JP2006242617A - Device and method for measuring axial azimuth - Google Patents

Device and method for measuring axial azimuth Download PDF

Info

Publication number
JP2006242617A
JP2006242617A JP2005055638A JP2005055638A JP2006242617A JP 2006242617 A JP2006242617 A JP 2006242617A JP 2005055638 A JP2005055638 A JP 2005055638A JP 2005055638 A JP2005055638 A JP 2005055638A JP 2006242617 A JP2006242617 A JP 2006242617A
Authority
JP
Japan
Prior art keywords
sample
polarizer
transmitted light
azimuth
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005055638A
Other languages
Japanese (ja)
Other versions
JP4538344B2 (en
Inventor
Akio Wada
明生 和田
Tomoyuki Fukazawa
知行 深沢
Hideko Shikamata
ひで子 鹿又
Hiroshi Masago
央 真砂
Junji Miyoshi
潤児 三好
Miho Narahara
美保 楢原
Mitsuo Watanabe
光男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2005055638A priority Critical patent/JP4538344B2/en
Publication of JP2006242617A publication Critical patent/JP2006242617A/en
Application granted granted Critical
Publication of JP4538344B2 publication Critical patent/JP4538344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for accurately determining an axial azimuth of a sample such as a light polarizer and a phase piece. <P>SOLUTION: The axial azimuth measuring device 10 determines the permeation axial azimuth of a linear light polarizing element as a sample. The axial azimuth measuring device 10 comprises a light radiation means 12, a reference light polarizer 14 for converting the light from the light radiation means 12 into linearly polarized light and radiating it to the sample, a sample rotating means 18 for rotating the sample about the optical axis, a photo-detection means 20 for detecting light having permeated the sample, and an axial azimuth calculating means 26 for calculating the permeation axis azimuth of the sample based on the azimuthal angle of the sample of which permeation light intensity is minimum. The axial azimuth calculating means 26 calculates the permeation axis azimuth of the sample based on the front-side azimuthal angle θ<SB>+</SB>of the sample of which permeation light intensity is minimum when one surface of the sample is faced to one surface of the reference light polarizer 14 and the back-side azimuthal angle θ<SB>-</SB>at which permeation light intensity is minimum when the sample is turned over and the surface facing the reference light polarizer 14 is set as the other surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は偏光子、移相子などの偏光素子の軸方位を測定する装置およびその方法に関する。   The present invention relates to an apparatus and method for measuring the axial orientation of a polarizing element such as a polarizer and a phase shifter.

偏光フィルム(偏光子)や位相差フィルム(移相子)は特定の偏光状態を抽出したり、偏光状態を変えたりする機能性素材であり、液晶ディスプレイ等に使われている。これらのフィルムは透光性があり、かつ複屈折性のあるフィルムで構成され、光の透過率の差、屈折率の差、屈折率の軸方位などで特徴づけられている。例えば、2色性の偏光フィルムは偏光方向に対する透過率の差を利用して所定方向の直線偏光を取り出すものである。位相差フィルムは屈折率の差と膜の厚さの積が、利用する光の波長の何倍かになっているかで特徴づけられ、1/4波長板、1/2波長板のものが多用されている。
偏光フィルムの透過軸方位の決定は、基準となる偏光子に対して偏光フィルムを回転させ、基準となる偏光子の透過軸と偏光フィルムの透過軸とが直交する方位、つまり透過光の強度が最小となる方位(消光位)を測定することで行う。そして、消光位での透過光強度と、消光位から90°偏光フィルムを回転させたとき(偏光子の透過軸と偏光フィルムの透過軸が平行となる方位)の透過光強度とから、偏光フィルムの偏光度もしくは消光率を求めればよい(その他の例としては、特許文献1参照)。
同様に位相差フィルムの場合の固有直線偏光の軸方位(中性軸)の決定は基準となる2枚の偏光子(偏光板)をクロスニコルの状態に設置し、その間に位相差フィルムを置き、位相差フィルムを回転して透過光強度が最小となる方位を測定することで行う。位相差フィルムの中性軸が2枚の偏光子の透過軸方向に一致したとき透過光強度が最小になる。つまり、それぞれの偏光子の透過軸方向は直交する2つの方向であるが、位相差フィルムの中性軸方位も直交する2つの方向であり、これらがそれぞれの偏光子の偏光方向に一致すればよい。
特開平4−36631号広報
A polarizing film (polarizer) and a retardation film (phase shifter) are functional materials that extract a specific polarization state or change the polarization state, and are used in liquid crystal displays and the like. These films are translucent and birefringent, and are characterized by light transmittance differences, refractive index differences, refractive index axial orientations, and the like. For example, a dichroic polarizing film extracts linearly polarized light in a predetermined direction using a difference in transmittance with respect to the polarization direction. Retardation films are characterized by how many times the wavelength of the light used is the product of the difference in refractive index and the thickness of the film. Has been.
The transmission axis direction of the polarizing film is determined by rotating the polarizing film with respect to the reference polarizer, and the direction in which the transmission axis of the reference polarizer and the transmission axis of the polarizing film are orthogonal, that is, the intensity of transmitted light is This is done by measuring the minimum orientation (extinction position). Then, from the transmitted light intensity at the extinction position and the transmitted light intensity when the 90 ° polarizing film is rotated from the extinction position (the direction in which the transmission axis of the polarizer and the transmission axis of the polarizing film are parallel), the polarizing film The degree of polarization or extinction rate of the light beam may be obtained (see Patent Document 1 for other examples).
Similarly, in the case of a retardation film, the axial direction (neutral axis) of intrinsic linearly polarized light is determined by placing two reference polarizers (polarizing plates) in a crossed Nicol state and placing a retardation film between them. Then, the retardation film is rotated to measure the direction in which the transmitted light intensity is minimized. When the neutral axis of the retardation film coincides with the transmission axis direction of the two polarizers, the transmitted light intensity is minimized. In other words, the transmission axis direction of each polarizer is two directions orthogonal to each other, but the neutral axis orientation of the retardation film is also two directions orthogonal to each other, and if these coincide with the polarization direction of each polarizer, Good.
JP-A-4-36631

しかしながら、例えば偏光フィルムに対する測定において、偏光フィルムの透過軸方位の絶対的な方向までは正確に決まらない。つまり、偏光フィルムの透過軸方位は基準となる偏光子の透過軸方位に直交していること自体は分かるが、基準となる偏光子自身の透過軸方向が正しく定められている保証はないからである。すなわち、絶対的な方位を測定するためには、疑いなく軸方位が定められた標準の偏光子が必要であるが、これを用意することは原理的に困難であり、結果として試料に対して求まる消光軸方位には確からしさが決定的に欠落していた。同様に位相差フィルムの場合でも、基準となる2枚の偏光子がクロスニコルの位置にあるということは、2枚の偏光子の相対的な位置関係が、それぞれの偏光方向が直交している方向にあるというだけのことであり、各偏光子の偏光方向が絶対的に定まるものではなく、これを定めるために別の手段が必要になる。すなわち、試料となる偏光フィルムや位相差フィルムの軸方位を正確に決定するためには、まず基準となる偏光子自身の透過軸方向の絶対的な方位を求める必要がある。
本発明は上記の課題に鑑みてなされたものであり、その目的は偏光子や移相子などの試料の軸方位を正確に決定する方法および装置を提供することにある。
However, for example, in the measurement for a polarizing film, the absolute direction of the transmission axis direction of the polarizing film is not accurately determined. In other words, it can be seen that the transmission axis direction of the polarizing film is orthogonal to the transmission axis direction of the reference polarizer, but there is no guarantee that the transmission axis direction of the reference polarizer itself is correctly determined. is there. In other words, in order to measure the absolute orientation, there is no doubt that a standard polarizer with a fixed axial orientation is necessary, but it is difficult in principle to prepare this, and as a result There was a definite lack of certainty in the extinction axis orientation that was found. Similarly, even in the case of a retardation film, the fact that two reference polarizers are in a crossed Nicol position means that the relative positional relationship between the two polarizers is orthogonal to each other. It is merely the direction, and the polarization direction of each polarizer is not absolutely determined, and another means is required to determine this. That is, in order to accurately determine the axial orientation of the polarizing film or retardation film as a sample, it is necessary to first obtain the absolute orientation of the transmission axis direction of the reference polarizer itself.
The present invention has been made in view of the above problems, and an object thereof is to provide a method and apparatus for accurately determining the axial orientation of a sample such as a polarizer or a phase shifter.

上記目的を達成するため、本発明の軸方位測定装置は直線偏光素子を試料として、該試料の透過軸方位を決定する軸方位測定装置であって、光照射手段と、該光照射手段からの光を直線偏光として試料に照射する基準偏光子と、該基準偏光子に対向して設置される試料を、光軸を中心として回転し試料の方位を変更する試料回転手段と、前記試料を透過した光を検知する光検出手段と、前記試料回転手段により試料を回転させたときの透過光強度が最小になる試料の方位角に基いて、試料の透過軸方位を演算する軸方位演算手段と、を備える。ここで前記軸方位演算手段は、前記試料の一方の面を前記基準偏光子に対向させたときの透過光強度が最小となる方位角θと、前記試料を裏返して試料の基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる方位角θとに基いて、試料の透過軸方位を演算することを特徴とする。 In order to achieve the above object, an axial azimuth measuring apparatus according to the present invention is an axial azimuth measuring apparatus that determines a transmission axis azimuth of a sample using a linearly polarizing element as a sample. A reference polarizer that irradiates a sample with light as linearly polarized light, a sample rotating means that rotates a sample placed opposite to the reference polarizer around the optical axis and changes the orientation of the sample, and the sample is transmitted. A light detecting means for detecting the transmitted light, and an axial azimuth calculating means for calculating the transmission axis direction of the sample based on the azimuth angle of the sample at which the transmitted light intensity is minimized when the sample is rotated by the sample rotating means. . Here, the axial azimuth calculating means has an azimuth angle θ + that minimizes transmitted light intensity when one surface of the sample is opposed to the reference polarizer, and turns the sample over to serve as a reference polarizer of the sample. The transmission axis azimuth of the sample is calculated based on the azimuth angle θ that minimizes the transmitted light intensity when the opposite surface is the other surface.

上記の軸方位測定装置において、前記演算手段は、前記基準偏光子の消光軸方位を方位角θと方位角θの中間位置θ=(θ+θ)/2として求め、該方位角θを基に試料の透過軸方位を求めることが好適である。
上記の軸方位測定装置において、前記試料回転手段によって試料を回転し、透過光強度が最小になる試料の方位を求める処理手段を備えることが好適である。この処理手段は、前記試料回転手段により試料を回転させて、透過光強度がおおむね最小となる仮の方位を決定する仮方位決定部と、前記仮方位近傍の複数の角度位置で透過光強度を測定し、測定した透過光強度をそのときの角度位置と関連付けて記憶する仮方位近傍測定部と、前記記憶した透過光強度を角度位置の二次関数でフィッティングし、該二次関数の頂点位置を算出する算出部とを備える。そして、前記算出部により算出された頂点位置から透過光強度が真に最小となる方位を求める。
上記の軸方位測定装置において、前記基準偏光子の位置から前記光検出手段の受光部位を覗いたときの立体角が1×10−2πsr以下となるように、前記基準偏光子が光検出手段から離されて配置されていることが好適である。
In the axial azimuth measuring apparatus, the calculation means obtains the extinction axis azimuth of the reference polarizer as an intermediate position θ 0 = (θ + + θ ) / 2 between the azimuth angle θ + and the azimuth angle θ It is preferable to determine the transmission axis direction of the sample based on the angle θ 0 .
In the axial azimuth measuring apparatus described above, it is preferable to include a processing unit that rotates the sample by the sample rotating unit and obtains the direction of the sample that minimizes the transmitted light intensity. The processing means rotates the sample by the sample rotating means to determine a temporary orientation that determines the provisional orientation at which the transmitted light intensity is substantially minimized, and transmits the transmitted light intensity at a plurality of angular positions near the temporary orientation. A temporary azimuth vicinity measuring unit that measures and stores the measured transmitted light intensity in association with the angular position at that time, and fitting the stored transmitted light intensity with a quadratic function of the angular position, the vertex position of the quadratic function And a calculating unit for calculating. Then, the direction in which the transmitted light intensity is truly minimized is obtained from the vertex position calculated by the calculation unit.
In the axial azimuth measuring apparatus, the reference polarizer is a light detecting means so that a solid angle when the light receiving part of the light detecting means is viewed from the position of the reference polarizer is 1 × 10 −2 πsr or less. It is preferable that they are arranged away from each other.

また、本発明の軸方位測定方法は、基準偏光子と、試料としての直線偏光素子とを相対向させ、前記基準偏光子に対する前記試料の方位を変更して、前記基準偏光子および前記試料を透過した光の強度が最小となる方位を測定することで、試料の透過軸方位を決定する軸方位測定方法であって、前記試料の一方の面を基準偏光子に対向させ、透過光強度が最小になる表側方位角θを測定する表側測定工程と、前記試料を裏返して、試料の基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θを測定する裏側測定工程と、前記表側方位角θと前記裏側方位角θとに基いて試料の透過軸方位を算出する算出工程と、を含むことを特徴とする。 Further, in the axial orientation measuring method of the present invention, a reference polarizer and a linearly polarizing element as a sample are opposed to each other, the orientation of the sample with respect to the reference polarizer is changed, and the reference polarizer and the sample are An axial orientation measurement method for determining a transmission axis orientation of a sample by measuring an orientation in which the intensity of transmitted light is minimum, wherein one surface of the sample is opposed to a reference polarizer, and the transmitted light intensity is A front-side measurement step for measuring the front-side azimuth angle θ + that minimizes, and the back-side azimuth angle θ that minimizes the transmitted light intensity when the sample is turned over and the surface facing the reference polarizer of the sample is the other surface. - and back measuring step of measuring, the front azimuth theta + and the back azimuth theta - characterized in that it comprises a and a calculation step of calculating the transmission axis azimuth of the sample on the basis of the.

また、本発明の軸方位測定装置は、直線移相素子を試料として、該試料の中性軸方位を決定する軸方位測定装置であって、光照射手段と、光照射手段からの光を直線偏光とし、試料に照射する第1基準偏光子と、第1基準偏光子に対しクロスニコルの状態で設置され、試料からの透過光を透過する第2基準偏光子と、前記第1および第2基準偏光子の間に設置された試料を、光軸を中心として回転し、該試料の方位を変更可能な試料回転手段と、第2基準偏光子を透過した光を検出する光検出手段と、前記試料回転手段により試料を回転させたときの透過光強度が最小になる方位角に基いて、試料の中性軸方位を演算する軸方位演算手段とを備える。そして、軸方位演算手段は前記試料の一方の面を第1基準偏光子に対向させたときの透過光強度が最小になる表側方位角θと、前記試料を裏返して前記試料の前記第1基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θと、に基いて、試料の中性軸方位を演算することを特徴とする。 An axial direction measuring apparatus of the present invention is an axial direction measuring apparatus that determines a neutral axis direction of a sample using a linear phase shift element as a sample, and the light irradiation unit and the light from the light irradiation unit are linearly converted. A first reference polarizer that is polarized and irradiates the sample; a second reference polarizer that is placed in a crossed Nicol state with respect to the first reference polarizer and that transmits transmitted light from the sample; and the first and second A sample rotating means capable of rotating a sample placed between the reference polarizers around the optical axis and changing the orientation of the sample; and a light detecting means for detecting light transmitted through the second reference polarizer; Axis azimuth calculating means for calculating the neutral axis azimuth of the sample based on the azimuth angle at which the transmitted light intensity is minimized when the sample is rotated by the sample rotating means. Then, the axial azimuth calculating means turns the sample over to the first azimuth angle θ + at which the transmitted light intensity is minimized when one surface of the sample is opposed to the first reference polarizer. The neutral axis azimuth of the sample is calculated based on the back side azimuth angle θ that minimizes the transmitted light intensity when the surface facing the reference polarizer is the other surface.

上記の軸方位測定装置において、前記軸方位演算手段は、前記基準偏光子の消光軸方位を、表側方位角θと裏側方位角θの中間位置θ=(θ+θ)/2として求め、該方位θを基に試料の中性軸方位を求めることが好適である。
上記の軸方位測定装置において、前記試料回転手段によって試料を回転し、透過光強度が最小になる試料の方位を求める処理手段を備えることが好適である。ここで処理手段は、前記試料回転手段により試料を回転させて、透過光強度が略最小となる仮の方位を決定する仮方位決定部と、前記仮方位近傍の複数の角度位置で透過光強度を測定し、測定した透過光強度をそのときの角度位置と関連付けて記憶する仮方位近傍測定部と、複数の角度位置での透過光強度を、該角度位置の二次関数でフィッティングし、該二次関数の頂点位置を算出する算出部とを備え、該算出部により算出された頂点位置から透過光強度が真に最小となる方位を求める。
In the above-described axial azimuth measuring apparatus, the axial azimuth calculation means sets the extinction axis azimuth of the reference polarizer to an intermediate position θ 0 = (θ + + θ ) / 2 between the front side azimuth angle θ + and the back side azimuth angle θ −. It is preferable to obtain the neutral axis orientation of the sample based on the orientation θ 0 .
In the axial azimuth measuring apparatus described above, it is preferable to include a processing unit that rotates the sample by the sample rotating unit and obtains the direction of the sample that minimizes the transmitted light intensity. Here, the processing means rotates the sample by the sample rotating means to determine a temporary orientation in which the transmitted light intensity is substantially minimum, and the transmitted light intensity at a plurality of angular positions near the temporary orientation. And measuring the transmitted light intensity in association with the angular position at that time, and storing the temporary azimuth vicinity measuring unit, and fitting the transmitted light intensity at a plurality of angular positions with a quadratic function of the angular position, A calculation unit that calculates the vertex position of the quadratic function, and obtains an orientation in which the transmitted light intensity is truly minimum from the vertex position calculated by the calculation unit.

上記の軸方位測定装置において、前記第1基準偏光子の位置から前記光検出手段の受光部位を覗いたときの立体角が1×10−2πsr以下となるように、前記第1基準偏光子が前記光検出手段と離されて配置されていることが好適である。
また、本発明の軸方位測定装置は、クロスニコルに設置された第1及び第2の基準偏光子の間に、試料としての直線移相子を設置し、該試料を光軸を中心として回転させることにより、前記第1および第2基準偏光子に対する前記試料の方位を変更し、前記第1基準偏光子、試料、第2基準偏光子を透過した光の強度が最小となる方位を測定することで、試料の中性軸方位を決定する軸方位測定方法であって、前記試料の一方の面を第1基準偏光子に対向させ、透過光強度が最小になる表側方位角θを測定する表側測定工程と、試料を裏返し、前記試料の第1基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θを測定する裏側測定工程と、前記表側方位角θと裏側方位角θとに基いて試料の中性軸方位を算出する算出工程と、を含むことを特徴とする。
In the axial azimuth measuring apparatus, the first reference polarizer is set so that a solid angle when the light receiving portion of the light detection means is viewed from the position of the first reference polarizer is 1 × 10 −2 πsr or less. Is preferably arranged apart from the light detection means.
In the axial direction measuring apparatus of the present invention, a linear phase shifter as a sample is installed between the first and second reference polarizers installed in crossed Nicols, and the sample is rotated about the optical axis. By changing the direction of the sample with respect to the first and second reference polarizers, the direction in which the intensity of light transmitted through the first reference polarizer, the sample, and the second reference polarizer is minimized is measured. Thus, the axial direction measuring method for determining the neutral axis direction of the sample, wherein one surface of the sample is opposed to the first reference polarizer, and the front side azimuth angle θ + at which the transmitted light intensity is minimized is measured. A front side measuring step, and a back side measuring step for measuring the back side azimuth angle θ − at which the transmitted light intensity is minimized when the sample is turned over and the surface facing the first reference polarizer of the sample is the other surface, the front azimuth theta + and back azimuth theta - and neutral axis of the sample on the basis of Characterized in that it comprises a calculation step of calculating a position, a.

上記の装置および方法で、基準偏光子の軸方位の測定、試料の軸方位の測定に際し、必ずしも同一の試料を用いる必要はない。つまり、基準偏光子の軸方位の測定に際しては、基準偏光子の軸方位測定用に用意した標準試料を用いて、基準偏光子の軸方位をあらかじめ決定しておき、その後、あらかじめ決定しておいた基準偏光子の軸方位に基いて、測定対象の試料の軸方位を測定する、というようにしてもよい。
また、上記の光検出手段の受光部位とは、光検出手段が積分球と検知器から構成されている場合、積分球の入射開口のことを指す。また、検知器のみで構成されている場合、検知器自身の受光面のことを指す。
In the above-described apparatus and method, it is not always necessary to use the same sample when measuring the axial orientation of the reference polarizer and measuring the axial orientation of the sample. In other words, when measuring the axial orientation of the reference polarizer, the axial orientation of the reference polarizer is determined in advance using a standard sample prepared for measuring the axial orientation of the reference polarizer. The axial orientation of the sample to be measured may be measured based on the axial orientation of the reference polarizer.
In addition, the light receiving portion of the light detection means refers to an incident opening of the integration sphere when the light detection means includes an integration sphere and a detector. Moreover, when comprised only with a detector, it points out the light-receiving surface of detector itself.

本発明の装置および方法によれば、直線偏光素子や直線移相素子などの試料に対し、試料の表と裏の両方から求めた消光方位に基き、試料の軸方位を決定しているため、論理的厳密さをもって、軸方位を正確に決定することができる。   According to the apparatus and method of the present invention, for the sample such as the linear polarization element and the linear phase shift element, the axial direction of the sample is determined based on the extinction direction obtained from both the front and back of the sample. With logical rigor, the axis orientation can be determined accurately.

以下に本発明の好適な実施形態を図面を参照して説明する。まず、試料として偏光フィルム(直線偏光素子)の軸方位を測定する場合について説明する。図1は本発明の実施形態にかかる軸方位測定装置の概略構成図である。軸方位測定装置10は、光源28および分光器30で構成された光照射手段12と、基準偏光子14と、試料を保持する試料ホルダ16と、試料ホルダ16を載置し光軸を中心に回転可能な試料回転手段18と、積分球32および検知器34で構成された光検出手段20と、各手段の制御、データの処理などを行うコンピュータ22とを備える。
光照射手段12からの光は基準偏光子14を通り直線偏光とされ、試料ホルダ16に保持された試料へ照射される。試料からの透過光は光検出手段20によって検出され、コンピュータ22へと送られる。ここで、光検出手段20は、検知器34の受光面での位置ムラや偏光特性の影響を除くため、積分球32を備えることが望ましいが、必須というわけではない。
Preferred embodiments of the present invention will be described below with reference to the drawings. First, the case where the axial direction of a polarizing film (linearly polarizing element) is measured as a sample will be described. FIG. 1 is a schematic configuration diagram of an axial orientation measuring apparatus according to an embodiment of the present invention. The axial azimuth measuring apparatus 10 has a light irradiating means 12 composed of a light source 28 and a spectroscope 30, a reference polarizer 14, a sample holder 16 holding a sample, and a sample holder 16 placed around the optical axis. A rotatable sample rotating means 18, a light detecting means 20 constituted by an integrating sphere 32 and a detector 34, and a computer 22 for controlling each means, processing data, and the like.
The light from the light irradiation means 12 passes through the reference polarizer 14 to be linearly polarized light, and is irradiated onto the sample held by the sample holder 16. The transmitted light from the sample is detected by the light detection means 20 and sent to the computer 22. Here, it is desirable that the light detection means 20 includes the integrating sphere 32 in order to remove the influence of the position unevenness on the light receiving surface of the detector 34 and the influence of polarization characteristics, but this is not essential.

コンピュータ22内の処理手段24は試料回転手段18を制御して基準偏光子14の偏光方向に対する試料の方位を変更し、試料からの透過光強度が最小になる角度を求める。
コンピュータ22内の軸方位演算手段26は、透過光強度が最小になる試料の方位角に基いて試料の透過軸方位を演算する。本実施形態における最も特徴的な部分はこの軸方位演算手段26の部分である。すなわち、軸方位演算手段26は、試料の一方の面を基準偏光子14に対向させたときの透過光強度が最小になる表側方位角θと、試料を裏返し、試料の基準偏光子14に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θとに基いて演算を行う。このように、試料もしくは基準偏光子14を裏返したときの測定結果も用いることで、後述するように厳密に基準偏光子の軸方位を決定することができ、その結果、試料の透過軸方位も正確に求めることが可能となる。
The processing means 24 in the computer 22 controls the sample rotating means 18 to change the orientation of the sample with respect to the polarization direction of the reference polarizer 14 and obtain the angle at which the transmitted light intensity from the sample is minimized.
The axial direction calculation means 26 in the computer 22 calculates the transmission axis direction of the sample based on the azimuth angle of the sample that minimizes the transmitted light intensity. The most characteristic part in this embodiment is the part of the axial direction calculating means 26. In other words, the axial azimuth calculating means 26 turns the front side azimuth angle θ + that minimizes the transmitted light intensity when one surface of the sample is opposed to the reference polarizer 14, and the sample to the reference polarizer 14 of the sample. The calculation is performed based on the back side azimuth angle θ that minimizes the transmitted light intensity when the opposite surface is the other surface. In this way, by using the measurement result when the sample or the reference polarizer 14 is turned over, the axial direction of the reference polarizer can be determined strictly as described later, and as a result, the transmission axis direction of the sample is also determined. It can be obtained accurately.

また、本発明にかかる軸方位測定方法は、基準偏光子からの直線偏光を試料としての直線偏光素子に照射して、前記基準偏光子に対する前記試料の方位を変更し、前記試料を透過した光の強度が最小となる方位を測定することで測定対象物の軸方位を決定するものである。そして、試料の一方の面を基準となる偏光子に対向させ、透過光強度が最小になる表側方位角θを測定する表側測定工程と、試料を裏返して、試料の基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θを測定する裏側測定工程と、上記表側方位角θと裏側方位角θとに基いて前記基準偏光子および/または試料の軸方位を算出する算出工程と、を含むことを特徴としている。
以上が本実施形態の軸方位測定装置および方法の概略構成であり、以下により詳細に説明を行う。
Further, the axial direction measuring method according to the present invention is a method of irradiating a linearly polarized light element as a sample with linearly polarized light from a reference polarizer, changing the direction of the sample with respect to the reference polarizer, and transmitting light through the sample. The axis direction of the measurement object is determined by measuring the direction in which the intensity of the object is minimized. Then, one surface of the sample is opposed to the reference polarizer, and a front-side measurement step of measuring the front-side azimuth angle θ + at which the transmitted light intensity is minimized, and the sample is turned over to face the reference polarizer of the sample A back side measuring step for measuring the back side azimuth angle θ that minimizes the transmitted light intensity when the surface is the other side, and the reference polarizer and the reference polarizer based on the front side azimuth angle θ + and the back side azimuth angle θ And / or a calculation step of calculating the axial direction of the sample.
The above is the schematic configuration of the axial orientation measuring apparatus and method of the present embodiment, which will be described in more detail below.

まず、本実施形態の試料ホルダ16は図2(a)、(b)に示すように、測定光を試料に照射するための測定光通過窓と、試料を固定する試料オサエと、を備えている。試料ホルダ16は測定光通過窓の中心を通り試料に垂直な軸を回転軸として試料回転手段によって回転する。また、試料ホルダ16には、試料フィルムを載せたときに試料の方位(角度位置)を定義するための基準線を設けている。この基準線は完全に平坦な突き当てバー(図2(a))あるいは2本のピン(図2(b))などで構成する。試料となる偏光フィルムにはやはり基準辺を定め、この辺が試料ホルダの基準線に一致するように試料をホルダに載せる(図3(a)、(b)参照)。また、このとき試料の透過軸方位が試料ホルダ16の基準線に概ね一致するように、つまり、試料となる偏光フィルムの基準辺が概ね透過軸方向と平行になるようにするのが望ましい。   First, as shown in FIGS. 2A and 2B, the sample holder 16 of the present embodiment includes a measurement light passage window for irradiating the sample with measurement light, and a sample spring for fixing the sample. Yes. The sample holder 16 is rotated by the sample rotating means about an axis that passes through the center of the measurement light passage window and is perpendicular to the sample. The sample holder 16 is provided with a reference line for defining the orientation (angular position) of the sample when the sample film is placed. This reference line is constituted by a completely flat abutting bar (FIG. 2A) or two pins (FIG. 2B). A reference side is also defined for the polarizing film as the sample, and the sample is placed on the holder so that this side coincides with the reference line of the sample holder (see FIGS. 3A and 3B). At this time, it is desirable that the transmission axis direction of the sample substantially coincides with the reference line of the sample holder 16, that is, the reference side of the polarizing film as the sample is substantially parallel to the transmission axis direction.

試料フィルムを試料ホルダに設置した後、以下に述べる手順に従い、試料フィルムの透過軸方位を決定する。図4(a)に示すように、基準偏光子の消光軸(透過軸と直交する軸)方位の角度位置をδとする。同図での大きな円は装置の試料回転手段等に設けられた角度目盛りを示している。また、図4(b)に示すように試料の基準辺(基準線)に対する透過軸の角度をαとする。この角度αが求めたい量である。また、課題の欄で述べたように、基準偏光子の消光軸の角度位置(例えば、装置に設けられた角度目盛りで測った位置)は正確にはわからないため、角度位置δも未知である。   After placing the sample film on the sample holder, the transmission axis direction of the sample film is determined according to the procedure described below. As shown in FIG. 4A, the angular position of the extinction axis (axis perpendicular to the transmission axis) direction of the reference polarizer is denoted by δ. The large circle in the figure shows the angle scale provided on the sample rotating means of the apparatus. Further, as shown in FIG. 4B, the angle of the transmission axis with respect to the reference side (reference line) of the sample is α. This angle α is an amount to be obtained. Further, as described in the section of the problem, since the angular position of the extinction axis of the reference polarizer (for example, the position measured by the angle scale provided in the apparatus) is not accurately known, the angular position δ is also unknown.

(1)表側測定工程
試料の一方の面を基準偏光子に相対向させた状態で、透過光強度が最小となる方位θ(試料の基準線の角度位置)を定める。この状態では、図5(a)に示すように、基準偏光子の消光軸と試料の透過軸が一致(基準偏光子の透過軸と試料の透過軸が直交)する。このときの試料の基準線の方位である表側方位角θは、上記の角度δ、αを用いて、θ=δ−αと表せる。
(2)裏側測定工程
次に試料を裏返しにしてセットし、表面測定工程で対向させた面と逆側の面を基準偏光子に対向させ、そのときの透過光強度が最小となる方位θを定める。つまり、試料への光の入射側の面を表側測定工程のときと逆にして測定を行う。図5(b)に示すように、試料を裏返したときの試料の透過軸は、試料ホルダの基準線に対して、表側のときの透過軸と対称な位置関係にある。そのため、裏返したときの基準線の方位(裏側方位角θ)は、上記の角度δ、αを用いて、θ=δ+αと表せる。
(3)軸方位算出工程
上記表側方位θと裏側方位θの中間位置θ=(θ+θ)/2を計算する。上記の式よりθ=δとなるため、方位θと方位θの中間位置θ=(θ+θ)/2を求めることにより、基準偏光子の消光軸方位を決定することができる。また、θ−θ=−α、θ−θ=αとなるから、これから試料ホルダの基準線(試料の基準辺)から測った試料の透過軸方位αを求めることができる。
(1) Front-side measurement step With one surface of the sample facing the reference polarizer, an azimuth θ + (an angular position of the reference line of the sample) that determines the minimum transmitted light intensity is determined. In this state, as shown in FIG. 5A, the extinction axis of the reference polarizer coincides with the transmission axis of the sample (the transmission axis of the reference polarizer and the transmission axis of the sample are orthogonal). The front-side azimuth angle θ + , which is the azimuth of the reference line of the sample at this time, can be expressed as θ + = δ−α using the angles δ and α described above.
(2) Back side measurement step Next, the sample is set upside down, and the surface opposite to the surface opposed in the surface measurement step is opposed to the reference polarizer, and the direction θ that minimizes the transmitted light intensity at that time Determine. That is, the measurement is performed with the surface on the light incident side of the sample opposite to that in the front side measurement step. As shown in FIG. 5B, the transmission axis of the sample when the sample is turned over is in a positional relationship symmetrical to the transmission axis at the front side with respect to the reference line of the sample holder. Therefore, the orientation (back side azimuth angle θ ) of the reference line when turned over can be expressed as θ = δ + α using the above angles δ and α.
(3) Axis orientation calculation step The intermediate position θ 0 = (θ + + θ ) / 2 between the front side orientation θ + and the back side orientation θ is calculated. Since θ 0 = δ from the above equation, the extinction axis direction of the reference polarizer can be determined by obtaining an intermediate position θ 0 = (θ + + θ ) / 2 between the direction θ + and the direction θ −. it can. Further, θ + -θ 0 = -α, θ - -θ 0 = α because made, it is possible to obtain a transmission axis azimuth alpha of the sample as measured from the future reference line of the sample holder (reference edge of the sample).

以上では測定対象となる試料を用いて基準偏光子の消光軸の方位を決めたが、基準偏光子の軸方位の測定に際しては基準偏光子の軸方位測定用に用意した標準試料を用いて決定してもよい。標準試料は一辺を完全に平坦にした基板に、その辺と消位軸がおおむね平行になるように偏光子を固定して構成する。この標準試料は裏返しても全く同等に使用できるように作る。この標準試料を用いて、上記の工程により基準偏光子の消光軸方位を定める。つまり、標準試料に対して表側測定工程と裏側測定工程とを行い、そこで求めた方位角θ、θにより基準偏光子の消光軸方位θを求める。次に試料となる偏光フィルムをステージに載せ、透過光が最小となる角度位置を求め、これをθobsとする。試料の透過軸方位はθobs−θと算出すればよい。
試料の偏光度あるいは消光率を算出するには上記のようにしてを試料の透過軸を定め、消光位での透過光強度を測定する。次いで試料を正確に90°回転し、そのときの透過光の強度を測定し、これら二つの強度から定法により偏光度あるいは消光率を算出すればよい。
In the above, the direction of the extinction axis of the reference polarizer was determined using the sample to be measured, but when measuring the axis direction of the reference polarizer, it was determined using the standard sample prepared for measuring the axis direction of the reference polarizer May be. The standard sample is configured by fixing a polarizer on a substrate whose one side is completely flat so that the side and the dislocation axis are almost parallel. This standard sample is prepared so that it can be used evenly even if it is turned over. Using this standard sample, the extinction axis direction of the reference polarizer is determined by the above process. That is, the front side measurement step and the back side measurement step are performed on the standard sample, and the extinction axis azimuth θ 0 of the reference polarizer is obtained from the azimuth angles θ + and θ obtained there. Next, a polarizing film as a sample is placed on the stage, an angular position where the transmitted light is minimized is obtained, and this is defined as θ obs . The transmission axis direction of the sample may be calculated as θ obs −θ 0 .
To calculate the degree of polarization or extinction rate of the sample, the transmission axis of the sample is determined as described above, and the transmitted light intensity at the extinction position is measured. Next, the sample is rotated exactly 90 °, the intensity of transmitted light at that time is measured, and the degree of polarization or the extinction ratio may be calculated from these two intensities by a conventional method.

また、図1に示した装置においてはコンピュータ22内の該記憶手段36に上記表側測定工程、裏側測定工程で測定した表側方位角θ、裏側方位角θを記憶する。そして軸方位演算手段26により、方位角θ、θを記憶手段36から読み出し、その中間位置θ=(θ+θ)/2を計算する。こうして求めた基準偏光子の消光軸方位θは記憶手段に記憶される。そして、上記測定した方位θ(もしくはθ)から試料の透過軸方位を求める。また、基準偏光子の消光軸方位を標準試料にて決定したときは、あらたに試料の透過軸方位θobsを測定し、記憶しておいた基準偏光子の消光軸方位θにより試料の消光軸方位を算出する。
以上のように試料(もしくは標準試料)を表と裏の両方から消光方位を定めるという簡単な方法により、論理的厳密さをもって、その消光軸方位を定めることができるようになった。
In the apparatus shown in FIG. 1, the storage means 36 in the computer 22 stores the front side azimuth angle θ + and the back side azimuth angle θ measured in the front side measurement step and the back side measurement step. Then, the azimuth angles θ + and θ are read out from the storage means 36 by the axis azimuth calculating means 26 and the intermediate position θ 0 = (θ + + θ ) / 2 is calculated. The extinction axis direction θ 0 of the reference polarizer thus obtained is stored in the storage means. Then, the transmission axis azimuth of the sample is obtained from the measured azimuth θ + (or θ ). When the extinction axis direction of the reference polarizer is determined for the standard sample, the transmission axis direction θ obs of the sample is newly measured, and the extinction axis direction θ 0 of the stored reference polarizer is used to extinguish the sample. Calculate the axial direction.
As described above, the extinction axis direction of a sample (or a standard sample) can be determined with logical precision by a simple method of determining the extinction direction from both the front and back sides.

最小透過光強度方位の決定機構
次に透過光強度の最小位置を決める好適な機構について説明する。
偏光フィルムや位相差フィルムの軸方向を決定しようとする場合、透過する光の強度は装置側の基準偏光子の軸と、偏光もしくは位相差フィルムの軸の間の角θの倍角2θの余弦(1−cos2θ)/2に比例し、消光位(θ=0)の位置で角度に対する変化率がゼロとなる。そのため、これをヒトの目で正確に定めることは難しく、最高度に熟練した人で2/100°、普通の人では1/10°が限界とされている。また、光検知器を用いた場合でも透過光強度が真に最小となる位置を決めるのは難しい。そのため、偏光フィルムの偏光度(あるいは消光度)や軸方位、位相フィルムの軸方位に対する測定の正確さは十分でなかった。
It explained suitable mechanism for determining the minimum position determination mechanism then the transmitted light intensity of the minimum transmission light intensity orientation.
When the axial direction of the polarizing film or retardation film is to be determined, the intensity of transmitted light is the cosine of the double angle 2θ of the angle θ between the axis of the reference polarizer on the apparatus side and the axis of the polarizing or retardation film ( The rate of change with respect to the angle is zero at the position of the extinction position (θ = 0) in proportion to 1−cos 2θ) / 2. For this reason, it is difficult to accurately determine this with the human eye, and the limit is 2/100 ° for the most skilled person and 1/10 ° for the ordinary person. In addition, even when a photodetector is used, it is difficult to determine a position where the transmitted light intensity is truly minimized. Therefore, the accuracy of measurement with respect to the polarization degree (or extinction degree) and axial orientation of the polarizing film and the axial orientation of the phase film is not sufficient.

そのため、図1の実施形態においては、処理手段24は回転ステージ18により試料を回転させて、透過光強度がおおむね最小となる仮の方位を決定する仮方位決定部38と、仮方位近傍の複数の角度位置で透過光強度を測定し、測定した透過光強度をそのときの角度位置と関連付けて記憶する仮方位近傍測定部40と、複数の角度位置での透過光強度を、該角度位置の二次関数でフィッティングし、該二次関数の頂点位置を算出する算出部42とを備える。算出された頂点位置は記憶手段36に記憶される。このように、透過光強度が最小となる方位は算出部42により算出された頂点位置として求まることとなる。   Therefore, in the embodiment of FIG. 1, the processing means 24 rotates the sample by the rotary stage 18, and determines a provisional orientation determining unit 38 that determines a provisional orientation in which the transmitted light intensity is generally the minimum, and a plurality of the vicinity of the provisional orientation. Measuring the transmitted light intensity at the angular position and storing the measured transmitted light intensity in association with the angular position at that time, and the transmitted light intensity at a plurality of angular positions. A calculation unit 42 that performs fitting with a quadratic function and calculates a vertex position of the quadratic function. The calculated vertex position is stored in the storage means 36. Thus, the direction in which the transmitted light intensity is minimum is obtained as the vertex position calculated by the calculation unit 42.

仮方位決定部38では回転ステージを制御して試料を回転させ、光検出手段による検出信号を監視し、透過光強度がおおよそ最小の位置となる方位を決定し、仮の方位とする。
仮方位近傍測定部40では試料を回転させて仮方位位置近傍の複数の角度位置で透過光の強度を測定し、それらの透過光強度と、そのときの試料の角度位置を関連付け記憶手段36に記憶する。例えば、仮の方位から正負の方向(反時計回り、時計周り)に適当な角度間隔(例えば、0.1°間隔)で、複数の角度位置での透過光強度を測定する。
算出部では図6に示すように、得られた複数の角度位置での透過光強度に対し、角度位置の2次関数として、最小二乗法等の方法でフィッティングする。図6では0.1°間隔で11点の角度位置における透過光強度を測定した例を示した。ここで、横軸が角度位置、縦軸が透過光強度であり、仮の方位を0°の位置とした。このようにして得られた2次関数に対し頂点座標を求める。この頂点座標が消光位の正確な角度(透過光強度が最小になる方位角)である。
The temporary azimuth determining unit 38 controls the rotation stage to rotate the sample, monitors the detection signal from the light detection means, determines the azimuth at which the transmitted light intensity is approximately the minimum, and sets it as the temporary azimuth.
The temporary azimuth vicinity measuring unit 40 measures the intensity of transmitted light at a plurality of angular positions near the temporary azimuth position by rotating the sample, and associates the transmitted light intensity with the angular position of the sample at that time in the storage means 36. Remember. For example, the transmitted light intensity is measured at a plurality of angular positions at appropriate angular intervals (for example, intervals of 0.1 °) in the positive and negative directions (counterclockwise and clockwise) from the temporary orientation.
As shown in FIG. 6, the calculation unit fits the obtained transmitted light intensity at a plurality of angular positions as a quadratic function of the angular position by a method such as a least square method. FIG. 6 shows an example in which the transmitted light intensity is measured at 11 angular positions at intervals of 0.1 °. Here, the horizontal axis is the angular position, the vertical axis is the transmitted light intensity, and the temporary orientation is the 0 ° position. Vertex coordinates are obtained for the quadratic function thus obtained. This vertex coordinate is the exact angle of the extinction position (the azimuth angle at which the transmitted light intensity is minimized).

また、本実施形態の方法においても、透過光強度の最小位置の決定を上記に示したような方法で行うことが好適である。つまり、透過光の強度が略最小となる角度を仮の方位とし、該仮方位近傍の複数の角度位置における透過光強度を測定する。次に求めた複数の角度位置での透過光強度を、角度位置の2次関数としてフィッティングし、該二次関数の頂点座標を算出する。この頂点座標が透過光強度が最小となる正確な位置である。
このように、透過光強度の最小位置の近傍を2次関数で近似し、その2次関数の頂点の位置を算出しているため、角度送りの正確さレベル、あるいはそれ以上のレベルで、透過光強度の最小位置を定めることができる。
Also in the method of the present embodiment, it is preferable to determine the minimum position of transmitted light intensity by the method as described above. In other words, the angle at which the transmitted light intensity is substantially minimum is set as a temporary orientation, and the transmitted light intensity is measured at a plurality of angular positions near the temporary orientation. Next, the obtained transmitted light intensities at a plurality of angular positions are fitted as a quadratic function of the angular position, and vertex coordinates of the quadratic function are calculated. This vertex coordinate is an accurate position where the transmitted light intensity is minimum.
In this way, the vicinity of the minimum position of the transmitted light intensity is approximated by a quadratic function, and the position of the vertex of the quadratic function is calculated, so that transmission at an accuracy level of angular feed or higher A minimum position of light intensity can be determined.

基準偏光子の配置
基準偏光子に付着したゴミや傷による散乱のために出射光に非偏光成分が含まれることがある。そのため、基準偏光子を光検出手段から離して設置することにより、非偏光成分を含んだ散乱光が検出されないようにすることが好適である。つまり、図7(a),(b)に示すように、基準偏光子を光検出手段から離して設置するときの距離Lを、偏光子の位置から積分球/検知器の受光部位を覗いたときの立体角が1×10−2πsr以下となるようにすることが好適である。基準偏光子をこのように光検出手段から離しておくことで、上記の散乱光が検出されない。ただし、ここで受光部位とは、光検出手段が積分球と検知器からなっている場合、積分球の入射開口のことを指す。また、検知器のみで構成されている場合、検知器自身の受光面のことを指す。
また、このとき試料の位置は、図7(a)に示すように光検出手段に近づけて配置しておいても、図7(b)のように基準偏光子に近づけて配置しておいてもよい。図7(a)においては、試料からの全透過光を評価しており、図7(b)においては試料からの直線透過光のみを評価している。
Arrangement of Reference Polarizer There may be a case where a non-polarized component is included in the emitted light due to scattering due to dust or scratches attached to the reference polarizer. For this reason, it is preferable to prevent the scattered light including the non-polarized component from being detected by disposing the reference polarizer away from the light detection means. That is, as shown in FIGS. 7 (a) and 7 (b), the distance L when the reference polarizer is placed away from the light detection means is looked at from the position of the polarizer to the light receiving portion of the integrating sphere / detector. It is preferable that the solid angle is 1 × 10 −2 πsr or less. By separating the reference polarizer from the light detection means in this way, the scattered light is not detected. However, here, the light receiving portion refers to the incident aperture of the integrating sphere when the light detection means is composed of an integrating sphere and a detector. Moreover, when comprised only with a detector, it points out the light-receiving surface of detector itself.
At this time, the position of the sample is arranged close to the light detection means as shown in FIG. 7 (a) or close to the reference polarizer as shown in FIG. 7 (b). Also good. In FIG. 7A, the total transmitted light from the sample is evaluated, and in FIG. 7B, only the linear transmitted light from the sample is evaluated.

位相差素子の軸方位の測定方法、装置
次に試料として位相差フィルム(直線移相素子)を測定する場合の実施形態の説明を行う。図8は本発明の第2実施形態にかかる軸方位測定装置の概略構成図である。軸方位測定装置110は、光源128と分光器130とで構成された光照射手段112と、第1基準偏光子114aと、試料を保持するための試料ホルダ116と、試料を光軸を中心軸として回転させる試料回転手段118aと、第2基準偏光子114bと、第2基準偏光子114bを光軸を中心軸として回転させる偏光子回転手段118bと、積分球132と検知器134とで構成された光検出手段120と、各手段の制御、データの処理などを行うコンピュータ122とを備える。
光照射手段112からの光は第1基準偏光子114aを通り直線偏光とされ、試料ホルダ116に固定された試料に照射される。試料ホルダ116は第1基準偏光子114aと第2基準偏光子114bとの間に設置されており、試料からの透過光は第2基準偏光子114bを通り、光検出手段120にて検出される。ここで、光検出手段120は検知器134の受光面での位置ムラや偏光特性の影響を除くため、積分球132を備えることが望ましいが、必須というわけではない。また、本実施形態では、偏光子回転手段118bは第2基準偏光子114bを回転させるように構成したが、第1基準偏光子114aを回転させるようにしてもよい。
A method for measuring the axial direction of a phase difference element, an apparatus, and an embodiment in the case of measuring a phase difference film (linear phase shift element) as a sample will now be described. FIG. 8 is a schematic configuration diagram of an axial orientation measuring apparatus according to the second embodiment of the present invention. The axial azimuth measuring apparatus 110 includes a light irradiation means 112 including a light source 128 and a spectroscope 130, a first reference polarizer 114a, a sample holder 116 for holding a sample, and a sample centered on the optical axis. Sample rotating means 118a, second reference polarizer 114b, polarizer rotating means 118b for rotating the second reference polarizer 114b around the optical axis, integrating sphere 132 and detector 134. A light detection means 120 and a computer 122 for controlling each means, processing data, and the like.
The light from the light irradiation means 112 passes through the first reference polarizer 114 a to be linearly polarized light, and is irradiated onto the sample fixed to the sample holder 116. The sample holder 116 is installed between the first reference polarizer 114a and the second reference polarizer 114b, and the transmitted light from the sample passes through the second reference polarizer 114b and is detected by the light detection means 120. . Here, it is desirable that the light detection unit 120 includes the integrating sphere 132 in order to eliminate the influence of the position unevenness on the light receiving surface of the detector 134 and the influence of polarization characteristics, but this is not essential. In the present embodiment, the polarizer rotating means 118b is configured to rotate the second reference polarizer 114b. However, the first reference polarizer 114a may be rotated.

試料ホルダ116は図2(a),(b)で示したものと同様なものを用いればよい。また、試料フィルムにはやはり基準となる辺を定め、この辺がホルダの基準線に完全に一致するように試料をホルダに載せる(図3(a),(b)参照)。位相差フィルムは2つの直交する中性軸(進相軸、遅相軸)を持っており、どちらか一方を上記基準辺と概ね平行にとっておくことが望ましい。
位相差フィルムの測定に先立って、偏光子回転手段118bによって第1基準偏光子114aと第2基準偏光子114bとをクロスニコルの状態にしておく。つまり、試料未設置の状態では透過光の強度が最小となるように設置しておく。
The sample holder 116 may be the same as that shown in FIGS. 2 (a) and 2 (b). Also, a reference side is defined on the sample film, and the sample is placed on the holder so that this side completely coincides with the reference line of the holder (see FIGS. 3A and 3B). The retardation film has two orthogonal neutral axes (fast axis and slow axis), and it is desirable to keep one of them substantially parallel to the reference side.
Prior to the measurement of the retardation film, the first reference polarizer 114a and the second reference polarizer 114b are set in a crossed Nicols state by the polarizer rotating means 118b. That is, it is installed so that the intensity of transmitted light is minimized when the sample is not installed.

その後、試料を第1基準偏光子114aと第2基準偏光子114bとの間に設置し、試料回転手段118aによって試料の方位を変更し、透過光強度が最小になる方位を測定する。まず、試料の一方の面を第1基準偏光子114aに対向させたときの透過光強度が最小になる方位角を測定し、この表側方位角θをコンピュータ122内の記憶手段136に記憶しておく。また、試料を裏返し、試料の前記第1の基準偏光子に対向する面を他方の面にして、透過光強度が最小になる方位角を測定する。この裏側方位角θも記憶手段136に記憶しておく。そして、コンピュータ内122の軸方位演算手段126では、表側方位角θと裏側方位角θとに基いて、試料の中性軸方位を演算する。 Thereafter, the sample is placed between the first reference polarizer 114a and the second reference polarizer 114b, the sample orientation is changed by the sample rotating means 118a, and the direction at which the transmitted light intensity is minimized is measured. First, the azimuth angle that minimizes the transmitted light intensity when one surface of the sample is opposed to the first reference polarizer 114 a is measured, and this front side azimuth angle θ + is stored in the storage means 136 in the computer 122. Keep it. Further, the sample is turned over, and the surface facing the first reference polarizer of the sample is set as the other surface, and the azimuth angle at which the transmitted light intensity is minimized is measured. This back side azimuth angle θ is also stored in the storage means 136. Then, the axial direction calculation means 126 in the computer 122 calculates the neutral axis direction of the sample based on the front side azimuth angle θ + and the back side azimuth angle θ .

また、本実施形態にかかる軸方位測定方法は上記のような装置を用いて試料の軸方位を測定するものである。つまり、クロスニコルに設置された第1及び第2の基準偏光子の間に、試料としての直線移相子を設置し、この試料を光軸を中心として回転させることにより、前記第1基準偏光子、試料、第2基準偏光子を透過した光の強度が最小となる方位を測定し、その結果から試料の軸方位を決定する。そして、試料の一方の面を第1基準偏光子に対向させ、透過光強度が最小になる方位角θを測定する表側測定工程と、試料を裏返し、前記試料の第1基準偏光子に対向する面を他方の面(表側測定工程のときと逆の面)にしたときの透過光強度が最小になる方位角θを測定する裏側測定工程と、方位角θと方位角θとを基に前記試料の中性軸方位を算出する算出工程と、を含むことを特徴とする。
以上が本実施形態の装置および方法の概略であり、以下により詳細に説明を行う。
Moreover, the axial direction measuring method according to the present embodiment measures the axial direction of the sample using the above-described apparatus. That is, by installing a linear phase shifter as a sample between the first and second reference polarizers installed in crossed Nicols and rotating the sample around the optical axis, the first reference polarization The direction in which the intensity of the light transmitted through the optical element, the sample, and the second reference polarizer is minimized is measured, and the axial direction of the sample is determined from the result. Then, one surface of the sample is made to face the first reference polarizer, and the front side measurement step for measuring the azimuth angle θ + at which the transmitted light intensity is minimized, and the sample is turned over to face the first reference polarizer of the sample and back measurement step of measuring an azimuth angle theta + azimuth and theta - - transmitted light intensity when the (opposite surface when the front side measuring step) and faces the other surface azimuthal theta becomes minimum And calculating a neutral axis orientation of the sample based on the above.
The above is the outline of the apparatus and method of the present embodiment, which will be described in more detail below.

(1)まず第1の基準偏光子と第2の基準偏光子とをクロスニコルの状態する。試料未設置の状態で、第2の基準偏光子を回転させ、透過光強度が最小になるような角度位置を決めればよい。このとき、図9(a)に示すように第1基準偏光子の消光軸と、第2基準偏光子の消光軸とは直交している。ここで、第1基準偏光子の消光軸方位をδとする。ただし、この消光軸方位δは未知である。
(2)表側測定工程
試料となる位相差フィルムは、図9(b)に示すように、進相軸および遅相軸の互いに直交する軸を持ち、これらを合わせて中性軸と呼ぶ。また、試料の一辺を基準辺とし、この基準辺に対する中性軸の方位角を求めることが測定の目的である。ここで、試料の2つの軸のうち、一方(ここでは、基準線とのなす角が小さい方)の軸の基準線との成す角をαとする。このαが求めたい量である。
試料となる位相差フィルムは第1基準偏光子と第2基準偏光子との間に設置される。位相差フィルムの中性軸方位と第1(もしくは第2)偏光子の偏光方向が完全に一致していないと、位相差フィルムの与える位相差によって、光が再びこの系を透過するようになる。そのため、試料を光軸を中心として回転させ、透過軸強度が最小となる方位を求めることにより、試料の中性軸と第1および第2基準偏光子の消光軸とが一致する方位(表側方位角θ)を測定する。試料の方位は、基準線(基準辺)の向きとして定義される。図10(a)に示すように方位θは上記の角度δ、αを用いて、θ=δ−αと表せる。ここで、図10では煩雑さを避けるため、第1基準偏光子の消光軸、試料の中性軸のうちの一方のみを示している。
(1) First, the first reference polarizer and the second reference polarizer are placed in a crossed Nicols state. The second reference polarizer may be rotated while the sample is not installed, and an angular position that minimizes the transmitted light intensity may be determined. At this time, as shown in FIG. 9A, the extinction axis of the first reference polarizer and the extinction axis of the second reference polarizer are orthogonal to each other. Here, the extinction axis direction of the first reference polarizer is δ. However, the extinction axis direction δ is unknown.
(2) Front-side measurement step As shown in FIG. 9 (b), the retardation film as a sample has axes that are orthogonal to the fast axis and the slow axis, which are collectively referred to as a neutral axis. The purpose of the measurement is to determine one side of the sample as a reference side and obtain the azimuth angle of the neutral axis with respect to the reference side. Here, an angle formed with the reference line of one of the two axes of the sample (here, the smaller angle formed with the reference line) is defined as α. This α is the amount to be obtained.
A retardation film as a sample is placed between the first reference polarizer and the second reference polarizer. If the neutral axis orientation of the retardation film and the polarization direction of the first (or second) polarizer do not completely match, the light is transmitted again through this system due to the retardation provided by the retardation film. . Therefore, by rotating the sample about the optical axis and obtaining the direction that minimizes the transmission axis intensity, the direction in which the neutral axis of the sample coincides with the extinction axes of the first and second reference polarizers (front side direction) Measure the angle θ + ). The orientation of the sample is defined as the direction of the reference line (reference side). As shown in FIG. 10A, the azimuth θ + can be expressed as θ + = δ−α using the angles δ and α. Here, in FIG. 10, only one of the extinction axis of the first reference polarizer and the neutral axis of the sample is shown to avoid complexity.

(3)裏側測定工程
次に試料を裏返しにして第1および第2の基準偏光子の間に設置し、そのときの透過光強度が最小となる方位θを定める。すると、試料の基準偏光子に相対向する面が表側測定工程とは逆になる。すなわち、表側測定工程で第1の基準偏光子に対向していた面が、裏側測定工程では第2の基準偏光子に対向し、表側測定工程で第2の基準偏光子に対向していた面が、裏側測定構成では第1の基準偏光子に対向することになる。言い換えると、試料への光の入射側の面を、表側測定工程と裏側測定工程で変えて測定する。図10(b)に示すように、試料を裏返したときの試料の軸は、試料の基準線に対して表側の透過軸と対称な位置関係にあるため、裏側方位角θは、上記の角度δ、αを用いて、θ=δ+αと表せる。
(4)軸方位算出工程
上記表側方位角θと裏側方位角θの中間位置θ=(θ+θ)/2を計算する。上記の式よりθ=δとなるため、方位θと方位θの中間位置θ=(θ+θ)/2を求めることにより、基準偏光子の軸方位δを決定することができる。また、θ−θ=−α、θ−θ=αとなるから、これから試料ホルダの基準線から測った試料の軸方位αを求めることができる。
(3) Back side measurement step Next, the sample is turned over and placed between the first and second reference polarizers, and the orientation θ − at which the transmitted light intensity is minimized is determined. Then, the surface opposite to the reference polarizer of the sample is opposite to the front side measurement step. That is, the surface facing the first reference polarizer in the front-side measurement step faces the second reference polarizer in the back-side measurement step, and faces the second reference polarizer in the front-side measurement step. However, in the back side measurement configuration, it faces the first reference polarizer. In other words, the surface on the light incident side of the sample is measured by changing the front side measurement process and the back side measurement process. As shown in FIG. 10 (b), the axis of the sample when turned over samples, due to the front side of the transmission axis symmetrical positional relationship with respect to the reference line of the sample, back azimuth theta - the above Using the angles δ and α, it can be expressed as θ = δ + α.
(4) Axial azimuth calculation step The intermediate position θ 0 = (θ + + θ ) / 2 between the front azimuth angle θ + and the back azimuth angle θ is calculated. Since θ 0 = δ from the above equation, the axial direction δ of the reference polarizer can be determined by obtaining an intermediate position θ 0 = (θ + + θ ) / 2 between the direction θ + and the direction θ −. it can. Further, θ + -θ 0 = -α, θ - because - [theta] 0 = the alpha, can be determined axial orientation alpha samples measured therefrom from the reference line of the sample holder.

また、以上では測定対象となる試料を用いて、基準偏光子の消光軸の方位を決定したが、第1(第2)基準偏光子の軸方位の測定に際しては、基準偏光子の軸方位測定用に用意した標準試料を用いて決定してもよい。標準試料は一辺を完全に平坦にした基板に、その辺に中性軸(の一方)をおおむね一致させるように位相差フィルムを固定して構成する。この標準試料は裏返しても全く同等に使用できるように作る。この標準試料を試料ホルダに設置し、上記の工程により基準偏光子の消光軸方位を定める。つまり、標準試料に対して表側測定工程と裏側測定工程とを行い、そこで求めた方位角θ、θにより基準偏光子の消光軸方位θ(=δ)を求める。次に測定対象となる位相差フィルムに対して、試料の基準辺をホルダの基準線に正確にあわせて取り付け、同様にして透過光強度が最小となる位置(角度θobs)を求める。測定試料の軸方位と基準辺とがなす角度θは、θ=θobs−θと算出する。
以上のように試料(もしくは標準試料)を表と裏の両方から消光方位を定めるという簡単な方法により、論理的厳密さをもって、その中性軸方位を定めることができるようになった。
In the above description, the direction of the extinction axis of the reference polarizer is determined using the sample to be measured. However, when measuring the axis direction of the first (second) reference polarizer, the axis orientation of the reference polarizer is measured. You may determine using the standard sample prepared for. The standard sample is configured by fixing a retardation film to a substrate having one side completely flat, so that the neutral axis (one of the sides) substantially coincides with the side. This standard sample is prepared so that it can be used evenly even if it is turned over. This standard sample is set in the sample holder, and the extinction axis direction of the reference polarizer is determined by the above-described process. That is, the front side measurement process and the back side measurement process are performed on the standard sample, and the extinction axis azimuth θ 0 (= δ) of the reference polarizer is obtained from the azimuth angles θ + and θ obtained there. Next, with respect to the retardation film to be measured, the reference side of the sample is attached so as to be accurately aligned with the reference line of the holder, and the position (angle θ obs ) at which the transmitted light intensity is minimized is obtained in the same manner. The angle θ formed between the axial direction of the measurement sample and the reference side is calculated as θ = θ obs −θ 0 .
As described above, the neutral axis direction of a sample (or standard sample) can be determined with logical precision by a simple method of determining the extinction direction from both the front and back sides.

透過光強度の最小位置決定機構
また、図8の実施形態においても、図1の実施形態と同様に、透過光強度の最小位置を決定するための処理手段124を備えることが好適である。すなわち、処理手段124は、試料もしくは偏光子回転手段118a、118bにより試料もしくは第2基準偏光子114bを回転させて、透過光強度が略最小となる仮の方位を決定する仮方位決定部138と、仮方位近傍の複数の角度位置で透過光強度を測定し、測定した透過光強度をそのときの角度位置と関連付けて記憶手段136に記憶する仮方位近傍測定部140と、複数の角度位置での透過光強度を、該角度位置の二次関数でフィッティングし(図6参照)、該二次関数の頂点位置を算出する算出部142とを備え、算出部142により算出された頂点位置から透過光強度が真に最小となる方位を求める。
すなわち、偏光子回転手段118bにより第2基準偏光子114bを回転させてこれらをクロスニコルの状態にするときや、第1及び第2基準偏光子をクロスニコルの状態にして試料回転手段118により試料を回転させて測定を行うときに、上記の処理手段124によって透過光強度の最小位置を求める。
Mechanism for Determining the Minimum Position of Transmitted Light Intensity Also in the embodiment of FIG. 8, it is preferable that the processing means 124 for determining the minimum position of the transmitted light intensity is provided as in the embodiment of FIG. That is, the processing unit 124 rotates the sample or the second reference polarizer 114b by the sample or polarizer rotating units 118a and 118b, and determines a temporary direction determining unit 138 that determines a temporary direction at which the transmitted light intensity is substantially minimum. The transmitted light intensity is measured at a plurality of angular positions near the temporary orientation, and the measured transmitted light intensity is stored in the storage unit 136 in association with the angular position at that time, and at the plurality of angular positions. Is fitted with a quadratic function of the angular position (see FIG. 6), and is calculated from a vertex position calculated by the calculation unit 142. The direction in which the light intensity is truly minimized is obtained.
That is, when the second reference polarizer 114b is rotated by the polarizer rotating means 118b to bring them into the crossed Nicols state, or the first and second reference polarizers are set in the crossed Nicols state, and the sample rotating means 118 is used for the sample. When the measurement is performed with the rotation, the minimum position of the transmitted light intensity is obtained by the processing means 124 described above.

また本実施形態の方法においても、透過光強度の最小位置の決定は次のような方法で行うことが好適である。まず、透過光の強度が略最小となる角度を仮の方位とし、該仮方位近傍の複数の角度位置における透過光強度を測定する。次に求めた複数の角度位置での透過光強度を角度位置の2次関数としてフィッティング(図6参照)し、該二次関数の頂点座標を算出する。この頂点座標が透過光強度が最小となる正確な位置である。
このように、透過光強度の最小位置の近傍を2次関数で近似し、その2次関数の頂点の位置を算出しているため、角度送りの正確さレベル、あるいはそれ以上のレベルで、透過光強度の最小位置を定めることができる。
Also in the method of the present embodiment, it is preferable to determine the minimum position of transmitted light intensity by the following method. First, an angle at which the intensity of transmitted light is substantially minimum is taken as a temporary orientation, and the transmitted light intensity is measured at a plurality of angular positions near the temporary orientation. Next, the transmitted light intensity at a plurality of angular positions obtained is fitted as a quadratic function of the angular position (see FIG. 6), and the vertex coordinates of the quadratic function are calculated. This vertex coordinate is an accurate position where the transmitted light intensity is minimum.
In this way, the vicinity of the minimum position of the transmitted light intensity is approximated by a quadratic function, and the position of the vertex of the quadratic function is calculated, so that transmission at an accuracy level of angular feed or higher A minimum position of light intensity can be determined.

基準偏光子の配置位置
図11(a),(b)に示すように、第2の実施形態においても第1基準偏光子を光検出手段から離して設置することが好適である。具体的には、第1基準偏光子114aと光検出手段120との距離Lを、第1基準偏光子114aの位置から光検出手段120の受光部位を覗いたときの立体角が少なくとも1×10−2πsr以下となるようにとることが好適である。第1基準偏光子114aをこのように光検出手段120から離しておくことで、偏光子の傷や付着したゴミによる散乱光が検出されない。このとき第2基準偏光子114bは図11(a)に示すように光検出手段に近づけて配置しておいても、図11(b)のように第1基準偏光子114bに近づけて配置しておいてもよい。また、試料の位置は特に限定されない。ただし、ここで光検出手段の受光部位とは、光検出手段が積分球と検知器からなっている場合、積分球の入射開口のことを指す。また、検知器のみで構成されている場合、検知器自身の受光面のことを指す。
Position of Reference Polarizer As shown in FIGS. 11A and 11B, it is preferable that the first reference polarizer is placed away from the light detection means in the second embodiment as well. Specifically, the distance L between the first reference polarizer 114a and the light detection means 120 is such that the solid angle when looking at the light receiving part of the light detection means 120 from the position of the first reference polarizer 114a is at least 1 × 10. it is preferable to take such a -2 Paisr less. By separating the first reference polarizer 114a from the light detection means 120 in this manner, light scattered by the scratches on the polarizer and attached dust is not detected. At this time, even if the second reference polarizer 114b is arranged close to the light detection means as shown in FIG. 11A, it is arranged close to the first reference polarizer 114b as shown in FIG. 11B. You may keep it. Further, the position of the sample is not particularly limited. However, here, the light receiving portion of the light detecting means refers to an incident aperture of the integrating sphere when the light detecting means includes an integrating sphere and a detector. Moreover, when comprised only with a detector, it points out the light-receiving surface of detector itself.

本発明にかかる第1の実施形態の軸方位測定装置の概略構成図1 is a schematic configuration diagram of an axial orientation measuring apparatus according to a first embodiment of the present invention. 本実施形態にかかる試料ホルダの一例Example of sample holder according to this embodiment 試料ホルダに試料を設置したときの説明図Explanatory drawing when a sample is placed in the sample holder 基準偏光子の消光軸方位、基準辺に対する試料の透過軸方位を示す図Diagram showing the extinction axis direction of the reference polarizer and the transmission axis direction of the sample relative to the reference side 本発明にかかる第1実施形態の軸方位測定方法の説明図Explanatory drawing of the axial direction measuring method of 1st Embodiment concerning this invention. 透過光強度の最小角度位置を求める方法の説明図Explanatory drawing of the method for obtaining the minimum angular position of transmitted light intensity 第1実施形態における基準偏光子の配置位置を示す説明図Explanatory drawing which shows the arrangement position of the reference | standard polarizer in 1st Embodiment. 本発明の第2の実施形態の軸方位測定装置の概略構成図Schematic configuration diagram of an axial orientation measuring apparatus according to a second embodiment of the present invention 第2の実施形態における第1(第2)基準偏光子の消光軸、基準辺に対する試料の中性軸方位を示す図The figure which shows the neutral-axis direction of the sample with respect to the extinction axis of the 1st (2nd) reference | standard polarizer in 2nd Embodiment, and a reference | standard edge | side 第2実施形態にかかる軸方位測定方法の説明図Explanatory drawing of the axial direction measuring method concerning 2nd Embodiment 第2実施形態における第1(第2)基準偏光子の配置位置を示す説明図Explanatory drawing which shows the arrangement position of the 1st (2nd) reference | standard polarizer in 2nd Embodiment.

符号の説明Explanation of symbols

10 軸方位測定装置
12 光照射手段
14 基準偏光子
16 試料ホルダ
18 試料回転手段
20 光検出手段
22 コンピュータ
24 処理手段
26 軸方位演算手段
DESCRIPTION OF SYMBOLS 10 Axis direction measuring apparatus 12 Light irradiation means 14 Reference | standard polarizer 16 Sample holder 18 Sample rotation means 20 Photodetection means 22 Computer 24 Processing means 26 Axial direction calculation means

Claims (10)

直線偏光素子を試料として、該試料の透過軸方位を決定する軸方位測定装置において、
光照射手段と、
該光照射手段からの光を直線偏光として試料に照射する基準偏光子と、
該基準偏光子に対向して設置される試料を、光軸を中心として回転し試料の方位を変更する試料回転手段と、
前記試料を透過した光を検知する光検出手段と、
前記試料回転手段により試料を回転させたときの透過光強度が最小になる試料の方位角に基いて、試料の透過軸方位を演算する軸方位演算手段と、を備え、
前記軸方位演算手段は、前記試料の一方の面を前記基準偏光子に対向させたときの透過光強度が最小となる方位角θと、前記試料を裏返して試料の基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる方位角θとに基いて、試料の透過軸方位を演算することを特徴とする軸方位測定装置。
In an axial direction measuring apparatus that determines a transmission axis direction of a linearly polarizing element as a sample,
Light irradiation means;
A reference polarizer that irradiates the sample with light from the light irradiation means as linearly polarized light; and
A sample rotating means for rotating the sample placed opposite to the reference polarizer around the optical axis to change the direction of the sample;
A light detecting means for detecting light transmitted through the sample;
Axis direction calculating means for calculating the transmission axis direction of the sample based on the azimuth angle of the sample at which the transmitted light intensity is minimized when the sample is rotated by the sample rotating means,
The axial azimuth calculating means has an azimuth angle θ + that minimizes the transmitted light intensity when one surface of the sample is opposed to the reference polarizer, and the sample is turned over to face the reference polarizer of the sample. An axial azimuth measuring apparatus that calculates the transmission axis azimuth of a sample based on an azimuth angle θ that minimizes the transmitted light intensity when the surface is the other surface.
請求項1記載の軸方位測定装置において、
前記演算手段は、前記基準偏光子の消光軸方位を方位角θと方位角θの中間位置θ=(θ+θ)/2として求め、該方位角θを基に試料の透過軸方位を求めることを特徴とする軸方位測定装置。
In the axial direction measuring apparatus according to claim 1,
The arithmetic means obtains the extinction axis azimuth of the reference polarizer as an intermediate position θ 0 = (θ + + θ ) / 2 between the azimuth angle θ + and the azimuth angle θ , and based on the azimuth angle θ 0 An axial orientation measuring apparatus for obtaining a transmission axis orientation.
請求項1または2に記載の軸方位測定装置において、
前記試料回転手段によって試料を回転し、透過光強度が最小になる試料の方位を求める処理手段を備え、該処理手段は、
前記試料回転手段により試料を回転させて、透過光強度がおおむね最小となる仮の方位を決定する仮方位決定部と、
前記仮方位近傍の複数の角度位置で透過光強度を測定し、測定した透過光強度をそのときの角度位置と関連付けて記憶する仮方位近傍測定部と、
前記記憶した透過光強度を角度位置の二次関数でフィッティングし、該二次関数の頂点位置を算出する算出部とを備え、
前記算出部により算出された頂点位置から透過光強度が真に最小となる方位を求めることを特徴とする軸方位測定装置。
In the axial direction measuring apparatus according to claim 1 or 2,
A processing means for rotating the sample by the sample rotating means and obtaining the orientation of the sample that minimizes the transmitted light intensity, the processing means,
A temporary orientation determining unit that rotates the sample by the sample rotating means to determine a temporary orientation in which the transmitted light intensity is substantially minimized;
Measuring the transmitted light intensity at a plurality of angular positions near the temporary orientation, and storing the measured transmitted light intensity in association with the angular position at that time; and
Fitting the stored transmitted light intensity with a quadratic function of an angular position, and calculating a vertex position of the quadratic function,
An axial azimuth measuring apparatus characterized in that an azimuth in which transmitted light intensity is truly minimum is obtained from a vertex position calculated by the calculating unit.
請求項1から3に記載の軸方位測定装置において、
前記基準偏光子の位置から前記光検出手段の受光部位を覗いたときの立体角が1×10−2πsr以下となるように、前記基準偏光子が光検出手段から離されて配置されていることを特徴とする軸方位測定装置。
In the axial direction measuring apparatus according to claim 1,
The reference polarizer is arranged away from the light detection means so that the solid angle when looking into the light receiving part of the light detection means from the position of the reference polarizer is 1 × 10 −2 πsr or less. An axial bearing measuring device characterized by the above.
基準偏光子と、試料としての直線偏光素子とを相対向させ、前記基準偏光子に対する前記試料の方位を変更して、前記基準偏光子および前記試料を透過した光の強度が最小となる方位を測定することで、試料の透過軸方位を決定する軸方位測定方法において、
前記試料の一方の面を基準偏光子に対向させ、透過光強度が最小になる表側方位角θを測定する表側測定工程と、
前記試料を裏返して、試料の基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θを測定する裏側測定工程と、
前記表側方位角θと前記裏側方位角θとに基いて試料の透過軸方位を算出する算出工程と、を含むことを特徴とする軸方位測定方法。
A reference polarizer and a linear polarizing element as a sample are opposed to each other, and the orientation of the sample with respect to the reference polarizer is changed, so that the direction in which the intensity of light transmitted through the reference polarizer and the sample is minimized is obtained. In the axial direction measurement method for determining the transmission axis direction of the sample by measuring,
A front-side measurement step of measuring one front-side azimuth angle θ + at which one surface of the sample is opposed to a reference polarizer and the transmitted light intensity is minimized,
Flip the sample, and measure the back side azimuth angle θ that minimizes the transmitted light intensity when the surface facing the reference polarizer of the sample is the other side;
A calculation step of calculating a transmission axis direction of the sample based on the front side azimuth angle θ + and the back side azimuth angle θ .
直線移相素子を試料として、該試料の中性軸方位を決定する軸方位測定装置において、
光照射手段と、
光照射手段からの光を直線偏光とし、試料に照射する第1基準偏光子と、
第1基準偏光子に対しクロスニコルの状態で設置され、試料からの透過光を透過する第2基準偏光子と、
前記第1および第2基準偏光子の間に設置された試料を、光軸を中心として回転し、該試料の方位を変更可能な試料回転手段と、
第2基準偏光子を透過した光を検出する光検出手段と、
前記試料回転手段により試料を回転させたときの透過光強度が最小になる方位角に基いて、試料の中性軸方位を演算する軸方位演算手段とを備え、
該軸方位演算手段は前記試料の一方の面を第1基準偏光子に対向させたときの透過光強度が最小になる表側方位角θと、前記試料を裏返して前記試料の前記第1基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θと、に基いて、試料の中性軸方位を演算することを特徴とする軸方位測定装置。
In an axial direction measuring device that uses a linear phase shift element as a sample and determines the neutral axis direction of the sample,
Light irradiation means;
A first reference polarizer that irradiates the sample with light from the light irradiation means as linearly polarized light;
A second reference polarizer which is installed in a crossed Nicol state with respect to the first reference polarizer and transmits transmitted light from the sample;
A sample rotating means capable of rotating a sample placed between the first and second reference polarizers around an optical axis and changing the orientation of the sample;
Light detection means for detecting light transmitted through the second reference polarizer;
Axis direction calculating means for calculating the neutral axis direction of the sample based on the azimuth angle at which the transmitted light intensity is minimized when the sample is rotated by the sample rotating means,
The axial azimuth calculating means turns the sample into the first reference direction of the sample by turning the sample upside down and the front side azimuth angle θ + that minimizes the transmitted light intensity when one surface of the sample is opposed to the first reference polarizer. An axial azimuth measuring apparatus for calculating a neutral axis azimuth of a sample based on a back side azimuth angle θ that minimizes transmitted light intensity when the surface facing the polarizer is the other surface. .
請求項6に記載の軸方位測定装置において、
前記軸方位演算手段は、前記基準偏光子の消光軸方位を、表側方位角θと裏側方位角θの中間位置θ=(θ+θ)/2として求め、該方位θを基に試料の中性軸方位を求めることを特徴とする軸方位測定装置。
In the axial direction measuring apparatus according to claim 6,
The axis azimuth calculating means obtains the extinction axis azimuth of the reference polarizer as an intermediate position θ 0 = (θ + + θ ) / 2 between the front side azimuth angle θ + and the back side azimuth angle θ , and calculates the direction θ 0 An axial orientation measuring device characterized in that the neutral axial orientation of a sample is obtained based on the basis.
請求項6または7に記載の軸方位測定装置において、
前記試料回転手段によって試料を回転し、透過光強度が最小になる試料の方位を求める処理手段を備え、
該処理手段は、前記試料回転手段により試料を回転させて、透過光強度が略最小となる仮の方位を決定する仮方位決定部と、
前記仮方位近傍の複数の角度位置で透過光強度を測定し、測定した透過光強度をそのときの角度位置と関連付けて記憶する仮方位近傍測定部と、
複数の角度位置での透過光強度を、該角度位置の二次関数でフィッティングし、該二次関数の頂点位置を算出する算出部とを備え、該算出部により算出された頂点位置から透過光強度が真に最小となる方位を求めることを特徴とする軸方位測定装置。
In the axial direction measuring apparatus according to claim 6 or 7,
A processing means for rotating the sample by the sample rotating means to obtain the orientation of the sample that minimizes the transmitted light intensity,
The processing means rotates the sample by the sample rotating means, and determines a temporary orientation determining unit that determines a temporary orientation at which the transmitted light intensity is substantially minimum;
Measuring the transmitted light intensity at a plurality of angular positions near the temporary orientation, and storing the measured transmitted light intensity in association with the angular position at that time; and
A transmission unit that fits the transmitted light intensity at a plurality of angular positions with a quadratic function of the angular position and calculates a vertex position of the quadratic function, and transmits transmitted light from the vertex position calculated by the calculation unit. An axial azimuth measuring apparatus characterized by obtaining an azimuth in which the intensity is truly minimum.
請求項6から8に記載の軸方位測定装置において、
前記第1基準偏光子の位置から前記光検出手段の受光部位を覗いたときの立体角が1×10−2πsr以下となるように、前記第1基準偏光子が前記光検出手段と離されて配置されていることを特徴とする軸方位測定装置。
In the axial direction measuring apparatus according to claim 6-8,
The first reference polarizer is separated from the light detection means so that the solid angle when looking into the light receiving part of the light detection means from the position of the first reference polarizer is 1 × 10 −2 πsr or less. An axial orientation measuring device characterized by being arranged.
クロスニコルに設置された第1及び第2の基準偏光子の間に、試料としての直線移相子を設置し、該試料を光軸を中心として回転させることにより、前記第1および第2基準偏光子に対する前記試料の方位を変更し、前記第1基準偏光子、試料、第2基準偏光子を透過した光の強度が最小となる方位を測定することで、試料の中性軸方位を決定する軸方位測定方法において、
前記試料の一方の面を第1基準偏光子に対向させ、透過光強度が最小になる表側方位角θを測定する表側測定工程と、
試料を裏返し、前記試料の第1基準偏光子に対向する面を他方の面にしたときの透過光強度が最小になる裏側方位角θを測定する裏側測定工程と、
前記表側方位角θと裏側方位角θとに基いて試料の中性軸方位を算出する算出工程と、を含むことを特徴とする軸方位測定方法。
Between the first and second reference polarizers installed in the crossed Nicols, a linear phase shifter as a sample is installed, and the sample is rotated about the optical axis, whereby the first and second reference units are rotated. The orientation of the sample with respect to the polarizer is changed, and the neutral axis orientation of the sample is determined by measuring the orientation in which the intensity of light transmitted through the first reference polarizer, the sample, and the second reference polarizer is minimized. In the axial direction measuring method to
A front-side measurement step of measuring a front-side azimuth angle θ + at which one surface of the sample is opposed to the first reference polarizer and the transmitted light intensity is minimized;
A back side measuring step of measuring the back side azimuth angle θ − at which the transmitted light intensity is minimized when the sample is turned over and the surface facing the first reference polarizer of the sample is the other side;
And a calculation step of calculating a neutral axis direction of the sample based on the front side azimuth angle θ + and the back side azimuth angle θ .
JP2005055638A 2005-03-01 2005-03-01 Axial bearing measuring apparatus and method Active JP4538344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055638A JP4538344B2 (en) 2005-03-01 2005-03-01 Axial bearing measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055638A JP4538344B2 (en) 2005-03-01 2005-03-01 Axial bearing measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2006242617A true JP2006242617A (en) 2006-09-14
JP4538344B2 JP4538344B2 (en) 2010-09-08

Family

ID=37049197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055638A Active JP4538344B2 (en) 2005-03-01 2005-03-01 Axial bearing measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4538344B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055140A1 (en) 2005-11-11 2007-05-18 Tosoh Corporation Titanium complexes, process for production thereof, titanium -containing thin films, and method for formation thereof
CN102279094A (en) * 2011-03-16 2011-12-14 中国科学院上海技术物理研究所 Apparatus and method for calibrating transmission axis of polaroid
JP2014002019A (en) * 2012-06-18 2014-01-09 Asahi Kasei E-Materials Corp Polarization axis direction measuring instrument and polarization axis direction measuring method
JP2018519497A (en) * 2015-04-20 2018-07-19 ローデンシュトック ゲーエムベーハー Method for calibrating a polarization axis measuring device and method for determining the polarization axis of a spectacle lens for a polarization axis measuring device
WO2019127735A1 (en) * 2017-12-29 2019-07-04 惠州市华星光电技术有限公司 Method and device for measuring optical parameters of polarizer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422620B2 (en) * 2011-08-31 2014-02-19 富士フイルム株式会社 Defect detection apparatus and method for patterned retardation film, and manufacturing method
JP5399453B2 (en) * 2011-08-31 2014-01-29 富士フイルム株式会社 Defect inspection apparatus and method for patterned retardation film, and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168523A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Polarization analyzer
JPH063359A (en) * 1992-06-24 1994-01-11 Nitto Denko Corp Method and instrument for measuring antigen or antibody in sample
JPH09178608A (en) * 1995-12-26 1997-07-11 Seitai Hikari Joho Kenkyusho:Kk Method and device for measuring extinction ratio
JPH11506202A (en) * 1995-06-07 1999-06-02 オプティクス エルピー Method for minimizing scatter and improving tissue sampling in non-invasive examination and imaging
JP2002122477A (en) * 2000-10-13 2002-04-26 Japan Science & Technology Corp Measuring device
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168523A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Polarization analyzer
JPH063359A (en) * 1992-06-24 1994-01-11 Nitto Denko Corp Method and instrument for measuring antigen or antibody in sample
JPH11506202A (en) * 1995-06-07 1999-06-02 オプティクス エルピー Method for minimizing scatter and improving tissue sampling in non-invasive examination and imaging
JPH09178608A (en) * 1995-12-26 1997-07-11 Seitai Hikari Joho Kenkyusho:Kk Method and device for measuring extinction ratio
JP2002122477A (en) * 2000-10-13 2002-04-26 Japan Science & Technology Corp Measuring device
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055140A1 (en) 2005-11-11 2007-05-18 Tosoh Corporation Titanium complexes, process for production thereof, titanium -containing thin films, and method for formation thereof
CN102279094A (en) * 2011-03-16 2011-12-14 中国科学院上海技术物理研究所 Apparatus and method for calibrating transmission axis of polaroid
JP2014002019A (en) * 2012-06-18 2014-01-09 Asahi Kasei E-Materials Corp Polarization axis direction measuring instrument and polarization axis direction measuring method
JP2018519497A (en) * 2015-04-20 2018-07-19 ローデンシュトック ゲーエムベーハー Method for calibrating a polarization axis measuring device and method for determining the polarization axis of a spectacle lens for a polarization axis measuring device
US10161828B2 (en) 2015-04-20 2018-12-25 Rodenstock Gmbh Method for calibrating a polarisation axis measuring device and method for determining polarisation axes of spectacle lenses for a polarisation axis measuring device
WO2019127735A1 (en) * 2017-12-29 2019-07-04 惠州市华星光电技术有限公司 Method and device for measuring optical parameters of polarizer
US10746628B2 (en) 2017-12-29 2020-08-18 Huizhou China Star Optoelectronics Technology Co., Ltd. Method of measuring optical parameters of polarizer and measuring device

Also Published As

Publication number Publication date
JP4538344B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP4538344B2 (en) Axial bearing measuring apparatus and method
US6473179B1 (en) Birefringence measurement system
US8009292B2 (en) Single polarizer focused-beam ellipsometer
JP2019144237A (en) Polarization measuring device, method for measuring polarization, and method for aligning light
TWI467157B (en) Method and apparatus for measuring optically anisotropic parameters
JP2007093289A (en) Polarization state measuring apparatus, circular dichroism measuring apparatus, and its method
US6268914B1 (en) Calibration Process For Birefringence Measurement System
US20170276597A1 (en) Birefringence Measurement Device and Birefringence Measurement Method
CN102435418A (en) Comprehensive polarization measuring device and method of argon fluoride (ArF) laser optical thin film elements
JP2005515465A (en) Spectrometer with reduced polarization and multi-element depolarizer therefor
JP2005509153A (en) Accurate calibration of birefringence measurement system
US6697157B2 (en) Birefringence measurement
EP2013594B1 (en) Measurement of linear and circular diattenuation in optical elements
US7002685B2 (en) System for measuring of both circular and linear birefringence
JP2005227019A (en) Measuring method and measuring instrument for polarization axis
JP2011117792A (en) Device for measuring lamination angle of elliptically polarized light plate
JP5446644B2 (en) Bonding angle measuring device for elliptical polarizing plate
CN106154593B (en) Anisotropy measurement system, anisotropy measurement method and calibration method thereof
JP5972061B2 (en) Polarization axis direction measuring apparatus and polarization axis direction measuring method
JP5991230B2 (en) Phase difference measuring method and apparatus
JP2009058464A (en) Method and apparatus for measuring optical axis
JP4926003B2 (en) Polarization analysis method
WO1999042796A1 (en) Birefringence measurement system
JPH0552657A (en) Polarization measurement equipment
JPS63168523A (en) Polarization analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4538344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250