JPH01316145A - Friction feed mechanism - Google Patents

Friction feed mechanism

Info

Publication number
JPH01316145A
JPH01316145A JP14664688A JP14664688A JPH01316145A JP H01316145 A JPH01316145 A JP H01316145A JP 14664688 A JP14664688 A JP 14664688A JP 14664688 A JP14664688 A JP 14664688A JP H01316145 A JPH01316145 A JP H01316145A
Authority
JP
Japan
Prior art keywords
drive shaft
friction
driving shaft
feed
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14664688A
Other languages
Japanese (ja)
Other versions
JPH0673791B2 (en
Inventor
Katsuhide Sawada
克秀 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP14664688A priority Critical patent/JPH0673791B2/en
Publication of JPH01316145A publication Critical patent/JPH01316145A/en
Publication of JPH0673791B2 publication Critical patent/JPH0673791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/38Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
    • B23Q5/40Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PURPOSE:To accurately and simply perform the switching of a plurality of feed pitches by providing a rotating driving shaft at one of two members capable of relative moving and providing a plurality of friction rollers slantly arranged on the circumference of the respective above driving shafts, rotatably and at different lead angles each other. CONSTITUTION:Voltage is added to a piezoelectric element by an operating device to lower a holding body 21 by its displacement so as to press a friction roller 23 on the circumference of a driving shaft. The driving shaft is rotated, the roller 23 follows the rotation of the driving shaft to roll on the circumference to move in the axial direction of the driving shaft by a feed pitch according to a lead angle A1 for transferring a table 20 to a bed 10 at a high speed. In the meantime, when the table 20 is reached close to an aimed position, the motor 15 is stopped, the added voltage is switched from the piezoelectric element 25 to 26 to separate the roller 23 from the drive shaft and the holding body 22 is lowered to press a friction roller 24 to the driving shaft. Hereupon, the driving shaft is rerotated to accurately move the roller 24 in the axial direction of the driving shaft by a feed pitch according to a lead angle A2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は摩擦ローラを用いた摩擦送り機構に係り、測定
器や工作機械等のテーブルあるいはヘッド送り機構など
に利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a friction feed mechanism using friction rollers, and can be used in table or head feed mechanisms of measuring instruments, machine tools, etc.

〔従来の技術〕[Conventional technology]

従来より、三次元測定器や工作機械等においては、可動
方向ごとに送り機構を設け、ワークを載置するテーブル
や測定子あるいは工具を支持するヘッドの相対位置を調
整している。
BACKGROUND ART Conventionally, in three-dimensional measuring instruments, machine tools, and the like, a feeding mechanism is provided for each movable direction to adjust the relative position of a table on which a work is placed, a probe, or a head that supports a tool.

このような送り機構には高精度が要求されるため、ボー
ルねし等の螺旋係合構造を用いて駆動軸の回転運動を軸
方向の往復運動に変換する方式が多用されている。しか
じ、駆動軸に形成するねじ形状を高精度に仕上げる必要
があり、製造コストが高くなるほか、送りピッチが固定
されるという問題がある。このため、粗調整時等の高速
送りとワーク近接時等の精密送りといった相反する要求
を満たすために、駆動軸とモータ等との間に変速機構や
クラッチ機構を設けたり、あるいは高速送り機構に微動
ユニットを付加したりといった構造上の複雑化が避けら
れなかった。
Since such a feeding mechanism requires high precision, a method is often used in which a spiral engagement structure such as a ball screw is used to convert the rotational motion of the drive shaft into reciprocating motion in the axial direction. However, the thread shape formed on the drive shaft needs to be finished with high precision, which increases manufacturing costs, and there are problems in that the feed pitch is fixed. Therefore, in order to meet the conflicting demands of high-speed feed during rough adjustment and precision feed when approaching a workpiece, a speed change mechanism or clutch mechanism is installed between the drive shaft and the motor, or a high-speed feed mechanism is installed. Structural complications such as the addition of a fine movement unit were unavoidable.

これに対し、駆動軸に対して所定のリード角で当接され
た摩擦ローラを駆動軸の周面に転動させ、駆動軸の回転
に伴って摩擦ローラに生じる駆動軸方向分力により送り
動作を行う摩擦送り機構が開発されている。このような
摩擦送り機構においては、駆動軸に螺旋状のねしを形成
する必要がなく、製造コストを低減できるとともに、摩
擦ローラのリード角(摩擦ローラの回転軸線と駆動軸の
回転軸線とがなす角度)に応して送りピッチを任意に設
定あるいは変更可能である。
In contrast, a friction roller that is in contact with the drive shaft at a predetermined lead angle is rolled on the circumferential surface of the drive shaft, and feeding is performed by the component force in the direction of the drive shaft that is generated on the friction roller as the drive shaft rotates. A friction feed mechanism has been developed to do this. In such a friction feed mechanism, there is no need to form a spiral thread on the drive shaft, which reduces manufacturing costs. The feed pitch can be arbitrarily set or changed depending on the angle (angle formed).

〔発明が解決しようとするt!1ull)とこ、ろで、
前述のような摩擦送り機構においては、稼働中であって
もFj擦クローラリード角および送りピッチを無段階に
調整可能であり、簡単な操作で高速送りと精密送りとを
切換えることが可能である。
[What the invention tries to solve! 1ull) Toko, Lode,
In the above-mentioned friction feed mechanism, the Fj friction crawler lead angle and feed pitch can be adjusted steplessly even during operation, and it is possible to switch between high-speed feed and precision feed with a simple operation. .

しかし、摩擦ローラを可動式とする場合、摩擦ローラを
所望のり一ト角に正確に設定するために高精度に制御さ
れた角度調整手段が必要となるほか、調整後の摩擦ロー
ラを設定されたリード角に正確に固定する手段が必要と
なり、再び構造が複雑化するという問題があった。
However, when the friction roller is movable, a highly precisely controlled angle adjustment means is required to accurately set the friction roller to the desired glide angle. A means for accurately fixing the lead angle is required, which again complicates the structure.

本発明゛の目的は、複数の送りピッチの切換えを正確か
つ簡単に行えるとともに、構造を簡略化できる摩擦送り
機構を提供することにある。
An object of the present invention is to provide a friction feed mechanism that can accurately and easily switch between a plurality of feed pitches and has a simplified structure.

(課題を解決するための手段) 本発明は、摩擦送り機構の送り動作が)摩擦ローラと駆
動軸の周面との摩擦転動に依存しており、摩擦ローラが
僅かでも駆動軸から離隔すれば当該摩擦ローラによる送
り動作が無効となることに着目してなされたものである
。すなわち、相対移動可能な二部材の一方に回転する駆
動軸を設け、他方の部材には各々前記駆動軸の周面に転
動可能かつ互いに異なるリード角で傾斜配置された複数
の摩擦ローラを設け、これらの摩擦ローラを各々独立し
た支持体に支持するとともに、各支持体には圧電素子の
変位により各11j擦ローラを駆動軸の周面に圧接可能
な離接手段を設け、これにより)?擦込りR構を構成し
たものである。
(Means for Solving the Problems) In the present invention, the feeding operation of the friction feeding mechanism depends on frictional rolling between the friction roller and the circumferential surface of the drive shaft, and the friction roller is separated from the drive shaft even slightly. This method was developed by focusing on the fact that the feeding operation by the friction roller becomes ineffective. That is, one of two relatively movable members is provided with a rotating drive shaft, and the other member is provided with a plurality of friction rollers that can roll on the circumferential surface of the drive shaft and are arranged at inclinations at mutually different lead angles. , these friction rollers are each supported by independent supports, and each support is provided with a separating means that can press each of the 11j friction rollers against the circumferential surface of the drive shaft by displacement of a piezoelectric element. It has a rubbing R structure.

本発明の圧電素子としては、Pb(Zr−Ti)Oi系
のセラミックス、あるいは水晶やLiNb0+等の結晶
といった圧電性材料を一対の電極で挟持したものが利用
できる。また、これらの圧電素子を積層して機械的な動
作量を拡張してもよく、あるいは回動アーム等を用いた
てこ式の動作量拡大機構を利用してもよい。
As the piezoelectric element of the present invention, one in which a piezoelectric material such as Pb(Zr-Ti)Oi-based ceramics or crystals such as quartz or LiNb0+ is sandwiched between a pair of electrodes can be used. Further, the mechanical motion amount may be expanded by stacking these piezoelectric elements, or a lever-type motion amount enlarging mechanism using a rotating arm or the like may be used.

また、離接手段は駆動軸に向かって進退自在な支持体の
一部に圧電素子を介装して通電に伴う変位により駆動軸
に向かって支持体を進出させる構造、あるいは揺動自在
な支持体の一端に圧電素子を設けて他端に支持された摩
擦ローラを駆動軸に向かって回動させる構造等が利用で
きる。
In addition, the detachment means may have a structure in which a piezoelectric element is interposed in a part of a support body that can move forward and backward toward the drive shaft, and the support body can advance toward the drive shaft by displacement due to energization, or a support that can freely swing. A structure can be used in which a piezoelectric element is provided at one end of the body and a friction roller supported at the other end is rotated toward the drive shaft.

一方、複数の摩擦ローラ、支持体および圧電素子を配置
するにあたっては、これらを駆動軸に沿って配置しても
よく、あるいは駆動軸の所定位置を囲むように周方向に
配列してもよい。
On the other hand, when arranging the plurality of friction rollers, supports, and piezoelectric elements, they may be arranged along the drive shaft, or may be arranged in the circumferential direction so as to surround a predetermined position of the drive shaft.

また、駆動軸の1怨み等を避けたい場合等には、同じリ
ード角を有する一対の摩擦ローラを駆動軸を挟んで対向
配置し、両側から略同し強さで同時に正接させてもよく
、あるいは駆動軸の反対側に撓み防止用の案内軸受を対
向配置してもよい。
In addition, in cases where it is desired to avoid a single grudge on the drive shaft, a pair of friction rollers having the same lead angle may be arranged opposite to each other with the drive shaft in between, and tangentially applied from both sides at the same time with approximately the same strength. Alternatively, a guide bearing for preventing deflection may be disposed on the opposite side of the drive shaft.

〔作用〕[Effect]

このように構成された本発明においては、各摩擦ローラ
のリード角をそれぞれ所望の送りピンチを与えるように
正確に設定しておき、離接手段により任意の摩擦ローラ
を選択して駆動軸の周面に圧接させることにより、送り
ピンチの切換えを簡単に行い、切換え時にリード角を変
更しないようにして各摩擦ローラの送りピッチを正確に
維持する。また、摩擦ローラを圧接させるために圧電素
子を採用することにより、操作の容易性および構造の簡
略化を実現し、これにより前記目的を達成する。
In the present invention configured as described above, the lead angle of each friction roller is set accurately to give a desired feed pinch, and an arbitrary friction roller is selected by the contact/separation means to move around the drive shaft. By pressing against the surface, the feed pinch can be easily switched, and the feed pitch of each friction roller can be accurately maintained without changing the lead angle at the time of switching. Further, by employing a piezoelectric element to press the friction roller, ease of operation and simplification of the structure are realized, thereby achieving the above object.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図および第2図において、本実施例のテーブル送り
装置は、相対移動する二部材であるベツドIOおよびテ
ーブル20を備え、このテーブル20はベツド10の上
面に形成された案内機構2により案内されるとともに、
本発明に基づく摩擦送り機構1により駆動されて往復移
動可能である。
1 and 2, the table feeding device of this embodiment includes a bed IO and a table 20, which are two members that move relative to each other, and this table 20 is guided by a guide mechanism 2 formed on the upper surface of the bed 10. Along with being
It is driven by a friction feed mechanism 1 based on the present invention and is capable of reciprocating movement.

ヘッドlOには案内機構2に沿って駆動軸11が設けら
れている。この駆動軸11は、周面を平滑に形成されて
いるとともに、両端近傍をそれぞれベアリング12.1
3により回転自在かつ軸方向に移動不可能に支持され、
カンブリング14を介して接続されたモータ15により
回転駆動されるように構成されている。
A drive shaft 11 is provided along the guide mechanism 2 in the head IO. This drive shaft 11 has a smooth peripheral surface, and bearings 12.1 are provided near both ends.
3, which is supported rotatably and immovably in the axial direction,
It is configured to be rotationally driven by a motor 15 connected via a cambling 14.

テーブル20は断面略門型に形成され、その上面の裏側
には駆動軸11の長手方向に沿って2つの支持体21.
22が設けられ、各々は駆動軸11に向かって進退自在
に取付けられている。これら支持体21゜22の先端に
はそれぞれ摩擦ローラ23.24が回転自在に取付けら
れており、支持体21.22はそれぞれの摩擦ローラ2
3.24のU転軸線が駆動軸11の回転佃1線に対して
それぞれリード角AIおよびリード角A2 (A2<A
I)をなすように傾斜されている。
The table 20 has a substantially gate-shaped cross section, and on the back side of its upper surface, two supports 21.
22 are provided, each of which is attached so as to be movable forward and backward toward the drive shaft 11. Friction rollers 23 and 24 are rotatably attached to the tips of these supports 21 and 22, respectively.
3.24 U rotation axis is lead angle AI and lead angle A2 (A2<A
I).

これらの支持体2L 22とテーブル20との間にはそ
れぞれ表裏に電極を有する積層型の圧電素子25゜26
が介装されており、各圧電素子25.26は電極に接続
された操作装置27から印加される電圧に応して変位し
、支持体21.22および摩擦ローラ23.24を駆動
軸11に向けて進退さセることが可能である。
Between these supports 2L 22 and the table 20 are laminated piezoelectric elements 25°26 having electrodes on the front and back sides, respectively.
are interposed, and each piezoelectric element 25 , 26 is displaced in response to a voltage applied from an operating device 27 connected to the electrode, and moves the support 21 , 22 and the friction roller 23 , 24 to the drive shaft 11 . It is possible to advance and retreat toward the target.

ここで、各圧電素子25.26は通常時には各摩擦ロー
ラ23.24を吊上げて駆動軸11の周面との間に間隔
をおいて保持するが、通電に伴う最大変位時には摩擦ロ
ーラ23.24を駆動軸11の周面に充分な当接圧力で
圧接させるように設定されている。
Here, each piezoelectric element 25.26 normally lifts up each friction roller 23.24 and holds it with a space between it and the circumferential surface of the drive shaft 11, but when the friction roller 23.24 is at maximum displacement due to energization, the friction roller 23.24 is set so as to be brought into pressure contact with the circumferential surface of the drive shaft 11 with sufficient contact pressure.

なお、操作装置27は、各圧電素子2s、 26に電圧
 。
Note that the operating device 27 applies a voltage to each piezoelectric element 2s, 26.

を印加するにあたって各圧電素子25.26のうら唯一
つを選択可能とされ、複数の摩擦ローラ23.24が同
時に駆動軸11に圧接することを防止されており、これ
らの圧電素子25.26および操作装置27により各摩
擦ローラ23.24ごとの離接手段28.29が構成さ
れている。
Only one of the piezoelectric elements 25, 26 can be selected when applying the pressure, and a plurality of friction rollers 23, 24 are prevented from coming into pressure contact with the drive shaft 11 at the same time, and these piezoelectric elements 25, 26 and The actuating device 27 constitutes a contacting and separating means 28,29 for each friction roller 23,24.

このように構成された本実施例においては、次に示すよ
うな手順により高速送りおよび精密送りを連続的に実行
する。
In this embodiment configured as described above, high-speed feeding and precision feeding are continuously performed by the following procedure.

まず、テーブル20を目標位置近傍まで移動させるため
に、離接手段28を選択して高速送りを行う。
First, in order to move the table 20 to the vicinity of the target position, the moving/separating means 28 is selected to perform high-speed feeding.

すなわち、操作装置27により圧電素子25に電圧を印
加し、その変位により支持体21を下降させ、摩擦ロー
ラ23を駆動軸11の周面に圧接させる。ここで、モー
タ15により駆動軸11を回転させると、摩)察ローラ
23は駆動軸11の回転に追従して周面を転動するとと
もに、リード角AIに応じた送りピッチPi = πd
 tan(Al)  (dは駆動軸11の直径)で駆動
軸】1の軸方向に移動し、ヘッド10に対してテーブル
20を送りピッチP1で高速に送る。
That is, a voltage is applied to the piezoelectric element 25 by the operating device 27, and the support body 21 is lowered by the displacement thereof, and the friction roller 23 is brought into pressure contact with the circumferential surface of the drive shaft 11. Here, when the drive shaft 11 is rotated by the motor 15, the grinding roller 23 follows the rotation of the drive shaft 11 and rolls on the circumferential surface, and the feed pitch Pi = πd according to the lead angle AI.
tan(Al) (d is the diameter of the drive shaft 11) to move in the axial direction of the drive shaft 1, and feed the table 20 with respect to the head 10 at high speed at a feed pitch P1.

一方、テーブル20が目標位置近傍まで達したならば、
モータ15を停止させて駆動軸11の回転を止め、離接
手段28に代えて離接手段29を選択して精密送り動作
を行う。すなわち、操作装置27からの電圧印加を圧電
素子25から圧電素子26に切換え、摩擦ローラ23を
駆動軸11から離隔させるとともに、代わりに支持体2
2を下降させて摩擦ローラ24を駆動軸11に圧接させ
る。ここで、モータ15による駆動軸11の回転を再開
させると、摩擦ローラ24はリード角A2に応じた送り
ピッチP2= rt d tan(A2)(P2<PI
)で駆動軸11の軸方向に移動し、ベツドIOに対して
テーブル20を送りピッチP2で精密に送る。
On the other hand, if the table 20 reaches near the target position,
The motor 15 is stopped to stop the rotation of the drive shaft 11, and the contact/separation means 29 is selected instead of the contact/separation means 28 to perform a precision feeding operation. That is, the voltage application from the operating device 27 is switched from the piezoelectric element 25 to the piezoelectric element 26, the friction roller 23 is separated from the drive shaft 11, and the support body 2 is moved instead.
2 is lowered to press the friction roller 24 against the drive shaft 11. Here, when the rotation of the drive shaft 11 by the motor 15 is restarted, the friction roller 24 has a feed pitch P2=rt d tan (A2) (P2<PI
) in the axial direction of the drive shaft 11 to precisely feed the table 20 to the bed IO at a feed pitch P2.

このように構成された本実施例によれば以下に示すよう
な効果を得ることができる。
According to this embodiment configured in this way, the following effects can be obtained.

すなわち、高速送りおよび精密送りに各々専用の摩擦ロ
ーラ23.24を設け、各々のリード角AI。
That is, dedicated friction rollers 23 and 24 are provided for high-speed feed and precision feed, respectively, and the respective lead angles AI are set.

八2を変化させることにより、駆動軸11の回転数が同
じでもテーブル20をベツド10に対して異なる送りピ
ッチPI、 P2で送ることができる。
By changing the pitch 82, it is possible to feed the table 20 with respect to the bed 10 at different feed pitches PI and P2 even if the rotational speed of the drive shaft 11 is the same.

このため、送り速度を切り換えるために駆動軸11の回
転速度を変化させる変速機構等は必要なく、変速機構等
を用いていた従来の送り機構に比べて構造の大幅な簡略
化が可能である。
Therefore, there is no need for a speed change mechanism or the like that changes the rotational speed of the drive shaft 11 in order to switch the feed speed, and the structure can be significantly simplified compared to conventional feed mechanisms that use a speed change mechanism or the like.

また、各摩擦ローラ23.24のリード角Al、 A2
の選択は任意であり、高速用の送りピンチPiおよび精
密用の送りピッチP2といった設定を自由に行うことが
できるとともに、ピッチの加減に限らず、各12擦ロー
ラ23.24を互いに逆向きに設定すれば。
In addition, the lead angle Al of each friction roller 23, 24, A2
The selection is arbitrary, and settings such as the feed pinch Pi for high speed and the feed pitch P2 for precision can be freely set. If you set it.

モータ15の回転方向を一定のままテーブル20送り方
向の正逆切換えに利用することもできる。
It is also possible to use the rotating direction of the motor 15 to change the forward and reverse directions of the table 20 while keeping it constant.

さらに、各摩擦ローラ23.24はそれぞれのリード角
AI、 A2を独立して設定でき、変更にあたって他の
摩擦ローラの角度に影響を与えることがないため、設定
時および変更時の調整作業を容易にすることができる。
Furthermore, the lead angles AI and A2 of each friction roller 23 and 24 can be set independently, and changes do not affect the angles of other friction rollers, making adjustment work easier when setting and changing. It can be done.

一方、摩擦送り機構1における各送り速度の選択および
解除は駆動軸11に対する摩擦ローラ23゜24の離接
により行われるため、各送り動作の切換えを極めて円滑
にできる。
On the other hand, since the selection and cancellation of each feed speed in the friction feed mechanism 1 is performed by moving the friction rollers 23 and 24 toward and away from the drive shaft 11, switching between each feed operation can be made extremely smoothly.

また、各FJ擦フローラ3.24の離接動作は各々に対
応する圧電素子25.26によって行うとしたため、送
り速度の切換えは操作装置27から通電する圧電素子2
5.26を選択することにより極めて簡単に行えるとと
もに、その操作自体も単純なスインチングであるため自
動化も容易である。
In addition, since the contact and separation operations of each FJ friction roller 3.24 are performed by the corresponding piezoelectric elements 25.26, switching of the feed speed is performed by the piezoelectric element 2, which is energized from the operating device 27.
By selecting 5.26, it can be performed extremely easily, and since the operation itself is a simple winching, it can be easily automated.

さらに、各摩擦ローラ23.24を解除しておくために
駆動軸11との間に保持しておく間隔は僅かなものでよ
いため、各支持体21.22の変位はさほど大きくする
必要はなく、積層型の各圧電素子25゜26の厚み方向
の変位により充分な切換え動作が可能である。
Furthermore, since the distance between the friction rollers 23, 24 and the drive shaft 11 to release them only needs to be small, the displacement of each support 21, 22 does not need to be very large. Sufficient switching operation is possible by displacement of each laminated piezoelectric element 25°26 in the thickness direction.

また、圧電素子25.26自体の剛性を利用し、各圧電
素子25.26を支持体21.22とテーブル20との
間に介在させて構造材としての機能を持たせることによ
り、F!J!擦ロークローラ234を支持する構造をさ
らに簡略化することができる。
In addition, by utilizing the rigidity of the piezoelectric elements 25, 26 themselves and interposing each piezoelectric element 25, 26 between the support body 21, 22 and the table 20 to have a function as a structural member, F! J! The structure that supports the rubbing roller 234 can be further simplified.

なお、本発明は前記実施例に限定されるものではなく、
次に示すような変形をも含むものである。
Note that the present invention is not limited to the above embodiments,
It also includes the following modifications.

すなわち、摩擦送り機構lに設ける摩擦ローラの数は2
個に限らず、必要な送り速度の段数等に応じて適宜増減
すればよく、各々に設定するリード角も高速送り用や精
密送り用に限らず、適宜調節すればよい。
In other words, the number of friction rollers provided in the friction feed mechanism l is 2.
The lead angle is not limited to 1, but may be increased or decreased as appropriate depending on the number of steps of the required feed speed, etc., and the lead angles set for each may be adjusted as appropriate, not only for high-speed feed or precision feed.

また、摩擦ローラの配置は前記実施例のように駆動軸1
1に沿った配列に限らず、実施にあたって適宜変更して
よい。
Further, the arrangement of the friction rollers is similar to that of the previous embodiment, with the drive shaft 1
The arrangement is not limited to the arrangement according to No. 1, and may be changed as appropriate in implementation.

例えば、第3図に示す実施例においては、駆f)+軸1
1の両側に摩擦ローラ23.24を対向配置し、各々が
圧電素子25.26により交互に駆動軸11に圧接する
ように構成したものである。なお、本実施例において、
前記第1図の実施例と同様のものについては同じ符号を
附し、簡略化のため説明を省略する。
For example, in the embodiment shown in FIG.
Friction rollers 23 and 24 are arranged facing each other on both sides of the drive shaft 11, and each is configured to alternately come into pressure contact with the drive shaft 11 by piezoelectric elements 25 and 26. In addition, in this example,
Components similar to those in the embodiment shown in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted for the sake of brevity.

このような配置によれば、テーブル20の上面高さを低
くできるとともに、駆動軸11の軸方向の寸法を短くで
き、テーブル20のコンパクト化が可能である。
According to such an arrangement, the height of the top surface of the table 20 can be lowered, and the axial dimension of the drive shaft 11 can be shortened, so that the table 20 can be made more compact.

なお、摩擦ローラの配置は対向する2位置に限らず任意
の角度位置であってもよく、あるいは駆動軸の所定位置
のまわりに3個以上の摩擦ローラを周方向に配列しても
よく、多数の摩擦ローラを用いる場合でも駆動軸の軸方
向の寸法を短くできる。
The arrangement of the friction rollers is not limited to two opposing positions, but may be at any angular position, or three or more friction rollers may be arranged in the circumferential direction around a predetermined position of the drive shaft. Even when using a friction roller, the axial dimension of the drive shaft can be shortened.

また、軸方向の配列と周方向の配列とを組み合わせても
よく、例えば駆動軸に沿って2個づつの摩擦ローラを周
方向に3列といったような配置を採用することにより、
コンパクト化に加えて設計上の自由度を高めることがで
きる。
Further, the axial arrangement and the circumferential arrangement may be combined, for example, by adopting an arrangement of three rows of two friction rollers in the circumferential direction along the drive shaft,
In addition to being more compact, it is possible to increase the degree of freedom in design.

さらに、第3図の実施例において、駆動軸を挟んで対向
配置された摩擦ローラを複数組配置するとともに、対向
する各月の摩擦ローラのリード角を互いに一敗させてお
き、駆動軸の両側から同時に圧接させてもよい。
Furthermore, in the embodiment shown in FIG. 3, a plurality of sets of friction rollers are arranged opposite to each other with the drive shaft in between, and the lead angles of the friction rollers of each opposing month are made to be different from each other. They may be pressed together at the same time.

このような場合、摩擦ローラの圧接による駆動軸の撓み
等を互いに相殺させることができ、高荷重下での送り動
作等、摩擦ローラの駆動軸に対する圧接力が要求される
場合に有効である。
In such a case, the deflection of the drive shaft due to the pressure contact of the friction rollers can be mutually canceled out, which is effective when a pressure contact force of the friction rollers against the drive shaft is required, such as in a feeding operation under a high load.

一方、支持体の構造は実施にあたって適宜選択すればよ
いが、圧電素子の変位に応じて円滑に動作でき、かつ座
屈や不必要な変形が生じないように適当な強度を持たせ
ることが好ましく、少なくとも摩擦ローラのリード角を
正確に維持できるように構成することが望ましい。
On the other hand, the structure of the support body may be selected as appropriate in implementation, but it is preferable that it has appropriate strength so that it can operate smoothly according to the displacement of the piezoelectric element and does not buckle or cause unnecessary deformation. It is desirable that the structure is such that at least the lead angle of the friction roller can be maintained accurately.

また、支持体は圧電素子を介して取付けられて進退自在
な構造に限らず、−点を回動自在に支持された揺動アー
ム状あるいはてこ式のものであってもよい。
Furthermore, the support body is not limited to a structure that is attached via a piezoelectric element and can move forward and backward, but may also be a swing arm-like structure or a lever-type structure that is supported rotatably at the negative point.

例えば、第4図に示す実施例においては、棒状の支持体
31.32の略中間をテーブル20の内側面に回動自在
に支持し、各々の下端には駆動軸11を挟んで対向配置
されたl¥! t90−ラ33.34を等しいリード角
で支持するとともに、各支持体31.32の上端を略柱
状に形成されて長手方向に変位可能な圧電素子35の両
端に回動連結し、これらにより1mの離接手段30を形
成したものである。なお、この離接手段30は、図示し
ないが駆動軸11に沿って複数組配列されており、各組
の摩擦ローラ33.34のリード角は互いに異なる角度
に設定されている。
For example, in the embodiment shown in FIG. 4, the rod-shaped supports 31 and 32 are rotatably supported at their substantially middle portions on the inner surface of the table 20, and the lower ends of the rod-shaped supports 31 and 32 are arranged opposite to each other with the drive shaft 11 interposed therebetween. Ta l ¥! t90-ra 33.34 are supported at equal lead angles, and the upper ends of each support body 31.32 are rotatably connected to both ends of a piezoelectric element 35 which is formed into a substantially columnar shape and is displaceable in the longitudinal direction. A separating means 30 is formed. Although not shown, a plurality of sets of the separating means 30 are arranged along the drive shaft 11, and the lead angles of the friction rollers 33, 34 of each set are set to different angles.

また、本実施例のその他の部分において、前記第1図の
実施例と同様のものについては同し符号を附し、簡略化
のため説明を省略する。
In addition, in other parts of this embodiment, the same parts as those in the embodiment shown in FIG.

このような配置によれば、圧電素子35の変位により各
支持体31.32を回動させ、一対の摩擦ローラ33.
34で駆動軸11を挟持することにより駆動軸11に圧
接し、各々のリード角に基づく送り動作を行うことがで
きる。また、圧電素子35で発生される圧接力は両FJ
擦ローラ33.34に均等に分配されるため、互いの圧
接力に起因する駆動軸11の撓み等を確実に相殺させる
ことができる。
According to such an arrangement, the displacement of the piezoelectric element 35 causes each of the supports 31.32 to rotate, and the pair of friction rollers 33.32 to rotate.
By sandwiching the drive shaft 11 with 34, the drive shaft 11 is pressed against the drive shaft 11, and a feeding operation can be performed based on each lead angle. In addition, the pressure contact force generated by the piezoelectric element 35 is
Since the friction rollers 33 and 34 are evenly distributed, deflection of the drive shaft 11 caused by mutual pressure can be reliably offset.

ところで、摩擦送り機構1の駆動軸11は一定回転数で
駆動されるものに限らず、回転数可変式の  −モータ
15により回転駆動されるものであってもよく、簡単な
構造のまま−N幅広い送り速度変化を得ることができる
By the way, the drive shaft 11 of the friction feed mechanism 1 is not limited to one that is driven at a constant rotation speed, but may also be one that is rotationally driven by a -motor 15 of a variable rotation speed type. A wide range of feed rate changes can be obtained.

一例として、前記実施例において、モータ15に4相ハ
イプリント型ステンプモータを用いた場合について説明
する。
As an example, a case will be described in which a four-phase high print type step motor is used as the motor 15 in the above embodiment.

このモータ15は、定電流チゴンパ駆動時には最高速度
20回転/秒程度の高速回転を行い、定電圧ミニステン
プ駆動時には最小分解能10000パルス/回転程度の
精密回転を実現可能である。ここで、摩擦ローラ23.
24のリード角Al、 A2の設定を、駆動軸11の一
回転あたりの送りピッチP1が5mm、送りピッチP2
がIIとなるように調整しておくとすると、モータ15
の高速回転時に摩擦ローラ23.24を選択することに
より最高速度を100mm/seeまたは20mm/s
ecのいずれかに切換え可能であり、モータ15の精密
回転時には最小分解能を0.5μm/パルスまたは0.
1μm/パルスのいずれかを切換え可能となる。従って
、モータ15自体の切換えに加えて摩擦ローラ23.2
4の選択により、高速および中速のネ■調整動作および
中精密送り、高精密送りの2通りの精密位置合わせ動作
が行え、状況に応じた多様な設定が可能となる。
This motor 15 performs high-speed rotation at a maximum speed of about 20 revolutions/second when driven by a constant current chigonpa, and can realize precise rotation with a minimum resolution of about 10,000 pulses/rotation when driven by a constant voltage mini-temperature. Here, the friction roller 23.
24, the lead angles Al and A2 are set such that the feed pitch P1 per revolution of the drive shaft 11 is 5 mm, and the feed pitch P2 is 5 mm.
If the motor 15 is adjusted so that it becomes II,
By selecting the friction rollers 23 and 24 when rotating at high speed, the maximum speed can be set to 100 mm/see or 20 mm/s.
It is possible to switch between ec and ec, and when the motor 15 is precisely rotated, the minimum resolution can be set to 0.5 μm/pulse or 0.5 μm/pulse.
It becomes possible to switch between 1 μm/pulse. Therefore, in addition to switching the motor 15 itself, the friction roller 23.2
By selecting 4, two kinds of precision positioning operations can be performed: high-speed and medium-speed adjustment operations, medium-precision feed, and high-precision feed, and various settings can be made depending on the situation.

また、前記実施例においては、送り速度の切換え毎に駆
動軸11を停止させていたが、摩擦ローラ23、24の
いずれも駆動軸11に圧接されない状態ではテーブル2
0の送り動作も解除されるため、切換え時に駆動軸11
を停止させな(でもよい。この場合、モータ15は常時
回転され続けるため、一定回転を正確に維持すればよい
、回転数制御が容易であるとともに、回転の再開時等の
回転安定待ち時間が不要となり、送り動作の切換えをス
ピーデイに行うことができる。また、各摩擦ローラ23
.24は駆動軸11に摩擦接触するものであるため、一
定回転している駆動軸11と接触する際には適宜スリッ
プして衝撃的な動作を緩和でき、テーブル20に与える
ショックや各構造部分にかかる無理な力を低く抑えるこ
とができる。
Further, in the embodiment described above, the drive shaft 11 was stopped each time the feed speed was changed, but when neither of the friction rollers 23 and 24 is in pressure contact with the drive shaft 11, the table 2
Since the feed operation of 0 is also canceled, the drive shaft 11
In this case, since the motor 15 continues to rotate at all times, it is only necessary to accurately maintain a constant rotation, which makes it easy to control the rotation speed, and reduces the waiting time for rotation stabilization when restarting rotation, etc. This eliminates the need for each friction roller 23, allowing for speedy switching of feeding operations.
.. 24 is in frictional contact with the drive shaft 11, so when it comes into contact with the drive shaft 11, which is rotating at a constant rate, it can slip as appropriate to alleviate the impact movement, thereby reducing the shock given to the table 20 and the various structural parts. This unreasonable force can be suppressed to a low level.

さらに、摩擦送り機構1が適用される相対移動する二部
材はヘッド10およびテーブル20に限らず、例えば工
作機械のコラムとヘッド等であってもよく、本発明は多
様な送り動作部分に適用できるものである。
Furthermore, the two members that move relative to each other to which the friction feed mechanism 1 is applied are not limited to the head 10 and the table 20, but may also be, for example, a column and head of a machine tool, and the present invention can be applied to various feed operation parts. It is something.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の摩擦送り機構によれば
、複数の送りピッチの切換えを正確かつ簡単に行えると
ともに、構jhを簡略化することができる。
As explained above, according to the friction feed mechanism of the present invention, it is possible to accurately and easily switch between a plurality of feed pitches, and the structure jh can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側面図、第2図は前記
実施例の上面図、第3図および第4回は本発明のそれぞ
れ異なる実施例を示す断面図である。 1・・・摩擦送り機構、2・・・案内機構、to、 2
0・・・相対移動する二部材であるベツドおよびテーブ
ル、11・・・駆動軸、21.22.31.32・・・
支持体、23.24゜33、34・・・摩擦ローラ、2
5.26.35・・・圧電素子、27・・・操作装置、
28.29.30・・・離接手段。
FIG. 1 is a side view showing one embodiment of the present invention, FIG. 2 is a top view of the embodiment, and FIGS. 3 and 4 are sectional views showing different embodiments of the present invention. 1... Friction feed mechanism, 2... Guide mechanism, to, 2
0... Bed and table which are two members that move relative to each other, 11... Drive shaft, 21.22.31.32...
Support body, 23.24° 33, 34...Friction roller, 2
5.26.35... Piezoelectric element, 27... Operating device,
28.29.30...Detachment means.

Claims (1)

【特許請求の範囲】[Claims] (1)相対移動可能な二部材の一方に回転する駆動軸を
設け、他方の部材には各々前記駆動軸の周面に転動可能
かつ互いに異なるリード角で傾斜配置された複数の摩擦
ローラを設け、これらの摩擦ローラを各々独立した支持
体に支持するとともに、各支持体には圧電素子の変位に
より各摩擦ローラを駆動軸の周面に圧接可能な離接手段
を設けたことを特徴とする摩擦送り機構。
(1) One of two relatively movable members is provided with a rotating drive shaft, and the other member is provided with a plurality of friction rollers that can roll on the circumferential surface of the drive shaft and are inclined at different lead angles. The friction rollers are each supported by independent supports, and each support is provided with a contact/separation means that can press each friction roller against the circumferential surface of the drive shaft by displacement of a piezoelectric element. Friction feed mechanism.
JP14664688A 1988-06-13 1988-06-13 Friction feed mechanism Expired - Fee Related JPH0673791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14664688A JPH0673791B2 (en) 1988-06-13 1988-06-13 Friction feed mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14664688A JPH0673791B2 (en) 1988-06-13 1988-06-13 Friction feed mechanism

Publications (2)

Publication Number Publication Date
JPH01316145A true JPH01316145A (en) 1989-12-21
JPH0673791B2 JPH0673791B2 (en) 1994-09-21

Family

ID=15412438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14664688A Expired - Fee Related JPH0673791B2 (en) 1988-06-13 1988-06-13 Friction feed mechanism

Country Status (1)

Country Link
JP (1) JPH0673791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044356B2 (en) * 2003-12-11 2006-05-16 Texas Instruments Incorporated Roller wire brake for wire bonding machine
JP2007127146A (en) * 2005-11-01 2007-05-24 Moritex Corp Linear feeding mechanism
JP2015064240A (en) * 2013-09-24 2015-04-09 株式会社ミツトヨ Feeding mechanism and shape measuring machine
CN111816376A (en) * 2020-07-14 2020-10-23 翟修亮 Automatic winding device for acetate cloth adhesive tape of automobile wire harness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044356B2 (en) * 2003-12-11 2006-05-16 Texas Instruments Incorporated Roller wire brake for wire bonding machine
US7565995B2 (en) 2003-12-11 2009-07-28 Texas Instruments Incorporated Roller wire brake for wire bonding machine
JP2007127146A (en) * 2005-11-01 2007-05-24 Moritex Corp Linear feeding mechanism
JP2015064240A (en) * 2013-09-24 2015-04-09 株式会社ミツトヨ Feeding mechanism and shape measuring machine
CN111816376A (en) * 2020-07-14 2020-10-23 翟修亮 Automatic winding device for acetate cloth adhesive tape of automobile wire harness
CN111816376B (en) * 2020-07-14 2021-10-19 山东望声电子科技有限公司 Automatic winding device for acetate cloth adhesive tape of automobile wire harness

Also Published As

Publication number Publication date
JPH0673791B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JP5643957B2 (en) Piezoelectric actuator mechanism
JP4812488B2 (en) Super finishing method of roller bearing raceway
JPH01316145A (en) Friction feed mechanism
JP4812489B2 (en) Super finishing machine for roller bearing races
US4703666A (en) Linear drive device
JPH01274943A (en) Driving device for movable table
JP4782543B2 (en) Electric press device
JPH01316146A (en) Friction feed mechanism
JPH05138484A (en) Precision positioning fine moving feed device and system
JP4585339B2 (en) Roll forming device
JP2759276B2 (en) Hydrostatic bearing
JPH01177938A (en) Accurate positioning device
JP2886610B2 (en) Friction drive with non-contact support
JPS63300836A (en) Fine positioning mechanism
JPH0442132B2 (en)
JPH0570745B2 (en)
JPS63131208A (en) Slight rotation angle positioning device
JPS63308263A (en) Pre-load adjusting device for ball screw
JP2777687B2 (en) Pre-processing method and pre-processing device for wire rod
JPH0786403B2 (en) Variable lead screw feed mechanism
JP2508136Y2 (en) Roller guide spacing adjustment device
JP4367697B2 (en) Cam type tailstock
JPH059195U (en) Piezoelectric micro feeder
JP3975175B2 (en) Processing equipment
JPS6215011A (en) Electric discharge machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees