JPH01316629A - Measuring device for optical axis - Google Patents
Measuring device for optical axisInfo
- Publication number
- JPH01316629A JPH01316629A JP14826488A JP14826488A JPH01316629A JP H01316629 A JPH01316629 A JP H01316629A JP 14826488 A JP14826488 A JP 14826488A JP 14826488 A JP14826488 A JP 14826488A JP H01316629 A JPH01316629 A JP H01316629A
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- plane
- polarization
- measured
- sample stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 72
- 230000010287 polarization Effects 0.000 claims abstract description 44
- 238000010791 quenching Methods 0.000 abstract 3
- 230000000171 quenching effect Effects 0.000 abstract 3
- 238000005259 measurement Methods 0.000 description 17
- 230000008033 biological extinction Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229910021532 Calcite Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- OQCFWECOQNPQCG-UHFFFAOYSA-N 1,3,4,8-tetrahydropyrimido[4,5-c]oxazin-7-one Chemical compound C1CONC2=C1C=NC(=O)N2 OQCFWECOQNPQCG-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
゛ 本発明は結晶等の光学軸の方向を決定するための測
定装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a measuring device for determining the direction of an optical axis of a crystal or the like.
最近光ディスク及び光磁気ディスクの分野において光ピ
ツクアップの構成部品として各種形状の複合プリズムが
多く用いられてきている。この複合プリズムには一軸性
結晶である水晶の174波長板あるいは1/2波長板を
組み込んだものが増えており、この波長板の基準面とプ
リズムの基準面とが一致するように接着されている。こ
の場合、複合プリズムの精度を向上させるためには、こ
のプリズムの基準面に対し波長板の光学軸を所定の角度
に正確に接着する必要がある。したがって。Recently, composite prisms of various shapes have been widely used as components of optical pickups in the field of optical disks and magneto-optical disks. The number of composite prisms that incorporate a 174-wave plate or a 1/2-wave plate made of uniaxial crystal quartz is increasing, and the reference plane of this wavelength plate is bonded so that the reference plane of the prism coincides with the reference plane of the prism. There is. In this case, in order to improve the precision of the composite prism, it is necessary to accurately bond the optical axis of the wave plate at a predetermined angle with respect to the reference surface of this prism. therefore.
波長板自体の基準面と光学軸との傾き角を高精度に測定
する要求がある。There is a demand for highly accurate measurement of the inclination angle between the reference plane of the wave plate itself and the optical axis.
(従来技術および発明が解決とする問題点)上述のよう
な結晶には光学軸と呼ばれる2つの直交関係に有る軸が
存在し、高速軸と低速軸と呼ばれている。高速軸方向に
通過する光は低速軸方向に通過する光よりも速く進む。(Prior Art and Problems to be Solved by the Invention) The above-mentioned crystal has two orthogonal axes called optical axes, which are called a fast axis and a slow axis. Light passing along the fast axis travels faster than light passing along the slow axis.
この原理を利用すると、波長板の厚みを適当に設定する
ことで、前記2軸の方向に関して任意の位相差を持った
波長板を作ることができる。Using this principle, by appropriately setting the thickness of the wave plate, it is possible to create a wave plate having an arbitrary phase difference in the directions of the two axes.
第1図(a)、(b)のように、実際の波長板1,2は
、基準になる切断面つまり基準面3,4に対しその光学
軸S、Fがある角度に設定されるように作られている。As shown in FIGS. 1(a) and 1(b), the actual wave plates 1 and 2 are set at certain angles with respect to their optical axes S and F with respect to the reference cut planes, that is, the reference planes 3 and 4. It is made in
さらに、波長板1,2は平板状で平面5,6を有す。Furthermore, the wave plates 1 and 2 are flat and have flat surfaces 5 and 6.
このような波長板を用いると、入射光に対して任意の楕
円偏光状態を生じさせることができる。したがって、こ
の種の波長板の精度はこの基準面3,4を結晶から切り
出す時の加工精度で決まってくる。しかしながら、切断
後の基準面3,4と光学軸F、Sとの間の傾き角を正確
に効率よく測定する方法がないのが現状である。By using such a wave plate, it is possible to create an arbitrary elliptical polarization state for incident light. Therefore, the accuracy of this type of wave plate is determined by the processing accuracy when cutting out the reference surfaces 3 and 4 from the crystal. However, at present, there is no method for accurately and efficiently measuring the inclination angle between the reference surfaces 3, 4 and the optical axes F, S after cutting.
従来、この傾き角は偏光分光計を用いて測定していた。Conventionally, this tilt angle has been measured using a polarization spectrometer.
波長板の光学軸に垂直又は平行な偏光面を有する偏光光
がこの波長板に入射した場合、該波長板を通過した偏光
光は同一の偏光状態に保たれるという原理を用いて測定
を行なっていた。Measurements are performed using the principle that if polarized light with a plane of polarization perpendicular or parallel to the optical axis of the wave plate is incident on this wave plate, the polarized light that passes through the wave plate will remain in the same polarization state. was.
しかしながら、この偏光分光計の試料台の面と偏光子の
偏光面とをあらかじめ一致させるための方法および装置
として簡便なものがなかった。つまり、光学軸と偏光面
は比較的容易に一致させることができたのであるが、偏
光子の偏光面をあらかじめ試料台の面つまり波長板の基
準面に平行にするため複雑で能率の悪い調整を行なって
いた。However, there has been no simple method or device for aligning the plane of the sample stage of this polarization spectrometer with the plane of polarization of the polarizer in advance. In other words, it was possible to match the optical axis and polarization plane relatively easily, but the adjustment was complicated and inefficient because the polarization plane of the polarizer was made parallel to the plane of the sample stage, that is, the reference plane of the wave plate. was doing.
しかも、光学軸と偏光面を一致させるため。Moreover, in order to match the optical axis and polarization plane.
偏光子と検光子とを徐々に回転させながら消光点を求め
、偏光子と検光子が直交する最初の角度差になるまでこ
れを繰り返していた。The extinction point was determined by gradually rotating the polarizer and analyzer, and this process was repeated until the first angular difference was reached where the polarizer and analyzer were perpendicular to each other.
このため、再現性の良い測定結果を得るためには、能率
の悪い作業を繰り返すことが必要で、しかも熟練を要し
た。Therefore, in order to obtain measurement results with good reproducibility, it was necessary to repeat inefficient operations, and moreover required skill.
本発明の目的は、このような従来の方法における欠点を
なくし、作業性良くしかも高精度に光学軸の方向が決定
できる測定装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of such conventional methods and to provide a measuring device that can determine the direction of the optical axis with good workability and high precision.
(原理および実施例)
図面を参照して本発明の原理および実施例について説明
する。(Principle and Examples) The principle and Examples of the present invention will be described with reference to the drawings.
第2図はこの発明の基本概念を示す図である。本発明の
測定装置は、入射光ビームを与えるための単色光源10
と、この入射光ビームの光路上に配置され、光軸26に
関して固定されその入射光ビームの偏光面を光軸26に
平行なある平面(固定偏光面)に設定するための第一の
固定偏光索子12と、入射ビームの光路上に配置され、
光軸26のまわりに回転可能又は着脱可能に固定されそ
の偏光面を光軸26に平行なある面に設定するための第
二の可動偏光素子22と、この2つの偏光素子12.2
2の間にあって、被測定物を載置するために光軸26に
垂直な面15を有し。FIG. 2 is a diagram showing the basic concept of this invention. The measuring device of the invention comprises a monochromatic light source 10 for providing an incident light beam.
and a first fixed polarized light disposed on the optical path of this incident light beam, fixed with respect to the optical axis 26, and for setting the polarization plane of the incident light beam to a certain plane (fixed polarization plane) parallel to the optical axis 26. a cable 12, disposed on the optical path of the incident beam;
a second movable polarizing element 22 rotatably or detachably fixed around the optical axis 26 for setting its plane of polarization to a certain plane parallel to the optical axis 26; and these two polarizing elements 12.2.
2 and has a surface 15 perpendicular to the optical axis 26 on which the object to be measured is placed.
被測定物24を光軸26のまわりに回転することができ
、その回転角を読み取るための手段と入射光ビームを透
過させることのできる開口28とを有する試料台14と
、試料台上に固定され、被測定物24の基準面25を当
接させるための面または線または点であって。A sample stage 14 capable of rotating an object to be measured 24 around an optical axis 26 and having means for reading the rotation angle and an aperture 28 through which an incident light beam can pass, and fixed on the sample stage. A surface, a line, or a point on which the reference surface 25 of the object to be measured 24 comes into contact.
光軸と平行な面(突き当基準面)内にある突き島部分1
7を有する突き当手段16と、偏光素子12その他を透
過する光の強度を検知するための受光手段20とから構
成されている。Tsukishima part 1 in the plane parallel to the optical axis (abutment reference plane)
7, and a light receiving means 20 for detecting the intensity of light transmitted through the polarizing element 12 and the like.
次に本発明の装置を用いた測定方法について説明する。Next, a measurement method using the apparatus of the present invention will be explained.
第2図(a)に示すように、基準設定偏光素子の側面1
1と底面19が突き当手段16と試料台面15に当接す
るよう基準設定偏光素子18を配置し、試料台14を回
転して固定偏光素子12と基準設定偏光素子18との偏
光面が直交するような消光位置に設定し、この時の試料
台14の角度を読み取る。第2図(a)では、光源10
側に固定偏光素子12が配しであるが、受光手段20側
の第二の位置に固定偏光素子12があってもかまわない
。As shown in FIG. 2(a), the side surface 1 of the reference setting polarizing element
The reference setting polarizing element 18 is arranged so that the reference setting polarizing element 18 and the bottom surface 19 are in contact with the abutting means 16 and the sample stage surface 15, and the sample stage 14 is rotated so that the polarization planes of the fixed polarizing element 12 and the reference setting polarizing element 18 are perpendicular to each other. The angle of the sample stage 14 at this time is read. In FIG. 2(a), the light source 10
Although the fixed polarizing element 12 is arranged on the side, the fixed polarizing element 12 may be placed at the second position on the light receiving means 20 side.
この場合、光源10側の第一の位置に可動偏光素子22
を配置することになる。また、可動偏光素子22は取り
はずしであるが、上記固定偏光面と同方向の偏光面を有
するように回転配置しておいていてもよい。In this case, the movable polarizing element 22 is placed at the first position on the light source 10 side.
will be placed. Further, although the movable polarizing element 22 is removed, it may be rotated so that it has a polarization plane in the same direction as the fixed polarization plane.
この段階は基準設定偏光素子18の使用に特徴があり、
この偏光素子18は、試料台面15に当接する底面19
と、突き当年段16と当接するための側面11を有する
偏光素子であり、底面19に入射した入射光ビームを側
面11に垂直な成分に偏光する機能を有するものである
。This stage is characterized by the use of a reference setting polarizing element 18,
This polarizing element 18 has a bottom surface 19 that contacts the sample stage surface 15.
This is a polarizing element having a side surface 11 for contacting the abutting step 16, and has a function of polarizing the incident light beam incident on the bottom surface 19 into a component perpendicular to the side surface 11.
このような基準設定偏光素子18の偏光面を固定偏光面
と直交させることで、この固定偏光面は基準設定偏光素
子18の側面、つまり突き島部分17の面に平行になる
。したがって固定偏光素子12の光学的偏光面を突き島
部分17の構造的面に一致させることができる。By making the polarization plane of the reference setting polarizing element 18 perpendicular to the fixed polarization plane, the fixed polarization plane becomes parallel to the side surface of the reference setting polarizing element 18, that is, the surface of the protruding island portion 17. Therefore, the optical polarization plane of the fixed polarizing element 12 can be made to coincide with the structural plane of the protruding island portion 17.
次に第2図(b)に示すように、基準設定偏光素子18
を取りはずし、可動偏光素子22を載置又は回転し固定
偏光素子12と直交する消光位置に配置する。この段階
は次の段階のための準備である。Next, as shown in FIG. 2(b), the reference setting polarizing element 18
is removed, and the movable polarizing element 22 is placed or rotated and placed at an extinction position orthogonal to the fixed polarizing element 12. This stage is preparation for the next stage.
次いで、第2図(c)のように、突き当年段16に被測
定物24の基準面25を突き当て試料台面15に被測定
物の平面27を当接するようにして被測定物24を試料
台面15上に配置し、この試料台14を回転させ、消光
位置つまり被測定物24への入射光の固定偏光面とこの
被測定物の光学軸とが一致する整合位置に設定し、試料
台14の角度を読み取る。Next, as shown in FIG. 2(c), the reference surface 25 of the object to be measured 24 is brought into contact with the abutment step 16, and the flat surface 27 of the object to be measured is brought into contact with the sample table surface 15, so that the object to be measured 24 is placed on the sample. The sample table 14 is placed on the table surface 15, and the sample table 14 is set at the extinction position, that is, the matching position where the fixed polarization plane of the incident light on the object to be measured 24 and the optical axis of the object to be measured coincide. Read the angle of 14.
この段階では、光学軸に平行または垂直な偏光面を有す
る平行ビームはその偏光状態をかえないことを利用して
おり、固定偏光素子12の光学的偏光面を被測定物24
の光学軸に一致させた場合、受光手段に検出される透過
光は極小になる。At this stage, it is utilized that a parallel beam having a polarization plane parallel or perpendicular to the optical axis does not change its polarization state, and the optical polarization plane of the fixed polarizing element 12 is
When aligned with the optical axis of the light receiving means, the transmitted light detected by the light receiving means becomes minimal.
第2図(a)と第2図(Q)で読み取った角度差が被測
定物の光学軸と基準面25との傾き角となる。The angular difference read in FIG. 2(a) and FIG. 2(Q) becomes the inclination angle between the optical axis of the object to be measured and the reference surface 25.
この傾き角が与えられる訳は、第2図(a)において、
突き島部分17を介して被測定物の基準面と固定偏光面
を平行にしたことになり、第2図(c)において、被測
定物の光学軸と固定偏光面を平行にしたことになり、こ
の2つの場合の間で試料台つまり被測定物が回転した角
度がこの被測定物の光学軸と基準面との傾き角となって
いるからである。The reason why this angle of inclination is given is as shown in Fig. 2 (a).
This means that the reference plane of the object to be measured and the fixed polarization plane are made parallel through the protruding island portion 17, and the optical axis of the object to be measured and the fixed polarization plane are made parallel to each other in FIG. 2(c). This is because the angle at which the sample stage, that is, the object to be measured, is rotated between these two cases is the inclination angle between the optical axis of the object to be measured and the reference plane.
また連続の測定においては、第2図(a)および(c)
の手順は必ずしも必要ではない。あらかじめ第2図(a
)で試料台の角度を読み取っておき、第2図(b)で可
動偏光素子22を固定偏光素子12に対して消光位置に
配置したままにしておけば、第2図(c)の測定操作の
みで多数の試料について繰り返し光学軸と基準面との傾
き角を決定できる。In addition, in continuous measurements, Fig. 2 (a) and (c)
These steps are not necessarily necessary. Figure 2 (a
) and keep the movable polarizing element 22 at the extinction position with respect to the fixed polarizing element 12 as shown in Fig. 2(b), then only the measurement operation shown in Fig. 2(c) is possible. The angle of inclination between the optical axis and the reference plane can be determined repeatedly for a large number of samples.
なお、第2図(a)では突き島部分を固定偏光面と平行
にしているが、垂直にすることもその他の角度にするこ
とも可能である。しかしこの場合、計算結果を90°そ
の他の角度で補正しなければならなくなる。In addition, in FIG. 2(a), the protruding island portion is parallel to the fixed plane of polarization, but it can be made perpendicular or at other angles. However, in this case, the calculation results must be corrected by 90° or other angles.
第3図は本発明の測定装置の実施例であり。FIG. 3 shows an embodiment of the measuring device of the present invention.
試料を載置する前の状態を示したものである。This shows the state before the sample is placed.
この光学軸測定装置30の単色光源部32は、レーザ光
源50、スリット52、とチョッパ54より成る。レー
ザ光源50としてはGaAs半導体レーザが用いられて
いるが、広帯域の光源とバンドパスフィルター等を併用
して半導体レーザ50のかわりに使用してもかまわない
。スリット52はレーザ光源5゜からの単色光ビームを
絞りかっ迷光をさえぎるだめのものである、チョッパ5
4は軸53を中心としてモータ56により定回転数で駆
動される。チョッパ54はその周囲55に不図示の凹凸
を有していて、その周囲の部分55により単色光源部3
2の出力ビームを断続的にさえぎり、光源部32のビー
ム出力を、一定周波数の鋸歯状波等に変換している。The monochromatic light source section 32 of this optical axis measuring device 30 consists of a laser light source 50, a slit 52, and a chopper 54. Although a GaAs semiconductor laser is used as the laser light source 50, a broadband light source, a bandpass filter, etc. may be used in place of the semiconductor laser 50 in combination. The slit 52 serves to narrow down the monochromatic light beam from the laser light source 5° and block stray light.
4 is driven by a motor 56 at a constant rotation speed around a shaft 53. The chopper 54 has unevenness (not shown) around its periphery 55, and the monochromatic light source 3
The output beam of the light source section 32 is intermittently interrupted, and the beam output of the light source section 32 is converted into a sawtooth wave or the like with a constant frequency.
、コリメータレンズ6oは、単色光源部32からのビー
ムを平行ビームにし1反射ミラー64は、この平行ビー
ムの進行方向を水平方向から垂直方向に変換し光軸66
に沿って進ませる。コリメータレンズ60と反射ミラー
64の間にはフィルタ62が配してあり、上記平行ビー
ムの強度を調節するためのものである。, the collimator lens 6o converts the beam from the monochromatic light source 32 into a parallel beam, and the 1-reflection mirror 64 converts the traveling direction of the parallel beam from the horizontal direction to the vertical direction, and converts the beam from the monochromatic light source section 32 into the optical axis 66.
Proceed along. A filter 62 is arranged between the collimator lens 60 and the reflection mirror 64, and is used to adjust the intensity of the parallel beam.
偏光子70は単色光源部32からの平行ビームを軸66
に沿った所定の面内に偏光させるための手段であり1本
実施例においてはキューブ型偏光ビームスプリッタ(P
BS:後に詳細については述べる。)を用いる。The polarizer 70 directs the parallel beam from the monochromatic light source 32 to an axis 66.
It is a means for polarizing light within a predetermined plane along the
BS: I will explain the details later. ) is used.
試料台部38は試料台74と突き当板76と角度読取装
置82と試料台支持部87とからなる。試料台74は試
料台支持部87に回転自在に支持されていて、この回転
軸は光軸66と平行である。第4図(a)、(b)を参
照すると、被測定物を載置するための試料台面75は平
坦面に加工されており、その面75は、光軸66と垂直
な関係にある。さらに、試料台74は測定用平行ビーム
のアパーチャを決定する開口80を有しており、この円
筒状の開口80は試料台面75から下方に延在している
。試料台面75上で開口80に近接した位置には直方体
状の突き当板76が固定してあり、その開口80に近い
側の側面77は平坦面である。この側面77を突き当基
準面77と呼び、試料台面75と精密に直交するように
あらかじめ設定されている。なお被測定物24は点線で
示しであるように配置する。The sample stage section 38 includes a sample stage 74, an abutment plate 76, an angle reading device 82, and a sample stage support section 87. The sample stage 74 is rotatably supported by a sample stage support part 87, and this rotation axis is parallel to the optical axis 66. Referring to FIGS. 4(a) and 4(b), a sample stage surface 75 on which the object to be measured is placed is processed into a flat surface, and the surface 75 is perpendicular to the optical axis 66. Further, the sample stage 74 has an aperture 80 that determines the aperture of the parallel measuring beam, and this cylindrical opening 80 extends downward from the sample stage surface 75. A rectangular parallelepiped abutment plate 76 is fixed at a position close to the opening 80 on the sample stage surface 75, and its side surface 77 on the side closer to the opening 80 is a flat surface. This side surface 77 is called an abutting reference surface 77, and is set in advance to be precisely orthogonal to the sample stage surface 75. Note that the object to be measured 24 is arranged as shown by the dotted line.
再び第3図を参照すると、試料台74とその支持部87
の外周には角度符号化装置87が設けられ、その回転方
向と角度符号化信号から、試料台74の回転角に関する
情報を得ることができる。なお、試料台74には、試料
台74を回転能動するため、モータ83が設けられてい
る。Referring again to FIG. 3, the sample stage 74 and its support 87
An angle encoding device 87 is provided on the outer periphery of the sample stage 74, and information regarding the rotation angle of the sample stage 74 can be obtained from the rotation direction and angle encoding signal. Note that the sample stage 74 is provided with a motor 83 in order to actively rotate the sample stage 74.
試料台74を通過した平行ビームは検光子部40に進む
、この検光子部40は、検光子84と検光子治具86と
検光子支持部89から構成されている。検光子(PBS
)84はその下面が光軸66に垂直になるように検光子
治具86によって保持されている。さらに、検光子治具
86は検光子支持部9との間に検光子(PBS)84を
光軸66のまわりに回転させるための不図示の回転軸受
を有している。なお、°検光子治具86には、検光子8
4を回転させるため、モータ85が設けられている。こ
の検光子は、偏光子と被測定物を透過してきた平行ビー
ムのうち光軸66に平行な特定の偏光成分のみを透過さ
せうる。The parallel beam passing through the sample stage 74 advances to the analyzer section 40 , which is composed of an analyzer 84 , an analyzer jig 86 , and an analyzer support section 89 . Analyzer (PBS
) 84 is held by an analyzer jig 86 so that its lower surface is perpendicular to the optical axis 66. Further, the analyzer jig 86 has a rotation bearing (not shown) between it and the analyzer support part 9 for rotating the analyzer (PBS) 84 around the optical axis 66. Note that the analyzer jig 86 includes an analyzer 8
A motor 85 is provided to rotate 4. This analyzer can transmit only a specific polarized light component parallel to the optical axis 66 among the parallel beams that have passed through the polarizer and the object to be measured.
この検光子部40の真上には、検光子84を透過した平
行ビームを以下に述べる受光面92に合焦するようにコ
ンデンサレンズ88が配置されている。A condenser lens 88 is arranged directly above the analyzer section 40 so as to focus the parallel beam transmitted through the analyzer 84 onto a light receiving surface 92, which will be described below.
受光部44はコンデンサレンズ88上に配置され、受光
部44のシリコンフォトダイオードの光電変換素子94
の受光面92にはレーザ50の発光部の像が結像される
。光電変換素子94の電気的出力は、チョッパ54の遮
断周波数に同期して増幅されるが、これは外部光源から
のノイズ成分を除去するためである。このノイズ除去法
は当業者に周知のものである。この光電変換素子90か
らの増幅された信号はピーク検出回路95に入力される
。The light receiving section 44 is arranged on the condenser lens 88, and the photoelectric conversion element 94 of the silicon photodiode of the light receiving section 44 is disposed on the condenser lens 88.
An image of the light emitting part of the laser 50 is formed on the light receiving surface 92 of the laser 50 . The electrical output of the photoelectric conversion element 94 is amplified in synchronization with the cutoff frequency of the chopper 54 in order to remove noise components from an external light source. This noise removal method is well known to those skilled in the art. The amplified signal from this photoelectric conversion element 90 is input to a peak detection circuit 95.
第3図中のブロック図に従ってこの装置の信号処理につ
いて説明する。第1に試料台74の回転角の測定および
処理について述べる1表示・入力装置99より測定開始
の指示を制御回路100に送る。制御回路100はモー
タ駆動回路B97を介してモータ83を駆動しはじめる
。試料台74は光軸66のまわりに回転し、この回転時
にピーク検出回路95が作動し、素子90からの増幅さ
れた信号の極小値を検出する。たとえば、偏光子70と
試料台74上の基準設定偏光素子18との偏光面が直交
した場合、上記信号は極小になり検出回路95からトリ
ガ信号が発生し、このトリガ信号は制御回路100とモ
ータ駆動回路Bを介してモータを停止する。なお、モー
タの回転時には角度符号化装置82からのパルス出力が
角度読出回路98に入力され。The signal processing of this device will be explained according to the block diagram in FIG. First, the measurement and processing of the rotation angle of the sample stage 74 will be described.1 An instruction to start measurement is sent to the control circuit 100 from the display/input device 99. The control circuit 100 starts driving the motor 83 via the motor drive circuit B97. The sample stage 74 rotates around the optical axis 66, and during this rotation, the peak detection circuit 95 is activated and detects the minimum value of the amplified signal from the element 90. For example, when the polarization planes of the polarizer 70 and the reference setting polarizing element 18 on the sample stage 74 are perpendicular to each other, the above signal becomes extremely small and a trigger signal is generated from the detection circuit 95, and this trigger signal is transmitted to the control circuit 100 and the motor. The motor is stopped via drive circuit B. Incidentally, when the motor is rotating, the pulse output from the angle encoding device 82 is input to the angle reading circuit 98.
角度情報に変換される。制御回路100はモータ83の
回転時にこの角度情報を記憶する。Converted to angle information. The control circuit 100 stores this angle information when the motor 83 rotates.
また必要に応じて試料台74の回転した角度に変換し表
示装置99に表示しうる。消光位置を決定する場合、消
光位置で往復の回転運動を繰り返すことにより、より正
確な消光の角度を求めるような機能を制御回路に与える
こともできる。Further, if necessary, the angle of rotation of the sample stage 74 can be converted and displayed on the display device 99. When determining the extinction position, the control circuit can be provided with a function of determining a more accurate extinction angle by repeating a reciprocating rotational movement at the extinction position.
第2に検光子84の回転とその制御について述べる。こ
の場合も、第1の試料台74の回転と同様であるが、モ
ータ駆動回路Bではなく、モータ駆動回路A96が作動
する。また、角度読出回路98の出力は記憶されない。Second, the rotation of the analyzer 84 and its control will be described. In this case as well, the rotation is similar to the rotation of the first sample stage 74, but instead of the motor drive circuit B, the motor drive circuit A96 operates. Further, the output of the angle readout circuit 98 is not stored.
偏光子70と直交する状態で検光子84を止めたい場合
、ピーク検出器95が素子94からの信号の極小値を検
出し、トリガ信号を発生する。また、偏光子70と平行
な状態で検光子84を止めたい場合、ピーク検出器が素
子94からの信号の極大値を検出し、トリガ信号を発生
する。これらトリガ信号によりモータ85の回転が停止
される。When it is desired to stop the analyzer 84 perpendicular to the polarizer 70, a peak detector 95 detects the minimum value of the signal from the element 94 and generates a trigger signal. Also, when it is desired to stop the analyzer 84 in a state parallel to the polarizer 70, the peak detector detects the maximum value of the signal from the element 94 and generates a trigger signal. These trigger signals stop the rotation of the motor 85.
このような装置を用いた測定は以下のようにして行なわ
れる。Measurement using such a device is performed as follows.
(1)被測定物を試料台に載置する前に偏光子70と検
光子84の偏光面が平行になり、受光部44の出力が極
大値になったことを検出するまでモータ85により検光
子84を回転する。又は1回転するかわりに検光子84
を装置30からとりはずす。(1) Before placing the object to be measured on the sample stage, the motor 85 performs a test until the polarization planes of the polarizer 70 and analyzer 84 become parallel and the output of the light receiving section 44 reaches its maximum value. Rotate photon 84. Or analyzer 84 instead of one revolution
is removed from the device 30.
(2)試料台面75上に底面が接するよう基準設定偏光
素子(第2図に参照符号18で示しである。)を載置し
、突き当基準面77に基準設定偏光素子の側面11を当
接させる。(2) Place the reference setting polarizing element (indicated by reference numeral 18 in FIG. 2) so that its bottom surface touches the sample table surface 75, and place the side surface 11 of the reference setting polarizing element on the abutment reference surface 77. Let them come into contact with you.
(3)試料台74上に基準設定偏光素子を載置したまま
で、 この試料台74をモータ83により回転しながら
、基準設定偏光素子18と偏光子70の偏光面が直交す
る消光位置、つまり受光部44の出力が極小となる位置
で停止させる。(3) While the reference setting polarizing element is placed on the sample stage 74, the sample stage 74 is rotated by the motor 83 to find the extinction position where the polarization planes of the reference setting polarizing element 18 and the polarizer 70 are perpendicular to each other. It is stopped at a position where the output of the light receiving section 44 becomes minimum.
(4)この時の試料台74の角度情報を角度読出回路よ
り読み出し記憶する。(4) The angle information of the sample stage 74 at this time is read out from the angle reading circuit and stored.
(5)試料台74から基準設定偏光素子18を取り去る
。(5) Remove the reference setting polarizing element 18 from the sample stage 74.
(6)検光子84をモータ85により回転し、偏光子7
0と消光位置まで、つまり受光部44の出力が極小値に
なったことを検出するまでモータ85により検光子84
を回転する。(6) The analyzer 84 is rotated by the motor 85, and the polarizer 7
The analyzer 84 is moved by the motor 85 until it reaches the zero and extinction position, that is, until it detects that the output of the light receiving section 44 has reached its minimum value.
Rotate.
(7)試料台面75に被測定物の波長板(第1図参照)
の平面5,6を当接させ、突き当基準面77に波長板の
基準面3.4を当接させて波長板1,2を載置する。(7) Wave plate of the object to be measured on the sample table surface 75 (see Figure 1)
The wave plates 1 and 2 are placed with the planes 5 and 6 of the wave plates in contact with each other, and the reference plane 3.4 of the wave plate in contact with the abutting reference surface 77.
(8)試料台74をモータ83により回転しながら、偏
光子7oの偏光面と波長板1゜2の光学軸F、Sが平行
になる位置、すなわち消光位置で回転を停止する。(8) While rotating the sample stage 74 by the motor 83, the rotation is stopped at a position where the polarization plane of the polarizer 7o and the optical axes F and S of the wavelength plate 1°2 are parallel to each other, that is, at the extinction position.
(9)この時の試料台74の角度情報を角度読出回路9
8より読出し制御回路100に記憶する。(9) The angle reading circuit 9 reads the angle information of the sample stage 74 at this time.
8 and stored in the read control circuit 100.
(10) (4)で記憶した角度情報と(9)で記憶
した角度情報との差から試料台の動いた角度が計算され
る。これが、波長板1,2の基準面3,4と光学軸F、
Sの傾き角となり、結果は表示・入力装置において出力
される。(10) The angle at which the sample stage moved is calculated from the difference between the angle information stored in (4) and the angle information stored in (9). This is the reference planes 3 and 4 of the wave plates 1 and 2 and the optical axis F,
The result is the tilt angle of S, and the result is output on the display/input device.
(1)〜(4)は第2図(a)に対応し、(5)、(6
)は第2図(b)に対応し、(7)〜(10)は第2図
(c)に対応する。(1) to (4) correspond to Fig. 2(a), and (5) and (6)
) corresponds to FIG. 2(b), and (7) to (10) correspond to FIG. 2(c).
以上(1)〜(10)の操作を繰り返すよう制御回路1
00を構成してもよいが、−度に多数の波長板について
測定を行なう場合は、(1)〜(6)までの設定をあら
かじめ行なっておいて、各波長板について(7)〜(1
0)の操作を繰り返すよう制御回路100を構成するこ
とで十分な訓電精度が得られる。The control circuit 1 repeats the operations (1) to (10) above.
00 may be configured, but if measurements are to be made on a large number of wavelength plates at one time, settings (1) to (6) should be made in advance, and settings (7) to (1) should be made for each wave plate.
By configuring the control circuit 100 to repeat the operation 0), sufficient power training accuracy can be obtained.
上述のような実施例においては、偏光子70を固定して
いるが、光軸66に沿って回転できるようにしてもよい
、この場合(1)。In the embodiments described above, the polarizer 70 is fixed, but it may be made rotatable along the optical axis 66, in this case (1).
(6)の操作では、検光子84のかわりに偏光子70を
回転又は脱着することになる。In operation (6), the polarizer 70 is rotated or detached instead of the analyzer 84.
ここで、本発明の測定に用いる基準設定偏光素子18に
ついて説明を行なう、このような基準設定偏光素子とし
ては、方解石等の偏光素子の側面を高精度に加工したも
のでもよいが、次に述べるようにPBSの光学的な特性
と形状的な特性を利用することで、容易に測定精度を向
上させることができる。Here, the reference setting polarizing element 18 used in the measurement of the present invention will be explained. Such a reference setting polarizing element may be a polarizing element made of calcite or the like whose side surface is processed with high precision, but the following will be described. By utilizing the optical characteristics and shape characteristics of PBS, measurement accuracy can be easily improved.
第5図(a)にはPBS 107が示しである。PB
Sは45°と90°の三角プリズム101,102を接
着材104により貼り合わせた構造になっており、その
一方には誘電体多JFiJ膜103が施しである。A PBS 107 is shown in FIG. 5(a). P.B.
S has a structure in which 45° and 90° triangular prisms 101 and 102 are bonded together with an adhesive 104, and a dielectric multi-JFiJ film 103 is applied to one of them.
第5図(b)にはPBSの偏光作用が示しである。入射
光110がPBSの平面106に垂直入射した場合、多
層膜面108で反射した光112はS偏光となる。また
、透過光114は直進し、 しかも図の PBSの底面
105に平行な偏光面を有するP偏光となる。FIG. 5(b) shows the polarization effect of PBS. When the incident light 110 is perpendicularly incident on the plane 106 of the PBS, the light 112 reflected by the multilayer film surface 108 becomes S-polarized light. Further, the transmitted light 114 travels straight and becomes P-polarized light having a polarization plane parallel to the bottom surface 105 of the PBS in the figure.
PBSを偏光子として用いた場合加工精度を高くするこ
とが可能であり、それによって光路偏角を小さくするこ
とができ、なお且つその外面、陵等が突き当板16と当
接するための側面11として使用できる。この結果、方
解石等を用いた測定よりもより高精度の測定結果が得ら
れることとなった。When PBS is used as a polarizer, it is possible to increase the processing accuracy, thereby reducing the optical path deflection angle, and furthermore, the side surface 11 whose outer surface, ridges, etc. are in contact with the abutting plate 16 Can be used as As a result, more accurate measurement results were obtained than measurements using calcite or the like.
上述の実施例において、突き当板76は板状の材料とし
て図示しであるが、試料台面75にほぼ平行な直線部を
有するものあるいは2点から成るもので試料台74上で
の動きを制限できれば形状は任意である。さらに、この
突き当板76に偏光機能をもたせることも可能で、試料
台74の開口80を大きくし、この間口80にかかるよ
うにPBS等を固定することで、このPBSの一側面を
突き当基準面77として用いることができる。これによ
り、基P!設定偏光素子18としてPBSを脱着する手
間を省くことができる。In the above embodiment, the abutting plate 76 is illustrated as a plate-shaped material, but it may have a straight line portion substantially parallel to the sample stage surface 75 or be composed of two points to restrict movement on the sample stage 74. Preferably, the shape is arbitrary. Furthermore, it is also possible to give this abutting plate 76 a polarizing function, by enlarging the opening 80 of the sample stage 74 and fixing a PBS or the like so as to span this opening 80, one side of this PBS can be abutted. It can be used as a reference surface 77. As a result, base P! The effort of attaching and detaching the PBS as the setting polarizing element 18 can be saved.
さらに、上記装置30の光路上にミラー等を設けて光路
を変化させてもよい。例えば、偏光素子としてガラス板
等を用いると、ブルース多−角で反射させる必要があり
、上述の装置とはかなり異なった形状となる。Furthermore, a mirror or the like may be provided on the optical path of the device 30 to change the optical path. For example, if a glass plate or the like is used as a polarizing element, it is necessary to reflect the light at Bruce's polygon, resulting in a shape that is quite different from the above-mentioned device.
その他多くの変形が可能であることは言うまでもない。It goes without saying that many other variations are possible.
以上のような測定装置を用いたことの特徴は、第1点と
して、非常に簡単な操作(第2図(a))のみで被測定
物24の基準面25と固定偏光素子12の偏光面を一致
させることと、第2点として、単一の操作(第2図(C
))により被測定物24の光学軸を固定偏光素子12の
偏光面と一致させることができ、容易に被測定物24の
光学軸の傾き角を決定できることである。The first feature of using the above-mentioned measuring device is that the reference plane 25 of the object to be measured 24 and the polarization plane of the fixed polarizing element 12 can be easily determined by a very simple operation (see FIG. 2(a)). and secondly, a single operation (Figure 2 (C
)) allows the optical axis of the object to be measured 24 to match the polarization plane of the fixed polarizing element 12, and the inclination angle of the optical axis of the object to be measured 24 can be easily determined.
以上の点のみならず、装置全体を縦型にすれば、薄片状
の試料も容易に測定することが可能である。さらに1本
発明の測定装置は板状の試料に限られるものではない、
つまり立方体状の一軸性結晶試料においても二方向から
以上のような測定を行なうことで、光学軸の立体的配置
を容易に決定しうる。In addition to the above points, if the entire apparatus is made vertical, it is possible to easily measure flaky samples. Furthermore, the measuring device of the present invention is not limited to plate-shaped samples.
In other words, even in a cubic uniaxial crystal sample, by performing the above measurements from two directions, the three-dimensional arrangement of the optical axis can be easily determined.
第1図(a)、(b)はそれぞれ光学軸に対して異なる
基準面で加工された平板状の波長板について示した概略
図であり、S軸は低速軸を示し、F軸は高速軸を示して
いる。
第2図(a)、(b)、(c)は本発明の装置を用いた
光学軸測定の概念図であり、各概念図(a)、(b)、
(c)は測定の主要段階を簡単に示したものである。
第3図は本発明の測定に使用される光学軸測定装置の概
略の構成図である。
第4図は第3図の光学軸測定装置の試料台部の要部を示
したもので、第4図(a)は試料台の上部平面図であり
、第4図(b)は試料台の側部断面図である。
第5図(a)はPBSの構造を概略的に示した断面図で
あり、第5図(b)はPBSの偏光機能について示した
概略斜視図である。
[主要部分の符号の説明]
1.2・・・・・・・・・・・・・・・・・・・・・・
・・・・・・波長板3.4・・・・・・・・・・・・・
・・・・・・・・・・・・・・・基準面5.6・・・・
・・・・・・・・・・・・・・・・・・・・・・・・平
面S・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・低速軸F・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・高速軸1
0・・・・・・・・・・・・・・・・・・・・・・・・
・・・・単色光源12.22・・・・・・・・・・・・
・・・・・・・・・・偏光素子14・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・試料台1
5・・・・・・・・・・・・・・・・・・・・・・・・
・・・・試料白面16・・・・・・・・・・・・・・・
・・・・・・・・・・・突き当手段17・・・・・・・
・・・・・・・・・・・・・・・・・・・突き島部分1
8・・・・・・・・・・・・・・・・・・・・基準設定
偏光素子19・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・底 面20・・・・・・・・・
・・・・・・・・・・・・・・・・・・・受光手段24
・・・・・・・・・・・・・・・・・・被測定物(光学
素子)26・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・光 軸第1図
(d) (b>
第2図
(α) (b) (C)第3
図Figures 1(a) and 1(b) are schematic diagrams showing flat wave plates machined with different reference planes relative to the optical axis, where the S axis represents the slow axis and the F axis represents the fast axis. It shows. FIGS. 2(a), (b), and (c) are conceptual diagrams of optical axis measurement using the device of the present invention, and each conceptual diagram (a), (b),
(c) briefly shows the main steps of the measurement. FIG. 3 is a schematic configuration diagram of an optical axis measuring device used for measurement according to the present invention. Figure 4 shows the main parts of the sample stage of the optical axis measuring device shown in Figure 3. Figure 4 (a) is a top plan view of the sample stage, and Figure 4 (b) is a top plan view of the sample stage. FIG. FIG. 5(a) is a cross-sectional view schematically showing the structure of the PBS, and FIG. 5(b) is a schematic perspective view showing the polarization function of the PBS. [Explanation of symbols of main parts] 1.2・・・・・・・・・・・・・・・・・・・
・・・・・・Wave plate 3.4・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・Reference surface 5.6・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・Plane S・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・Low speed axis F・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・High speed axis 1
0・・・・・・・・・・・・・・・・・・・・・
・・・・Monochromatic light source 12.22・・・・・・・・・・・・
......Polarizing element 14...
・・・・・・・・・・・・・・・・・・・・・Sample stand 1
5・・・・・・・・・・・・・・・・・・・・・・・・
...Sample white surface 16...
......Abutment means 17...
・・・・・・・・・・・・・・・・・・Tsukishima part 1
8・・・・・・・・・・・・・・・・・・・Reference setting polarizing element 19・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Bottom 20・・・・・・・・・
・・・・・・・・・・・・・・・・Light receiving means 24
・・・・・・・・・・・・・・・・・・Object to be measured (optical element) 26・・・・・・・・・・・・・・・・・・・・・
......Optical axis Figure 1 (d) (b> Figure 2 (α) (b) (C) 3rd
figure
Claims (1)
準面とを有する光学素子の光学軸と該基準面との傾き角
を測定するために、単色光源と、該単色光源からの光路
上に順に配置された第1の偏光素子と、上記光学素子を
上記平面が上記光路の光軸に垂直になるよう保持するた
めの試料台と、第2の偏光素子とを含む光学軸の測定装
置であって、 上記光軸に平行でありかつ上記第1又は第2偏光素子の
偏光面と所定角度をなす突き当基準面内において、上記
光学素子の上記基準面を突き当てて上記光学素子を位置
決めするための突き当て手段と、 位置決めされた上記光学素子を光軸のまわりに回転させ
る回転手段と、 光学軸と上記偏光面とが一致するまでの光学素子の回転
量を読み取るための読み取り手段とから構成されること
を特徴とする光学軸の測定装置。[Claims] 1. In order to measure the inclination angle between the optical axis of an optical element having two opposing parallel planes and a reference plane intersecting the planes and the reference plane, a monochromatic light source and the monochromatic light source are used. A first polarizing element arranged in order on the optical path from the light source, a sample stage for holding the optical element so that the plane is perpendicular to the optical axis of the optical path, and a second polarizing element. An optical axis measuring device, wherein the reference plane of the optical element is abutted within an abutment reference plane that is parallel to the optical axis and makes a predetermined angle with the polarization plane of the first or second polarizing element. an abutting means for positioning the optical element, a rotation means for rotating the positioned optical element around an optical axis, and an amount of rotation of the optical element until the optical axis and the plane of polarization coincide with each other; 1. An optical axis measuring device comprising: reading means for reading.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148264A JPH0810175B2 (en) | 1988-06-17 | 1988-06-17 | Method and apparatus for measuring tilt angle between optical element reference plane and optical axis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148264A JPH0810175B2 (en) | 1988-06-17 | 1988-06-17 | Method and apparatus for measuring tilt angle between optical element reference plane and optical axis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01316629A true JPH01316629A (en) | 1989-12-21 |
JPH0810175B2 JPH0810175B2 (en) | 1996-01-31 |
Family
ID=15448882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63148264A Expired - Lifetime JPH0810175B2 (en) | 1988-06-17 | 1988-06-17 | Method and apparatus for measuring tilt angle between optical element reference plane and optical axis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0810175B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60143748A (en) * | 1983-12-30 | 1985-07-30 | Nitto Electric Ind Co Ltd | Continuous optical axis direction measuring apparatus |
JPS63168523A (en) * | 1986-12-30 | 1988-07-12 | Shimadzu Corp | Polarization analyzer |
-
1988
- 1988-06-17 JP JP63148264A patent/JPH0810175B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60143748A (en) * | 1983-12-30 | 1985-07-30 | Nitto Electric Ind Co Ltd | Continuous optical axis direction measuring apparatus |
JPS63168523A (en) * | 1986-12-30 | 1988-07-12 | Shimadzu Corp | Polarization analyzer |
Also Published As
Publication number | Publication date |
---|---|
JPH0810175B2 (en) | 1996-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6256097B1 (en) | Ellipsometer and ellipsometry method | |
KR101594982B1 (en) | Optical anisotropic parameter measurement device, measurement method and measurement program | |
JPH08505952A (en) | Inspection interferometer with scanning function | |
US5018863A (en) | Apparatus for analysis by ellipsometry, procedure for ellipsometric analysis of a sample and application to the measurement of variations in the thickness of thin films | |
US20040233434A1 (en) | Accuracy calibration of birefringence measurement systems | |
US3041921A (en) | Polarimeter apparatus | |
US6697157B2 (en) | Birefringence measurement | |
JPH10281876A (en) | Polarizing imaging system | |
JPH01316629A (en) | Measuring device for optical axis | |
JPH02126106A (en) | Polarization analyzer | |
JPH08201277A (en) | Method and apparatus for measuring double refraction | |
CA1040748A (en) | Apparatus and method for orienting monocrystalline material for sawing | |
JPH05203431A (en) | Surface shape measuring instrument | |
JP3181655B2 (en) | Optical system and sample support in ellipsometer | |
CN108693247B (en) | Laser surface acoustic wave detection system based on double measuring beams and use method thereof | |
JP3343795B2 (en) | Ellipsometer | |
JP2005283552A (en) | Birefringence measurement device and birefringence measurement method | |
JP4728830B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
JP2712987B2 (en) | Adjustment method of polarization measuring device | |
JPH05264440A (en) | Polarization analyzing apparatus | |
JP2625209B2 (en) | Optical micro displacement measuring device | |
US7965395B2 (en) | Optical axis orientation measuring device, optical axis orientation measuring method, spherical surface wave device manufacturing device, and spherical surface wave device manufacturing method | |
JP2003107398A (en) | Projection optical system device and device for inspecting very small projection | |
KR20100039227A (en) | Photoelastic modulator and photoelastic measuring apparatus including the same | |
JPH0777490A (en) | Measuring method for double refraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090131 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090131 Year of fee payment: 13 |