリングが難しい
。従って、焼結炉にきれいに並べて入れるのは相当の手
間がかかることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. It is very fragile and difficult to handle. Therefore, another major drawback is that it takes a considerable amount of effort to arrange them neatly in a sintering furnace.

また、異方性の磁石を得るためには磁場中でプレス成形
しなければならず、磁場電源、コイル等の大きな装置が
必要となる。
Furthermore, in order to obtain an anisotropic magnet, press molding must be performed in a magnetic field, which requires large equipment such as a magnetic field power source and a coil.

以上の欠点があるので、一般的に言って、R−TM−B
系の焼結磁石の製造には高価な設備が必要になるばかり
でなく、生産効率も悪くなり、磁石の製造コストが高く
なってしまう。従って、比較的原料の安いR−T M−
B系磁石の長所を生かすことが出来るとは君い難い。
Because of the above drawbacks, generally speaking, R-TM-B
Manufacturing sintered magnets of this type not only requires expensive equipment, but also reduces production efficiency and increases the manufacturing cost of the magnets. Therefore, R-T M-, which uses relatively cheap raw materials,
It is hard to believe that you can take advantage of the advantages of B-series magnets.

次に(2)ならびに(3)の方法であるが、これらの方
法は真空メルトスピニング装置を使用するが、この装置
は現在では大変生産性が悪くしかも高価である。
Next, methods (2) and (3) use vacuum melt spinning equipment, which currently has very low productivity and is expensive.

(2)の方法は原理的に等方性であるので、低いエネル
ギー積であり、ヒステリシスループの角形性もよくない
ので温度特性にたいしても、使用する面においても不利
である。
Since method (2) is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is also poor, so it is disadvantageous in terms of temperature characteristics and usage.

(3)の方法では異方性の磁石が得られるが、ホットプ
レスを2段階に使うので、実際に量産を考えると大変に
非効率になることは否めないであろう。
Although method (3) yields an anisotropic magnet, since hot pressing is used in two stages, it cannot be denied that it will be extremely inefficient when considering mass production.

また、この方法では高温、例えば800℃以上では結晶
粒の粗大化が著しく、それによって保磁力が極端に低下
し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force, making it impossible to produce a practical permanent magnet.

(4)の方法では粉末工程を含まず、ホットプレスも一
段階で良いために、最も製造工程を簡略化する事が可能
であるが、性能的にはやや劣るという問題があった。
Method (4) does not involve a powder process and only requires one step of hot pressing, so it is possible to simplify the manufacturing process the most, but there is a problem that the performance is somewhat inferior.

本発明は以上の従来技術の欠点、特に(4)の永久磁石
の性能面での欠点をを解決するものであり、その目的と
するところは、高性能且つ低コストなR−TM−B系永
久磁石の製造法を提供するところにある。
The present invention solves the above-mentioned drawbacks of the prior art, especially (4) in terms of performance of permanent magnets, and its purpose is to provide a high-performance and low-cost R-TM-B system. It provides a method for manufacturing permanent magnets.

[課題を解決するための手段] 本発明の希土類元素(但しイツトリウムを含む)と遷移
金属、及びボロンを基本成分とする磁性合金の製造法に
於て、少なくとも、前記基本成分から成る合金を溶解し
、200℃〜800℃の範囲を冷却速度0.1〜5℃/
secで冷却し、鋳造欠陥なく鋳造する工程、その後肢
合金を熱間加工及び熱処理する工程とから成る事を特徴
とする磁性合金の製造法。
[Means for Solving the Problems] In the method for producing a magnetic alloy whose basic components are a rare earth element (including yttrium), a transition metal, and boron according to the present invention, at least an alloy consisting of the basic components is melted. Cooling rate 0.1-5℃/200℃~800℃
1. A method for producing a magnetic alloy, comprising the steps of cooling for 10 seconds and casting without any casting defects, and hot working and heat treating the hindlimb alloy.

[作用] 本発明者等は、数多くのR−Fe−B系鋳造合金を評価
し、Pr−Fe−B系合金に適当な熱処理を加えれば高
い保磁力が得られることを知見し、更に、この合金を基
にホットプレスによる機械的配向処理、添加元素による
磁気特性の改善効果を研究し、高性能の永久磁石の製造
方法を知見した。
[Function] The present inventors evaluated a large number of R-Fe-B based cast alloys and found that a high coercive force can be obtained by applying appropriate heat treatment to the Pr-Fe-B based alloy, and further, Based on this alloy, we studied mechanical orientation treatment using hot pressing and the effect of additive elements on improving magnetic properties, and found a method for manufacturing high-performance permanent magnets.

即ち、希土類元素(但しイツトリウムを含む)と遷移金
属、及びボロンを基本成分とし、該基本成分から成る合
金を溶解・詩遺し、次いで、鋳造インゴットを500℃
以上の温度にて熱間加工し、前記基本成分から非磁性物
であるRリッチ相の液相を排除することにより磁性相を
?II #、Iδし、磁気異方性及び機械的配向性を付
与することを特徴とする永久磁石の製造方法であり、鍔
造−熱間加工−熱処理という粉末工程を含まない方法で
、従来法に比肩する高性能の磁石が得られるものである
That is, the basic ingredients are rare earth elements (including yttrium), transition metals, and boron, and an alloy consisting of these basic ingredients is melted and left, and then a cast ingot is heated to 500°C.
By hot working at the above temperature and excluding the liquid phase of the non-magnetic R-rich phase from the basic components, the magnetic phase is formed. II #, Iδ, is a method for producing a permanent magnet characterized by imparting magnetic anisotropy and mechanical orientation, and is a method that does not include the powder process of flailing, hot working, and heat treatment, and is a method that does not involve the conventional method. It is possible to obtain a magnet with high performance comparable to that of the above.

この方法に於て、鋳造インゴットの割れ、欠け、引は巣
等の鋳造欠陥はその後の熱間加工工程や製品形状に大き
な影響を与える。従って、この割れ、欠は等の鋳造欠陥
を防ぐことは本方法による永久磁石の製造方法に取って
非常に重要な点である。
In this method, casting defects such as cracks, chips, and cavities in the cast ingot greatly affect the subsequent hot working process and product shape. Therefore, it is very important to prevent casting defects such as cracks and chips in the method of manufacturing permanent magnets according to the present method.

鋳造インゴットの欠陥を防ぐために、本発明者等は以下
のことを知見した。
In order to prevent defects in cast ingots, the present inventors discovered the following.

即ち、鋳造インゴットの欠陥は主に凝固収縮時に起き、
800℃〜200℃の温度範囲をインゴットの徐冷をす
ることにより、鋳造欠陥を回避できることを見いだした
In other words, defects in cast ingots mainly occur during solidification shrinkage,
It has been found that casting defects can be avoided by slowly cooling the ingot in a temperature range of 800°C to 200°C.

徐冷の温度範囲の理由は、800℃を越えた温度から徐
冷をすると結晶粒径が増大してしまい、熱間加工もしず
らく、保磁力も得られなくなってしまう。また、200
℃以前に徐冷を中止すると、主相のキュリー温度通過に
伴う歪のため割れ等のSjJ造欠陥が生じてしまう。従
って、徐冷する範囲は800〜200℃の範囲が望まし
い。
The reason for the temperature range for slow cooling is that if slow cooling is performed from a temperature exceeding 800° C., the crystal grain size will increase, making hot working difficult and making it impossible to obtain coercive force. Also, 200
If the slow cooling is stopped before the temperature reaches the Curie temperature, SJJ structure defects such as cracks will occur due to distortion as the main phase passes through the Curie temperature. Therefore, the temperature range for slow cooling is preferably 800 to 200°C.

冷却スピードについては、5℃/secより速いとイン
ゴットに大きな熱歪が生じ、このためにインゴットに割
れ等の鋳造欠陥が発生してしまう、従って、鋳造欠陥を
防ぐためにはこれ以下の冷却スピードが望ましい。また
、0.1℃/secより遅い場合、インゴットの冷却に
1時間以上もの時間が必要となるので、生産性が悪くな
る。従って、これ以上のスピードが望ましい。
Regarding the cooling speed, if the cooling speed is faster than 5℃/sec, large thermal distortion will occur in the ingot, which will cause casting defects such as cracks in the ingot. desirable. Furthermore, if the cooling rate is slower than 0.1° C./sec, it will take more than one hour to cool the ingot, resulting in poor productivity. Therefore, a speed higher than this is desirable.

また、インゴットの鋳造欠陥に関してはそのインゴット
の組織に大きく依存している。即ち、結晶粒が大きいほ
ど鋳造欠陥が生じ易い傾向にある。
Furthermore, casting defects in ingots largely depend on the structure of the ingot. That is, the larger the crystal grains, the more likely casting defects will occur.

この結晶粒の大きさには基本成分のボロン量が大きく影
響しており、ボロン量が多いほどその粒径は大きくなる
ことが分かっている。即ち、原子百分率で、4%程度の
ときは比較的細かな結晶粒が得られ、800℃〜200
℃の温度範囲を比較的速い冷却スピードで冷却して、鋳
造欠陥を回避することができる。しかし、6%程度以上
になると冷却速度が速すぎると結晶粒が熱歪に耐えられ
ず、インゴットに鋳造欠陥が発生してしまう。この場合
は、冷却速度は大きな熱歪が発生しない程度に遅くして
やらなけれればならない。
It is known that the size of these crystal grains is greatly influenced by the amount of boron, which is a basic component, and that the larger the amount of boron, the larger the grain size. That is, when the atomic percentage is about 4%, relatively fine crystal grains can be obtained, and when the atomic percentage is about 4%, relatively fine crystal grains can be obtained.
℃ temperature range can be cooled at a relatively fast cooling speed to avoid casting defects. However, if the cooling rate is too fast when it exceeds about 6%, the crystal grains will not be able to withstand thermal strain and casting defects will occur in the ingot. In this case, the cooling rate must be slow enough to prevent large thermal strain from occurring.

以下実施例について述べる。Examples will be described below.

[実施例] 表1の組成となるようにとなるように、希土類、遷移金
属およびボロンを秤量し、アルゴンガス雰囲気下でセラ
ミックるつぼ中で銹導加熱炉により原料を溶解・鋳造す
る。
[Example] Rare earth elements, transition metals, and boron are weighed so as to have the compositions shown in Table 1, and the raw materials are melted and cast in a ceramic crucible in an argon gas atmosphere using an induction heating furnace.

表1 鋳型にはヒーターが備え付けられており、SR’ML全
体の温度を任意に制御する事ができる。鋳型を任意の温
度に予熱する事により、各温度範囲の冷却速度をコント
ロールする。るつぼ内の溶湯が約1500’Cになった
ところで鋳型に詩込む。
Table 1 The mold is equipped with a heater, and the temperature of the entire SR'ML can be controlled arbitrarily. By preheating the mold to a desired temperature, the cooling rate for each temperature range can be controlled. When the molten metal in the crucible reaches about 1500'C, pour it into the mold.

表2〜5に各インゴットの各条件で鋳造を行なった時の
、インゴットの割れ、欠は等の鋳造欠陥の有無、熱間加
工性の良否(良; ○、中;△、否;×の3段階)、鋳
造後のインゴットの保磁力の結果を示す。本方法で作成
された磁石は、その初磁化曲線からnuclihLio
nタイプであることが知られており、保磁力はインゴッ
トの結晶粒の大きさの目安となる。加工法の評価は10
00’Cでのホットプレスを行なったときの様子から判
断した。
Tables 2 to 5 show the presence or absence of casting defects such as cracks and chips in the ingots, and the quality of hot workability (good; ○, medium; △, poor; ×) when each ingot was cast under various conditions. Step 3) shows the results of the coercive force of the ingot after casting. The magnet created by this method has nuclihLio from its initial magnetization curve.
It is known to be of the n-type, and the coercive force is a measure of the size of the crystal grains of the ingot. Processing method rating is 10
Judgment was made from the appearance when hot pressing was performed at 00'C.

以上の表に示すように、本発明により鋳造欠陥の無いイ
ンゴットが得られることが分がる。
As shown in the above table, it can be seen that an ingot without casting defects can be obtained according to the present invention.

[発明の効果コ 以上のごとく、本発明の磁性鋳造インゴットの製造方法
によれば、鋳造欠陥の無い良好な鋳造インゴットを得る
ことが可能であり、鋳造−熱間加工−熱処理という、イ
ンゴットを粉砕・焼結という工程を経ることなく高い磁
気性能の異方性の磁石が得ることが出来る。
[Effects of the Invention] As described above, according to the method for producing a magnetic cast ingot of the present invention, it is possible to obtain a good cast ingot without casting defects, and it is possible to obtain a good cast ingot without casting defects, and to crush the ingot by performing casting, hot working, and heat treatment.・Anisotropic magnets with high magnetic performance can be obtained without going through the sintering process.

これにより従来のR−T M−B系永久磁石の生産工程
を大幅に削減することができ、永久磁石の生産性を高め
るという効果を有する。
As a result, the production process for conventional RT M-B permanent magnets can be significantly reduced, which has the effect of increasing the productivity of permanent magnets.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 希土類元素(但しイットリウムを含む)と遷移金属、及
びボロンを基本成分とする磁性合金の製造法に於て、少
なくとも、前記基本成分から成る合金を溶解し、200
℃〜800℃の範囲を冷却速度0.1〜5℃/sec以
下で冷却し、鋳造欠陥なく鋳造する工程、その後該合金
を熱間加工及び熱処理する工程とから成る事を特徴とす
る磁性合金の製造法。
In the method for producing a magnetic alloy whose basic components are rare earth elements (including yttrium), transition metals, and boron, at least an alloy consisting of the above basic components is melted,
A magnetic alloy comprising the steps of cooling at a cooling rate of 0.1 to 5°C/sec or less in the range of ℃ to 800°C, casting without casting defects, and then hot working and heat treating the alloy. manufacturing method.
JP63151901A 1988-06-20 1988-06-20 Manufacturing method of magnetic alloy Expired - Lifetime JP2631513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63151901A JP2631513B2 (en) 1988-06-20 1988-06-20 Manufacturing method of magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63151901A JP2631513B2 (en) 1988-06-20 1988-06-20 Manufacturing method of magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01318218A true JPH01318218A (en) 1989-12-22
JP2631513B2 JP2631513B2 (en) 1997-07-16

Family

ID=15528668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63151901A Expired - Lifetime JP2631513B2 (en) 1988-06-20 1988-06-20 Manufacturing method of magnetic alloy

Country Status (1)

Country Link
JP (1) JP2631513B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159811A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of sintered rare-earth magnet

Also Published As

Publication number Publication date
JP2631513B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JPH01171209A (en) Manufacture of permanent magnet
JP2631514B2 (en) Manufacturing method of permanent magnet
JP2631513B2 (en) Manufacturing method of magnetic alloy
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH0418704A (en) Manufacture of permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPS63285911A (en) Permanent magnet and manufacture thereof
JPH01161802A (en) Manufacture of permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH01171218A (en) Manufacture of permanent magnet
JPH0418706A (en) Manufacture of permanent magnet
JPH023209A (en) Permanent magnet and its manufacture
JPH0418705A (en) Manufacture of permanent magnet
JPH02252211A (en) Anisotropic permanent magnet and manufacture thereof
JPH02252221A (en) Manufacture of anisotropic permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH03249125A (en) Production of permanent magnet
JPS63286513A (en) Manufacture of permanent magnet
JPH02252205A (en) Manufacture of anisotropic permanent magnet
JPH023204A (en) Anisotropic permanent magnet and its manufacture