JPS60143748A - Continuous optical axis direction measuring apparatus - Google Patents

Continuous optical axis direction measuring apparatus

Info

Publication number
JPS60143748A
JPS60143748A JP24883383A JP24883383A JPS60143748A JP S60143748 A JPS60143748 A JP S60143748A JP 24883383 A JP24883383 A JP 24883383A JP 24883383 A JP24883383 A JP 24883383A JP S60143748 A JPS60143748 A JP S60143748A
Authority
JP
Japan
Prior art keywords
sample
optical axis
intensity
measured
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24883383A
Other languages
Japanese (ja)
Other versions
JPH0148977B2 (en
Inventor
Noriharu Miyaake
宮明 稚晴
Akio Tsumura
昭雄 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP24883383A priority Critical patent/JPS60143748A/en
Publication of JPS60143748A publication Critical patent/JPS60143748A/en
Publication of JPH0148977B2 publication Critical patent/JPH0148977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable continuous measurement of a long-sized sample by detecting the intensity of transmission light, moving distance and angle of rotation concerning a sample to be mesured and a reference sample in an orthogonal Nicol optical system to display deviated angle from the optical axis along the length of the sample by image. CONSTITUTION:A reference sample 2' delivered from the lot identical to a sample 3' to be measured is set on a reference sample holder 2 and then, rotated about the optical axis of the orthogonal Nicol optical system comprising a light source 1, polarizers 4a and 4b and a photomultiplier 21. The intensity of transmission light measured during the rotation and corresponding deviated angle from the optical axis are detected with the photomultiplier 21 and a rotary encoder 23 and inputted into a microcomputer 33. Then, the sample 3' being measured is set on a holder 3, moved orthogonal to the optical axis, while respective positions thereof are detected with an rotary encoder 22 and the intensity of transmission light at the respective position is detected with the photomultiplier 21 to be inputted into the computer 33. With such an arrangement, the deviated angle of the position of a sample 3' along the length thereof is detected from the intensity of the sample 2' and the deviated angle while the results are displayed on a CRT34 with these items set on the axis of ordinate and axis of abscissa respectively.

Description

【発明の詳細な説明】 本発明は光軸方向連続測定装置、詳しくは透明試料等の
長手方向にわたる各位置での光軸方向を連続的に測定で
きる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous optical axis direction measuring device, and more particularly to a device that can continuously measure the optical axis direction at each position along the length of a transparent sample.

透明試料の光軸方向を測定する場合、従来は第1図に示
すように、光源1と、互いに光軸が直交するよう配設さ
れた2個の偏光子4a、4bと、受光器5からなる直交
ニコル光学系の、上記両偏光子4a、4bの間にチップ
状の被測定試料2をその面が光学系の軸と直交するよう
に挿入し、光学系の軸のまわりに試料を回転させてその
回転角と光学系の透過光強度との関係から試料の光軸を
決定する方法がとられていた。しかしこのような従来の
装置では、例えば、細長い試料で、その長さ方向の各位
置における光軸方向が変化しているような場合、各位置
での光軸方向を知るためには、試料を適当な大きさの試
料片に分断し、各試料片毎に光軸方向の測定を行なわね
ばならず、大きな労力と時間的ロスを招いていた。
When measuring the optical axis direction of a transparent sample, conventionally, as shown in FIG. A chip-shaped sample to be measured 2 is inserted between the polarizers 4a and 4b of the crossed Nicol optical system so that its surface is perpendicular to the axis of the optical system, and the sample is rotated around the axis of the optical system. The optical axis of the sample was then determined from the relationship between the rotation angle and the transmitted light intensity of the optical system. However, with such conventional devices, for example, in the case of a long and slender sample whose optical axis direction changes at each position along its length, in order to know the optical axis direction at each position, it is necessary to It is necessary to divide the sample into pieces of appropriate size and measure the optical axis direction for each sample piece, resulting in a large amount of labor and time loss.

本発明は上記従来技術の欠点を解消し、長尺試料の長手
方向における光軸方向を連続して測定することができる
ようにすると共に、得られた結果を自動的に画像表示す
ることができる光軸方向測定装置の提供を目的とする。
The present invention eliminates the drawbacks of the above-mentioned prior art, makes it possible to continuously measure the optical axis direction in the longitudinal direction of a long sample, and also makes it possible to automatically display the obtained results as an image. The purpose is to provide an optical axis direction measuring device.

本発明を図面と共に具体的に説明する。第2図は実施例
の装置の構成を示す斜視図、第3図は実絶倒の装置にお
ける表示手段の構成図である。
The present invention will be specifically explained with reference to the drawings. FIG. 2 is a perspective view showing the configuration of the device of the embodiment, and FIG. 3 is a configuration diagram of the display means in the actual device.

光源1.偏光子4a、4b、およびフォトマル21で直
交ニコル光学系を構成している。フォトマル21は前述
の従来例における受光器5に相当するもので、直交ニコ
ル光学系を透過した光の強度を検出する手段である。モ
ータ6はタイミングプーリ7a、7bとタイミングベル
ト8およびボールネジ9よりなるサドル駆動機構を介し
て、サドル101およびその内部にナツト(図示せず)
と2個以上のリニアモーションベアリング103を挿着
したハウジング102より構成されるスライディングサ
ドル10を軸受12a、12bにて両端部を支持された
ボールネジ9およびガイドシャフト11.11に沿って
駆動し、このスライディングサドルに装着されている試
料ホルダ3に保持された試料3′を、上記直交ニコル光
学系の光軸に直交して長手方向に移動させる。これらは
試料移動手段を構成する。
Light source 1. The polarizers 4a, 4b and the photomultiplier 21 constitute an orthogonal Nicol optical system. The photomultiplier 21 corresponds to the light receiver 5 in the conventional example described above, and is means for detecting the intensity of light transmitted through the crossed Nicol optical system. The motor 6 drives a saddle 101 and a nut (not shown) inside the saddle 101 via a saddle drive mechanism consisting of timing pulleys 7a, 7b, a timing belt 8, and a ball screw 9.
A sliding saddle 10 consisting of a housing 102 into which two or more linear motion bearings 103 are inserted is driven along a ball screw 9 and a guide shaft 11.11 whose ends are supported by bearings 12a and 12b. A sample 3' held in a sample holder 3 mounted on a sliding saddle is moved in the longitudinal direction perpendicular to the optical axis of the crossed Nicol optical system. These constitute the sample moving means.

参照用試料ホルダ2は、参照用試料2′を直交ニコル光
学系の光学軸に垂直に保った状態で同光学軸のまわりに
回転させるようにする。フォトマル21と2つのロータ
リーエンコーダ22.23で検出手段を構成する。フ、
1 )マル21は直交ニコル光学系における透過光強度
を検出し、これをA/Dコンバータ31.インターフェ
ース32を介してマイクロコンピュータ33に入力する
。また2つのロータリーエンコーダ22.23はそれぞ
れ、試料ホルダ3.参照用試料ホルダ2に接触してホル
ダ3の移動、ボルダ2の回転量を析出し、これを変位パ
ルスとしてインターフェース32を介してマイクロコン
ピュータ33に入力する。マイクロコンピュータ33は
前記フォトマル21及びロータリーエンコーダ22.2
3からの情報を比較することにより被測定試料の各位置
での光軸ズレ角φを決定し、これをCRT34に画像表
示する。マイクロコンピュータ33にはプリンタ35゜
磁気ディスク36が接続され、必要に応してプリントア
ウトしたりデータの蓄積ができるようにしている。・ 被測定試料3′の長手方向の各位置での光軸方向のズレ
角、すなわち試料3′の光軸方向と偏光子4aの光軸方
向とのなす角の測定及び表示について説明する。
The reference sample holder 2 rotates the reference sample 2' around the optical axis of the orthogonal Nicol optical system while keeping it perpendicular to the optical axis. The photomultiplier 21 and two rotary encoders 22 and 23 constitute a detection means. centre,
1) The circle 21 detects the transmitted light intensity in the orthogonal Nicol optical system, and converts it to the A/D converter 31. The information is input to the microcomputer 33 via the interface 32. The two rotary encoders 22, 23 are also connected to the sample holder 3. The reference sample holder 2 is contacted to determine the movement of the holder 3 and the amount of rotation of the boulder 2, and these are input to the microcomputer 33 via the interface 32 as displacement pulses. The microcomputer 33 includes the photomultiplexer 21 and the rotary encoder 22.2.
By comparing the information from 3, the optical axis deviation angle φ at each position of the sample to be measured is determined, and this is displayed as an image on the CRT 34. A printer 35° magnetic disk 36 is connected to the microcomputer 33 so that it can print out or store data as needed. - Measurement and display of the deviation angle in the optical axis direction at each position in the longitudinal direction of the sample 3' to be measured, that is, the angle formed between the optical axis direction of the sample 3' and the optical axis direction of the polarizer 4a will be explained.

まず、被測定試料3′と同一ロンドから切り出した同厚
の参照用試料2′だけを参照用試料ホルダ2にセントし
て、これを直交ニコル光学系の光学軸のまわりに回転さ
せ、各回転位置での透過光強度を測定する。透過光強度
■と光軸ズレ角φとの間には 1 = I osinゝ(2φ) Io:比例定数の関
係がある。すなわち透過光強度■はsinゝ(2φ)に
比例する。一方、参照用試料2′は回転させるので、ズ
レ角φ−0の位置が0〜90度回転の間に必ず存在する
。′したがってそのズレ角φ=0の位置を中心とした回
転角が、ズレ角φとなり、その時の透過光強度■が光軸
ズレ角φに対応する。
First, a reference sample 2' cut out from the same rond as the sample to be measured 3' and having the same thickness is placed in the reference sample holder 2, and rotated around the optical axis of the orthogonal Nicol optical system. Measure the transmitted light intensity at the position. There is a relationship between the transmitted light intensity ■ and the optical axis deviation angle φ: 1=Iosinゝ(2φ) Io: proportionality constant. That is, the transmitted light intensity ■ is proportional to sinゝ(2φ). On the other hand, since the reference sample 2' is rotated, the position of the deviation angle φ-0 always exists between 0 and 90 degrees of rotation. 'Therefore, the rotation angle around the position where the deviation angle φ=0 is the deviation angle φ, and the transmitted light intensity 2 at that time corresponds to the optical axis deviation angle φ.

よって参照用試料2′の回転角度をロータリーエンコー
ダ23で検出し、参照用試料2′の透過光強度Iをフォ
トマル21で検出してコンピュータに入力することによ
り、光軸のズレ角φと透過光強度Iとを予め対応させて
おくことができる。
Therefore, by detecting the rotation angle of the reference sample 2' with the rotary encoder 23, and detecting the transmitted light intensity I of the reference sample 2' with the photomultiplier 21 and inputting it into the computer, the deviation angle φ of the optical axis and the transmitted light can be determined. The light intensity I can be made to correspond in advance.

次に参照用試料2′を外して、被測定試料3′をホルダ
3にセットし、これを試料移動手段により光学軸に直交
する方向に連続的に移動させ、各位置での透過光強度■
を連続的に測定する。透過光強度はフォトマル21で検
出され、コンピュータ33に入力される。一方被測定試
料3′の移動量はロータリーエンコーダ22で検出され
、コンピュータ33に入力される。コンピュータ32内
では被測定試料の移動速度から試料の長平方向のスケー
ルを決定し、また参照用試料2′によって得た光軸ズレ
角φと透過光強度■との関係から、被測定試料2′につ
いて得た透過光強度■について対応する光軸ズレ角φを
付与しく被測定試料3′と参照用試料2′は同質、同厚
であるので■0が両者で同じである。)、この光軸ズレ
角φによるたて軸のスケールを決定する。そして横軸を
被測定試料3′の長手方向位置、たて軸を光軸ズレ角φ
とした画像をCRTに出力する。また切換操作によりプ
リンタ35.磁気ディスク36へ出力することができる
。画像表示に際しては試料ナンバーを入力しておき、こ
れを測定結果と同時に画像表示することができる。
Next, the reference sample 2' is removed, the sample to be measured 3' is set in the holder 3, and this is continuously moved in the direction perpendicular to the optical axis by the sample moving means, so that the transmitted light intensity at each position is
Continuously measure. The transmitted light intensity is detected by the photomultiplier 21 and input to the computer 33. On the other hand, the amount of movement of the sample to be measured 3' is detected by the rotary encoder 22 and input to the computer 33. In the computer 32, the longitudinal scale of the sample is determined from the moving speed of the sample to be measured, and the scale of the sample to be measured 2' is determined from the relationship between the optical axis deviation angle φ and the transmitted light intensity ■ obtained by the reference sample 2'. The corresponding optical axis deviation angle φ is given to the transmitted light intensity (2) obtained for the measured sample 3' and the reference sample 2', and since they are of the same quality and thickness, (2)0 is the same for both. ), the scale of the vertical axis is determined by this optical axis deviation angle φ. The horizontal axis is the longitudinal position of the sample to be measured 3', and the vertical axis is the optical axis deviation angle φ.
The resulting image is output to a CRT. Also, by switching the printer 35. It can be output to the magnetic disk 36. When displaying an image, the sample number can be input and displayed simultaneously with the measurement results.

本発明は以上の構成よりなり、直交ニコル光学系、これ
に対して直交方向に長尺試料を移動させる試料移動手段
、参照用試料の回転手段等を設けたので、被測定試料を
短く分断することなく長尺のままでその光軸方向を長手
方向に沿って連続的に測定することが可能になった。し
かも測定結果を自動的に画像表示することができるので
、製品チェック等を非常に円滑に行なうことができる。
The present invention has the above-described configuration, and is provided with an orthogonal Nicol optical system, a sample moving means for moving a long sample in a direction orthogonal to the optical system, a means for rotating a reference sample, etc., so that the sample to be measured can be cut into short pieces. It has now become possible to continuously measure the optical axis direction of a long piece of paper along its longitudinal direction. Moreover, since the measurement results can be automatically displayed as images, product checks can be carried out very smoothly.

また試料ナンバーを一緒に入力しておけば試料とその結
果が一目瞭然となり、プリントアウトや磁気ディスクへ
の記録にも便利である。
Also, if you input the sample number together, you can see the sample and its results at a glance, which is convenient for printing out or recording on a magnetic disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の簡略斜視図、第2図は本発明の実施
例の装置の構成を示す斜視図、第3図は実施例の装置に
おける表示手段の構成ブロック図である。 1−光源 2−参照用試料ホルダ 2′−参照用試料 3・−試料ホルダ 3′−被測定試料 4a、4b−偏光子6−モータ 9
−・−ボールネジ 10−スライディングサドル 21−フォトマル 22.23−m=ロータリーエンコーダ33−マイクロ
コンピュータ 34−CRT 特許出願人 日東電気工業株式会社 代理人 弁理士西1)新 第2図
FIG. 1 is a simplified perspective view of a conventional device, FIG. 2 is a perspective view showing the configuration of a device according to an embodiment of the present invention, and FIG. 3 is a block diagram of a display means in the device of the embodiment. 1-Light source 2-Reference sample holder 2'-Reference sample 3--Sample holder 3'-Measurement sample 4a, 4b-Polarizer 6-Motor 9
-・- Ball screw 10 - Sliding saddle 21 - Photo multimeter 22.23 - m = Rotary encoder 33 - Microcomputer 34 - CRT Patent applicant Nitto Electric Industry Co., Ltd. agent Patent attorney Nishi 1) New Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 直交ニコル光学系と、被測定試料を上記直交ニコル光学
系の光学軸に直交させて連続的に移動させる試料移動手
段と、参照用試料を上記直交ニコル系の光学軸に直交さ
せた状態で回転させる試料回転手段と、前記被測定試料
及び参照用試料における透過光強度、移動距離1回転角
度を検出する検出手段と、該検出手段からの情報を処理
し、被測定試料の長手方向における光軸ズレ角を画像出
力する表示手段とを有することを特徴とする光軸方向連
続測定装置。
An orthogonal Nicol optical system, a sample moving means for continuously moving the sample to be measured perpendicular to the optical axis of the orthogonal Nicol optical system, and a reference sample rotated in a state orthogonal to the optical axis of the orthogonal Nicol system. a detection means for detecting the intensity of transmitted light in the sample to be measured and the reference sample, and an angle of one rotation of the moving distance; 1. An optical axis direction continuous measuring device comprising: a display means for outputting a deviation angle as an image.
JP24883383A 1983-12-30 1983-12-30 Continuous optical axis direction measuring apparatus Granted JPS60143748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24883383A JPS60143748A (en) 1983-12-30 1983-12-30 Continuous optical axis direction measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24883383A JPS60143748A (en) 1983-12-30 1983-12-30 Continuous optical axis direction measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60143748A true JPS60143748A (en) 1985-07-30
JPH0148977B2 JPH0148977B2 (en) 1989-10-23

Family

ID=17184098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24883383A Granted JPS60143748A (en) 1983-12-30 1983-12-30 Continuous optical axis direction measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60143748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316629A (en) * 1988-06-17 1989-12-21 Nitto Koki Kk Measuring device for optical axis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316629A (en) * 1988-06-17 1989-12-21 Nitto Koki Kk Measuring device for optical axis
JPH0810175B2 (en) * 1988-06-17 1996-01-31 日東光器株式会社 Method and apparatus for measuring tilt angle between optical element reference plane and optical axis

Also Published As

Publication number Publication date
JPH0148977B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
JPH075056A (en) System and method for monitoring rotary shaft
US3894425A (en) Two-coordinate locating device for a ultrasonic search probe
US4441026A (en) Concentricity evaluating system
JPS60143748A (en) Continuous optical axis direction measuring apparatus
CN213727516U (en) Automatic gluing device with detection platform
US2754719A (en) Methods and apparatus for determining displacement between curves
JPH0444942B2 (en)
US3120121A (en) Surface analyzer device
US4275587A (en) Method and apparatus for dynamic wetting angle measurement
JPS61292033A (en) Measuring instrument for coaxial degree of capillary of ferrule
JP2695918B2 (en) Measurement equipment for control panel
JPH1164201A (en) Clark rigidity testing machine
Hansen A new dynamic spindle analyzer
JPS5987313A (en) Area measuring device
JPH0361838A (en) Measuring apparatus for adhesion of rubber material
JPH06201437A (en) Rotation tester for indicating unit of city water meter
JPH06180282A (en) Method and device for birefringence measurement
US4698512A (en) Length measuring apparatus
US3311919A (en) System and apparatus for obtaining and correlating surface data measurments
KR100507237B1 (en) Device for measuring eccentric of differential gear of vehicle and method for measuring the eccentric
JPH051766Y2 (en)
JPS62118209A (en) Winding measuring instrument
JPH0760140B2 (en) X-ray analyzer
SU465582A1 (en) Device for the study of the structure of the fleece webs
JP3850117B2 (en) Microfilm search device