JPS63168523A - Polarization analyzer - Google Patents

Polarization analyzer

Info

Publication number
JPS63168523A
JPS63168523A JP31280486A JP31280486A JPS63168523A JP S63168523 A JPS63168523 A JP S63168523A JP 31280486 A JP31280486 A JP 31280486A JP 31280486 A JP31280486 A JP 31280486A JP S63168523 A JPS63168523 A JP S63168523A
Authority
JP
Japan
Prior art keywords
polarizer
optical axis
compensator
sample
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31280486A
Other languages
Japanese (ja)
Other versions
JPH0765935B2 (en
Inventor
Shigehiro Takahata
高畑 重弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31280486A priority Critical patent/JPH0765935B2/en
Publication of JPS63168523A publication Critical patent/JPS63168523A/en
Publication of JPH0765935B2 publication Critical patent/JPH0765935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To horizontally set a specimen for the measurement of transmission, to eliminate error by making the movement of a compensator unnecessary and performing the reflection measurement of polarized light with high accuracy along with the transmission measurement thereof, by making an auxiliary polarizer accessible to the ligth path of an apparatus. CONSTITUTION:A polarizer P, a compensator C, a slide stage ST and a detector A are arranged between a light source L and a light detector D. The compensator C is fixed so that the optical axis thereof of set in an azimuth of 45 deg. with respect to the reference surface of an apparatus, and the polarizer P and the detector A are made rotatable around an optical axis. Further, the detector A and the detector D are mounted on one arm and made rotatable around the center point O of a goniometer and the stage ST is also provided in the same manner. At the time of measurement, them stage ST is detached and a specimen S is set on a turntable RT but a new auxiliary polarizer PC of which the optical axis is parallel to the reference surface is preliminarily provided on the stage ST. In this constitution, the goniometer is rotated and the polarizer PC is finely adjusted around the optical axis so as not to change the extinction position of the polarizer A.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は反射測定にも透過測定にも適した偏光測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a polarization measuring device suitable for both reflection measurement and transmission measurement.

口、従来の技術 試料の屈折率の測定とか表面層の分析を行うのに偏光解
析法は有力な手段である。偏光解析装置は、試料面に楕
円偏光を入射させ、反射光が直線偏光となるような入射
光の楕円率と、入射楕円偏光の長軸方向と反射直線偏光
の方位との関係を測定して、試料面における2方向の偏
光の反射率と位相の変化を求めるものである。偏光解析
装置は装置の基準面(試料への入射光2反射光の光軸を
含む平面で通常水平面)を基準に偏光子、検光子等の方
位角を測定するようになっている。
In the prior art, ellipsometry is an effective means for measuring the refractive index of a sample and analyzing the surface layer. The polarization analyzer makes elliptically polarized light incident on the sample surface, and measures the ellipticity of the incident light so that the reflected light becomes linearly polarized light, and the relationship between the major axis direction of the incident elliptically polarized light and the direction of the reflected linearly polarized light. , to find changes in the reflectance and phase of polarized light in two directions on the sample surface. The polarization analyzer measures the azimuth angle of the polarizer, analyzer, etc. with reference to the reference plane of the apparatus (a plane that includes the optical axes of the incident light and the reflected light on the sample, and is usually a horizontal plane).

第3図は従来の偏光解析装置の一般的な構成を示す。L
は光源、Pは偏光子、Cは補償子で、Sは試料、Aは検
光子、Dは光検出器である。この構成で図の紙面が装置
の基準面である。補償子は1/4波長板で、偏光子Pを
透過した直線偏光を楕円偏光に変換して試料Sの表面に
入射させる。
FIG. 3 shows the general configuration of a conventional polarization analyzer. L
is a light source, P is a polarizer, C is a compensator, S is a sample, A is an analyzer, and D is a photodetector. In this configuration, the paper plane of the figure is the reference plane of the apparatus. The compensator is a 1/4 wavelength plate, which converts the linearly polarized light transmitted through the polarizer P into elliptically polarized light and makes it incident on the surface of the sample S.

補償子Cはその光学軸が基準面と45度をなすように固
定されており、偏光子Pを45゛の方位角から回転させ
ると、補償子透過光は直線偏光から楕円偏光に変化し、
偏光子を90”回転させたとき円偏光となって、その間
楕円偏光の長軸方向は補償子の光軸方向即ち基準面に対
して45°の方位である。
The compensator C is fixed so that its optical axis forms 45 degrees with the reference plane, and when the polarizer P is rotated from an azimuth angle of 45 degrees, the light transmitted through the compensator changes from linearly polarized light to elliptically polarized light.
When the polarizer is rotated by 90'', the light becomes circularly polarized, and the long axis direction of the elliptically polarized light is oriented at 45° with respect to the optical axis direction of the compensator, that is, the reference plane.

上述したような構成の偏光解析装置で試料透過光によっ
て複屈折を測定しようとする場合、試料の光学軸の基準
面に対する方位角を明かにしなければならない。
When measuring birefringence using light transmitted through a sample using an ellipsometer configured as described above, the azimuth angle of the optical axis of the sample with respect to the reference plane must be determined.

このため従来広のような方法が用いられていた。まず補
償子Cを着脱可能にしておき、補償子を取外し、偏光子
と検光子とを直交させておいて、試料をセットし、試料
を光軸回りに回転させると、試料光軸が偏光子の方向と
平行になったとき、検光子透過光がOになるから試料光
軸の方向が決定される。或は補償子を回転可能にしてお
いて、水平方向にし、偏光子も水平方向、検光子を垂直
方向にして試料をセットし、試料を回転させて検光子透
過光Oとなる方位を検出すれば、試料の光学軸が水平に
セットされる。更に別の方法として、試料を装置の光軸
回りに回転可能にして回転角度を読み取れるようにして
お(方法がある。
For this reason, a conventional method has been used. First, make the compensator C removable, remove the compensator, make the polarizer and analyzer orthogonal, set the sample, and rotate the sample around the optical axis. The direction of the sample optical axis is determined because the analyzer transmitted light becomes O when it becomes parallel to the direction of . Alternatively, make the compensator rotatable and set it horizontally, set the sample with the polarizer also horizontally and the analyzer vertically, and then rotate the sample to detect the direction in which the analyzer transmits light O. For example, the optical axis of the sample is set horizontally. Yet another method is to make the sample rotatable around the optical axis of the device so that the angle of rotation can be read.

ハ0発明が解決しようとする問題点 偏光解析装置では補償子が45°の方位角で固定されて
いるので、偏光子を45°の方位角にすると、補償子透
過光は45°の方向の直線偏光となっている。従って透
過測定の試料の光学軸を水平にセットすれば、試料の直
交2軸方向に夫々同撮幅同相の偏光が入射することにな
り、試料透過光の楕円率を測定することで簡単に試料の
複屈折を測定することができる。
C0 Problems to be Solved by the Invention In an ellipsometry device, the compensator is fixed at an azimuth angle of 45°, so if the polarizer is set at an azimuth angle of 45°, the light transmitted through the compensator will be directed at an azimuth angle of 45°. It is linearly polarized light. Therefore, if the optical axis of the sample for transmission measurement is set horizontally, polarized light with the same imaging width and the same phase will be incident on the two orthogonal axes of the sample. The birefringence of can be measured.

所で上述した補償子を着脱する方法では、試料の光学軸
の方向は任意であるが、補償子を着脱可能にすることは
補償子の設定方位に狂いを生じ他の偏光解析の場合に誤
差を生ずるおそれがあり、好ましい方法とは言えない。
By the way, in the above-mentioned method of attaching and detaching the compensator, the direction of the optical axis of the sample can be set arbitrarily, but making the compensator detachable will cause errors in the set orientation of the compensator, which may cause errors in other polarization analyses. This is not a preferable method as there is a risk of this occurring.

第2の補償子の方位を水平にできるようにする方法も上
と同様、偏光解析測定の場合、補償子の設定方位に狂い
を生じ易(、これを避けるためには補償子の方位切換え
に特別の機構が必要となり、透過測定において試料の光
学軸を水平にセットするためにだけ用いられる機構とし
ては高価なものとなり過ぎる。第3゜の試料そのものの
回転角を読取る方法は、M償子が固定されたま\である
から好ましいものであるが、この場合、試料の設定は、
偏光子の方位を45°にして試料に45°の直線偏光を
入射させ、試料を回して、偏光子と直交させた検光子透
過光がOになる角を検出し、次にその角位置から45゜
だけ試料を回転させて試料の光学軸を水平に設定するの
で、操作が面倒な上、試料ホルダを角度読み取り可能に
する必要があって、試料ホルダが高価になり過ぎる。
The method for making the orientation of the second compensator horizontal is the same as above.In the case of polarimetry measurement, the orientation of the compensator tends to be distorted (in order to avoid this, it is necessary to change the orientation of the compensator). A special mechanism is required, and it is too expensive for a mechanism used only to set the optical axis of the sample horizontally in transmission measurements.The method of reading the rotation angle of the 3rd degree sample itself is This is preferable because it remains fixed, but in this case, the sample settings are
Set the orientation of the polarizer at 45°, make 45° linearly polarized light incident on the sample, rotate the sample, detect the angle at which the light transmitted through the analyzer perpendicular to the polarizer becomes O, and then from that angular position. The optical axis of the sample is set horizontally by rotating the sample by 45 degrees, which is cumbersome to operate, and requires the sample holder to be angularly readable, making the sample holder too expensive.

本発明は偏光解析装置で透過測定をしようとする場合に
おける上述したような問題を回避し、補償子を動かすこ
となく、複雑な試料ホルダを要せず、簡単な操作で試料
の光学軸を装置の基準面と平行にセットできるようにし
ようとするものである。
The present invention avoids the above-mentioned problems when trying to perform transmission measurements with an ellipsometer, and allows the optical axis of a sample to be adjusted with simple operations without moving a compensator or requiring a complicated sample holder. The aim is to make it possible to set it parallel to the reference plane.

二9問題点解決のための手段 偏光解析装置の補償子と試料との間に挿脱可能に補助の
偏光子を設け、この偏光子の偏光方向を装置の基準面と
平行或は垂直とした。
29. Means for solving the problem: An auxiliary polarizer is provided removably between the compensator of the polarization analyzer and the sample, and the polarization direction of this polarizer is set parallel or perpendicular to the reference plane of the equipment. .

ホ0作用 補償子出射光は装置基準面と45°の方向の直線偏光か
楕円或は円偏光であるから、装置基準面と平行或は直角
に置いた補助偏光子を通すと補助偏光子の方向によって
決まる直線偏光が得られる。従ってこの補助偏光子と検
光子とを直交させて、試料を装置光軸回りに回転させて
検光子透過光が0になる位置を求めれば、試料の光学軸
が装置基準面と平行或は直角にセットされる。
Since the emitted light from the 0-effect compensator is linearly polarized, elliptical, or circularly polarized in the direction of 45° to the device reference plane, when it passes through the auxiliary polarizer placed parallel or perpendicular to the device reference plane, the auxiliary polarizer Linearly polarized light determined by direction is obtained. Therefore, if the auxiliary polarizer and analyzer are orthogonal to each other and the sample is rotated around the optical axis of the device to find the position where the light transmitted through the analyzer becomes 0, the optical axis of the sample is parallel or perpendicular to the device reference plane. is set to

へ、実施例 第1図は本発明の一実施例の平面図、第2図は同じく側
面図である。図でLは光源、Pは偏光子、Cは補償子、
Sは試料、Aは検光子でDは光検出器である。補償子C
はその光学軸が装置の基準面(第1図では図の紙面)に
対して45゛の方位をとるように固定されており、偏光
子P1検光子Aは光軸回りに回転可能である。0点はゴ
ニオメータ中心で、検光子A、検出器りは一つの腕上に
あって、0点を中心に装置基準面内で回転することがで
きる。STは摺動ステージで、これも0点を中心に回転
できるよう第2図に示されているゴニオメータ軸G上に
取付けられている回転テーブルRT上に着脱可能にセッ
トされる。
Embodiment FIG. 1 is a plan view of an embodiment of the present invention, and FIG. 2 is a side view of the same. In the figure, L is a light source, P is a polarizer, C is a compensator,
S is a sample, A is an analyzer, and D is a photodetector. Compensator C
is fixed so that its optical axis is oriented at 45° with respect to the reference plane of the apparatus (the plane of the drawing in FIG. 1), and the polarizer P1 and the analyzer A are rotatable around the optical axis. The zero point is the center of the goniometer, and the analyzer A and the detector are located on one arm and can rotate within the device reference plane around the zero point. ST is a sliding stage, which is also detachably set on a rotary table RT mounted on the goniometer axis G shown in FIG. 2 so that it can also rotate around the zero point.

摺動ステージSTは装置基準面と平行な摺動方向を持つ
ガイドBによって装置基準面(水平)方向に移動できる
。試料面の反射光測定の場合、摺動ステージSTは取外
され、回転テーブルRT上に試料がセットされる。透過
光測定の場合、偏光子、補償子等よりなる入射光側の光
軸と、検光子、検出器よりなる出射光側の光軸とを図の
ように一直線にし、ゴニオメータの側方で光軸上に試料
Sをセットし、ゴニオメータ上に摺動ステージSTを載
置する。摺動ステージST上には補助の偏光子PCが取
付けられている。補助偏光子は光学軸が装置基準面と平
行であるように設置されているが、設置誤差を修正する
ため光軸口りに微調整可能である。透過光測定の場合、
摺動テーブルSTをゴニオメータ上にセットし、補助偏
光子PCを装置光軸上に進出させる。この状態で、偏光
子Pを水平方位にすると補償子Cからは円偏光が出射す
る。この円偏光に対して補助偏光子PCは水平方向(装
置基準面)に設定されているから補助偏光子PCの透過
光は水平方向の直線偏光となっている。そこで予め検光
子の方位を水平面に対して垂直にしておき、試料Sを光
軸間りに回転させて光検出器出力がO(光入射がO)に
なる位置を検出してその位置に止めておく。このとき試
料の光学軸が水平になっている。このようにして試料の
方位設定が終わった後、摺動テーブルを移動させて補助
偏光子PCを装置光軸から退避させ、偏光子Pの方位を
45°にして試料Sに偏光方向が45°の直線偏光を入
射させる。
The sliding stage ST can be moved in the device reference plane (horizontal) direction by a guide B having a sliding direction parallel to the device reference plane. In the case of measuring reflected light from the sample surface, the sliding stage ST is removed and the sample is set on the rotary table RT. In the case of transmitted light measurement, the optical axis of the incident light side consisting of a polarizer, compensator, etc. and the optical axis of the output light side consisting of an analyzer and detector are aligned as shown in the figure, and the light is aligned to the side of the goniometer. A sample S is set on the axis, and a sliding stage ST is placed on the goniometer. An auxiliary polarizer PC is attached on the sliding stage ST. The auxiliary polarizer is installed so that its optical axis is parallel to the device reference plane, but it can be finely adjusted to the optical axis in order to correct installation errors. For transmitted light measurement,
The sliding table ST is set on the goniometer, and the auxiliary polarizer PC is advanced onto the optical axis of the device. In this state, when the polarizer P is oriented horizontally, circularly polarized light is emitted from the compensator C. Since the auxiliary polarizer PC is set in the horizontal direction (device reference plane) with respect to this circularly polarized light, the transmitted light of the auxiliary polarizer PC is linearly polarized light in the horizontal direction. Therefore, the orientation of the analyzer is set perpendicular to the horizontal plane in advance, the sample S is rotated between the optical axes, the position where the photodetector output becomes O (light incidence is O) is detected, and the position is stopped. I'll keep it. At this time, the optical axis of the sample is horizontal. After setting the orientation of the sample in this way, move the sliding table to retract the auxiliary polarizer PC from the optical axis of the device, set the orientation of the polarizer P to 45°, and set the polarization direction of the sample S at 45°. input linearly polarized light.

補助偏光子PCは光学軸が水平になるように調整されて
いるが、この調整誤差の修正は偏光子を水平にし、検光
子を垂直にして光検出出力Oの位置を求めた後、ゴニオ
メータを180°回転させて補助偏光子Cを裏向けると
、補助偏光子の光学軸が正確に水平でないと、−回目と
ゴニオメータを180°回した後とでは光学軸の傾き方
向が反対になるから、光検出器出力が0になる検光子の
方位角が若干変化する。従ってゴニオメータを180°
回して検光子Aの消光位置が変化しないように補助偏光
子PCの方位を光軸間りに微調整すればよい。
The auxiliary polarizer PC is adjusted so that the optical axis is horizontal, but to correct this adjustment error, set the polarizer horizontally, set the analyzer vertically, find the position of the photodetection output O, and then turn the goniometer. When the auxiliary polarizer C is turned over by 180 degrees, if the optical axis of the auxiliary polarizer is not exactly horizontal, the direction of inclination of the optical axis will be opposite between the -th turn and after turning the goniometer 180 degrees. The azimuth of the analyzer at which the photodetector output becomes 0 changes slightly. Therefore, move the goniometer to 180°.
The orientation of the auxiliary polarizer PC may be finely adjusted between the optical axes so that the extinction position of the analyzer A does not change.

ト、効果 本発明偏光解析装置は上述したように、単に補助偏光子
を装置の光路内に出入させるだけで透過測定用の試料の
光学軸を水平にセットでき、補償子を動かす必要がない
から、補償子の方位角の誤差による測定上の誤差が発生
せず、偏光の反射測定も透過測定も精度よ(行うことが
でき、付加装置も単に補助偏光子を光路上に出入させる
だけの装置であるから安価である。
G. Effect: As mentioned above, with the polarization analyzer of the present invention, the optical axis of the sample for transmission measurement can be set horizontally by simply moving the auxiliary polarizer in and out of the optical path of the device, and there is no need to move the compensator. , measurement errors due to errors in the azimuthal angle of the compensator do not occur, and both reflection and transmission measurements of polarized light can be carried out with high precision. Therefore, it is cheap.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にの一実施例装置の平面図、第2図は同
じく側面図、第3図は従来の偏光解析装置の平面図であ
る。 L・・・光源、P・・・偏光子、C・・・補償子、S・
・・試料、A・・・検光子、D・・・光検出器、ST・
・・摺動テーブル、RT・・・回転テーブル、B・・・
ガイド、PC・・・補助偏光子、G・・・ゴニオメータ
軸。 代理人  弁理士 縣  浩 介 11  図
FIG. 1 is a plan view of an apparatus according to an embodiment of the present invention, FIG. 2 is a side view of the same, and FIG. 3 is a plan view of a conventional polarization analyzer. L...Light source, P...Polarizer, C...Compensator, S...
...Sample, A...Analyzer, D...Photodetector, ST.
...Sliding table, RT...Rotary table, B...
Guide, PC...auxiliary polarizer, G...goniometer axis. Agent Patent Attorney Kosuke Agata 11 Figure

Claims (1)

【特許請求の範囲】[Claims] 偏光子と補償子と検光子とよりなり、補償子と検光子と
の間に試料が置かれる装置構成で、補償子と試料との間
に方位角が一定の補助偏光子を出入自在に設けたことを
特徴とする偏光解析装置。
The device consists of a polarizer, a compensator, and an analyzer, and the sample is placed between the compensator and the analyzer.An auxiliary polarizer with a constant azimuth angle is provided between the compensator and the sample so that it can be moved in and out. A polarization analyzer characterized by:
JP31280486A 1986-12-30 1986-12-30 Ellipsometer Expired - Lifetime JPH0765935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31280486A JPH0765935B2 (en) 1986-12-30 1986-12-30 Ellipsometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31280486A JPH0765935B2 (en) 1986-12-30 1986-12-30 Ellipsometer

Publications (2)

Publication Number Publication Date
JPS63168523A true JPS63168523A (en) 1988-07-12
JPH0765935B2 JPH0765935B2 (en) 1995-07-19

Family

ID=18033607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31280486A Expired - Lifetime JPH0765935B2 (en) 1986-12-30 1986-12-30 Ellipsometer

Country Status (1)

Country Link
JP (1) JPH0765935B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316629A (en) * 1988-06-17 1989-12-21 Nitto Koki Kk Measuring device for optical axis
US6495812B1 (en) 2000-08-02 2002-12-17 Li-Cor, Inc. Apparatus and method for analyzing an object of interest having a pivotably movable source and detector
JP2006242617A (en) * 2005-03-01 2006-09-14 Jasco Corp Device and method for measuring axial azimuth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316629A (en) * 1988-06-17 1989-12-21 Nitto Koki Kk Measuring device for optical axis
JPH0810175B2 (en) * 1988-06-17 1996-01-31 日東光器株式会社 Method and apparatus for measuring tilt angle between optical element reference plane and optical axis
US6495812B1 (en) 2000-08-02 2002-12-17 Li-Cor, Inc. Apparatus and method for analyzing an object of interest having a pivotably movable source and detector
JP2006242617A (en) * 2005-03-01 2006-09-14 Jasco Corp Device and method for measuring axial azimuth

Also Published As

Publication number Publication date
JPH0765935B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US5757494A (en) System and method for improving data acquisition capability in spectroscopic ellipsometers
WO2002079760A3 (en) Polarimetric scatterometer for critical dimension measurements of periodic structures
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
CN102435418A (en) Comprehensive polarization measuring device and method of argon fluoride (ArF) laser optical thin film elements
US20040233434A1 (en) Accuracy calibration of birefringence measurement systems
JP4538344B2 (en) Axial bearing measuring apparatus and method
JPH0554902B2 (en)
EP0737856A2 (en) Polarisation monitoring methods and apparatus
CN109870120A (en) High-sensitivity monitoring system for micro angular displacement of rotating body based on laser polarization measurement
Azzam NIRSE: Normal-incidence rotating-sample ellipsometer
US3640626A (en) Measuring of the concentration of solid particles suspended in various regions in a fluid using polarized light
JPS63168523A (en) Polarization analyzer
JPS62266439A (en) Spectral temporary optical analyzer
Jerrard A high precision photoelectric ellipsometer
JP2712987B2 (en) Adjustment method of polarization measuring device
US6317209B1 (en) Automated system for measurement of an optical property
JPS60122333A (en) Polarization analyzer
JPH04127004A (en) Ellipsometer and its using method
Azzam AIDER: angle-of-incidence-derivative ellipsometry and reflectometry
JPH05273120A (en) Polarization analyzer
Monin et al. A new and high precision achromatic ellipsometer: a two-channel and polarization rotator method
JPH05126641A (en) Spectral ellipsometer
Jerrard Examination and calibration of a Babinet compensator
JPS63168539A (en) Polarization analyzer
JPH04294226A (en) Ellipsometer