JPH05138484A - Precision positioning fine moving feed device and system - Google Patents

Precision positioning fine moving feed device and system

Info

Publication number
JPH05138484A
JPH05138484A JP32833591A JP32833591A JPH05138484A JP H05138484 A JPH05138484 A JP H05138484A JP 32833591 A JP32833591 A JP 32833591A JP 32833591 A JP32833591 A JP 32833591A JP H05138484 A JPH05138484 A JP H05138484A
Authority
JP
Japan
Prior art keywords
fine
feed
screw shaft
positioning
fine movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32833591A
Other languages
Japanese (ja)
Inventor
Yotaro Hatamura
村 洋 太 郎 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32833591A priority Critical patent/JPH05138484A/en
Priority to PCT/JP1992/001490 priority patent/WO1993009911A1/en
Priority to EP92923562A priority patent/EP0569595B1/en
Priority to US08/087,699 priority patent/US5644951A/en
Priority to DE69230137T priority patent/DE69230137T2/en
Publication of JPH05138484A publication Critical patent/JPH05138484A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a precision positioning fine moving feed device and system which are capable of taking a large stroke high in resolution and speed and which are compact and strong against a load in the shaft direction and against a moment load, and to eliminate a problem of small vibration at the time of positioning. CONSTITUTION:A shaft direction expansion part 6 is provided on a nut part 5 screwed in a feed screw shaft 3, coarse motion is carried out by the feed screw shaft 3 and a screw feeding mechanism of the nut part 5, and fine moving is carried out by the shaft direction expansive part 6. The shaft direction expansive part 6 is furnished with an elastic member 7 which is free to elastically deform in the shaft direction and rigid in the rotational direction, a small displacement means 8 free to expand in the shaft direction and a detection means 9 to detect shaft direction displacement of the elastic member 7, and it is constituted to control a stroke of the small displacement means 8 in accordance with a detected value detected by the detection means 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば工作機械やロ
ボット等の、精密な送りと位置決めを必要とする精密位
置決め微動送り装置およびシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine positioning fine feed device and system, such as a machine tool or a robot, which requires precise feed and positioning.

【0002】[0002]

【従来の技術】従来から、半導体産業やバイオ産業でよ
り高密度で高精度の送り装置が要求されているが、一般
の工作機械の加工精度でもミクロン単位の高精度化が望
まれるようになりつつある。
2. Description of the Related Art Conventionally, there has been a demand for a higher density and higher precision feeding device in the semiconductor industry and the biotechnology industry. However, with regard to the machining precision of general machine tools, it has been desired to improve the precision to the micron level. It's starting.

【0003】従来の精密位置決めを行う場合の送り装置
としては、ボールねじ装置が多用されている。すなわ
ち、ねじ軸をパルスモータによって回転駆動することに
より、ねじ軸に螺合したナットを直線運動させて、ナッ
トに取りつけたテーブルの送りを制御するようになって
いる。
A ball screw device is often used as a conventional feeder for precision positioning. That is, by rotating the screw shaft by a pulse motor, the nut screwed onto the screw shaft is moved linearly to control the feed of the table attached to the nut.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のボール
ねじ装置の分解能は、ねじ軸のリードとねじ軸を回転さ
せるモータの分解能(パルス数/回転数)に依存し、送
り装置の分解能を高めるためには小リードのボールね
じ、高分解能のモータが必要となる。
However, the resolution of the conventional ball screw device depends on the resolution (pulse number / rotation number) of the lead of the screw shaft and the motor for rotating the screw shaft, and enhances the resolution of the feeding device. Therefore, a ball screw with a small lead and a motor with high resolution are required.

【0005】ところが、ねじ軸のリードを小さくする程
加工誤差の影響が大きくなり、リードを小さくすること
が困難である。また、モータを高分解能にするには、エ
ンコーダの高精度化と高分解能化が必要となる。しか
し、エンコーダの高精度,高分解能化を図るためには、
エンコーダのスリットを機械的により細かく切る必要が
あり、加工精度上の限界がある。
However, as the lead of the screw shaft is made smaller, the influence of machining error becomes larger, and it is difficult to make the lead smaller. Further, in order to increase the resolution of the motor, it is necessary to improve the accuracy and resolution of the encoder. However, in order to increase the accuracy and resolution of the encoder,
It is necessary to mechanically cut the slits of the encoder into smaller pieces, which limits processing accuracy.

【0006】また、分解能を高めるために、ハーモニッ
クギヤを用いて駆動を制御したり、電気的に制御電流を
より細かく区分して制御するマイクロステップ方式等も
あるが、ミクロン,サブミクロン単位の分解能が限界で
あった。
Further, in order to improve the resolution, there is a microstep system in which the drive is controlled by using a harmonic gear, or the control current is electrically divided into finer parts, and the like. Was the limit.

【0007】さらに、電気的に高分解能化を図るために
は高い発信周波数の指令装置が必要となるという問題も
あった。
Further, there is also a problem that a command device having a high transmission frequency is required in order to electrically improve the resolution.

【0008】一方、ナノメータ単位の位置決めを行うた
めに、圧電素子,電歪素子等の微小変位手段を用いた送
り装置も知られているが、圧電素子等の最大変位幅は非
常に小さいので、ストロークが極端に短いという大きな
問題があった。
On the other hand, a feeding device using a minute displacement means such as a piezoelectric element or an electrostrictive element for positioning in nanometer units is also known, but the maximum displacement width of the piezoelectric element is very small. There was a big problem that the stroke was extremely short.

【0009】そこで、微小変位手段のストロークを長く
するために、インチワーム(尺取虫)機構と呼ばれる送
り装置が考え出され、このようなインチワーム機構10
0を用いた微動テーブル101をボールねじ装置102
を用いた粗動テーブル103の上に組み付け、粗動の位
置決めをボールねじ装置102で行い、精密な位置決め
をインチワーム機構100で行う装置も提案されている
(図9(a) 参照)。
Therefore, in order to lengthen the stroke of the minute displacement means, a feeder called an inchworm (measuring insect) mechanism has been devised, and such an inchworm mechanism 10 is used.
The fine movement table 101 using the ball screw device 102
There is also proposed a device which is mounted on a coarse movement table 103 using a ball screw device 102 for coarse movement positioning and an inch worm mechanism 100 for precise positioning (see FIG. 9 (a)).

【0010】インチワーム機構100とは、図9(b) に
示すように、シャフト104に嵌合される第1,第2,
第3圧電シリンダ105,106,107から構成され
る。そして、第1圧電シリンダ105に電圧を印加して
シャフト104にクランプした状態で第2圧電シリンダ
106を伸長させ、所定長さだけ第3圧電シリンダ10
7を図中右側に送る。次に第1圧電シリンダ105を自
由状態にしてクランプを解除し、第3圧電シリンダ10
7に所定の電圧を印加してシャフト104にクランプ
し、第2圧電シリンダ106を収縮させて第1圧電シリ
ンダ105を図中右側に送る。このように、各第1,第
2,第3圧電シリンダ105,106,107を繰り返
して動作させることにより直線方向に移動させるように
したものである。
The inchworm mechanism 100 is, as shown in FIG. 9 (b), the first, second and third parts fitted to the shaft 104.
It is composed of the third piezoelectric cylinders 105, 106 and 107. Then, a voltage is applied to the first piezoelectric cylinder 105 and the second piezoelectric cylinder 106 is extended while being clamped on the shaft 104, and the third piezoelectric cylinder 10 is extended by a predetermined length.
7 is sent to the right side in the figure. Next, the first piezoelectric cylinder 105 is released to release the clamp, and the third piezoelectric cylinder 10 is released.
A predetermined voltage is applied to 7 and clamped on the shaft 104, the second piezoelectric cylinder 106 is contracted, and the first piezoelectric cylinder 105 is sent to the right side in the drawing. In this way, the first, second, and third piezoelectric cylinders 105, 106, and 107 are repeatedly operated to move in the linear direction.

【0011】しかし、このような送り装置は、インチワ
ーム機構100の微動テーブル101をボールねじ装置
102を用いた粗動テーブル103の上に組み付けるた
めに、微動及び粗動テーブル101,103の組み付け
が困難である。
However, in such a feeding device, since the fine motion table 101 of the inchworm mechanism 100 is mounted on the coarse motion table 103 using the ball screw device 102, the fine motion and coarse motion tables 101 and 103 are assembled. Have difficulty.

【0012】また、ボールねじ装置102の粗動テーブ
ル103の上にインチワーム機構100の微動テーブル
101を載せる構成なので、装置の背が高くなりコンパ
クトにできない。このような問題は、多軸のテーブルを
構成すると致命的となる。
Further, since the fine movement table 101 of the inchworm mechanism 100 is mounted on the coarse movement table 103 of the ball screw device 102, the height of the device becomes high and it cannot be made compact. Such a problem becomes fatal when a multi-axis table is constructed.

【0013】さらに、インチワーム機構100の微動テ
ーブル101は第1,第3圧電シリンダ105,107
のクランプによって軸方向の位置を支えるため、軸方向
に大きな荷重が受けられず、また装置の背が高くなるの
でモーメント荷重に対しても弱いという問題があった。
Further, the fine movement table 101 of the inchworm mechanism 100 includes the first and third piezoelectric cylinders 105 and 107.
Since the clamp supports the axial position, a large load cannot be received in the axial direction, and the height of the device becomes high, so that there is a problem that it is weak against moment load.

【0014】一方、精密位置決めに関連して、従来の送
り装置では、位置決めの際に微小振動が発生するという
問題があった。これは、高速で位置決めした場合に、テ
ーブル等が慣性力により微小振動を起こす現象である。
このような微小振動が発生すると、テーブルの位置決め
完了時間が長くなり、応答性が悪いという問題が生じ
る。
On the other hand, in relation to the precision positioning, the conventional feeder has a problem that minute vibrations are generated during positioning. This is a phenomenon in which a table or the like causes minute vibrations due to inertial force when positioned at high speed.
When such a minute vibration occurs, the time required to complete the positioning of the table becomes long, which causes a problem of poor responsiveness.

【0015】本発明は上記した従来技術の課題を解決す
るためになされたもので、その目的とするところは、超
精密な分解能で送り可能で、しかもコンパクトな構成で
ストロークを大きくとり得る精密位置決め微動送り装置
およびシステムを実現することにある。
The present invention has been made to solve the above-mentioned problems of the prior art. The object of the present invention is to perform precise positioning capable of feeding with an ultra-precision resolution and having a compact structure and a large stroke. It is to realize a fine feed device and system.

【0016】さらに、微小振動の問題を解消して、位置
決め完了時間を大幅に短縮し得る精密位置決め微動送り
装置およびシステムを提供することにある。
Another object of the present invention is to provide a fine positioning fine feed device and system capable of resolving the problem of minute vibrations and greatly shortening the positioning completion time.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、本発明にあっては、送りねじ軸に螺合され送りねじ
軸の回転によって送りねじ軸に対して直線運動するナッ
ト部に、該ナット部に対して送りねじ軸の軸方向に伸縮
可能の軸方向伸縮部を設け、この軸方向伸縮部に被送り
部材を取付け、被送り部材の粗動送りを送りねじ軸によ
り行うと共に、微動送りを軸方向伸縮部により行うこと
を特徴とする。
In order to achieve the above object, according to the present invention, a nut portion screw-engaged with a feed screw shaft and linearly moving with respect to the feed screw shaft by rotation of the feed screw shaft is provided. An axial expansion / contraction portion that is expandable / contractible in the axial direction of the feed screw shaft is provided to the nut portion, a feed member is attached to this axial expansion / contraction portion, and coarse feed of the feed member is performed by the feed screw shaft. It is characterized in that the fine movement feeding is performed by the axially expanding / contracting portion.

【0018】軸方向伸縮部は、軸方向に弾性変形可能で
かつ回転方向には剛な弾性部材と、軸方向に伸縮可能な
微小変位手段と、ナット部に対する微動送り量を検出す
る微動送り量検出手段と、を具備することが好適であ
る。
The axial expansion / contraction portion is an elastic member which is elastically deformable in the axial direction and rigid in the rotational direction, a minute displacement means capable of expansion / contraction in the axial direction, and a fine movement feed amount for detecting a fine movement feed amount to the nut portion. It is preferable to include a detection means.

【0019】そして、微動送り量検出手段によって検出
された検出値に基づいて微小変位手段の伸縮量を制御す
ることが好ましい。
Then, it is preferable to control the expansion / contraction amount of the fine displacement means based on the detection value detected by the fine movement feed amount detection means.

【0020】微小変位手段は指令値を与えると該指令値
に比例して軸方向に変位する手段であり、たとえば、圧
電素子または電歪素子,流体圧や熱膨張を利用して伸縮
するアクチュエータ,ボイスコイル,磁歪素子等を利用
した各種アクチュエータを用いることができる。
The minute displacement means is a means for displacing in the axial direction in proportion to the command value when a command value is given. For example, a piezoelectric element or an electrostrictive element, an actuator that expands and contracts by utilizing fluid pressure or thermal expansion, Various actuators using a voice coil, a magnetostrictive element, etc. can be used.

【0021】また、被送り部材として可動テーブルを用
いる場合、ナット部に可動テーブルを取付け、可動テー
ブルを直線運動案内機構を介して移動自在に案内保持
し、送りねじ軸を回転駆動手段によって回転させて粗動
送りを行うように構成することが好ましい。
When a movable table is used as the member to be fed, the movable table is attached to the nut, the movable table is movably guided and held by the linear motion guide mechanism, and the feed screw shaft is rotated by the rotation driving means. It is preferable that the coarse feed is performed.

【0022】一方、本発明の精密位置決め微動送りシス
テムは、送りねじ軸と、この送りねじ軸に螺合されるナ
ット部と、ナット部に対して軸方向に伸縮可能に設けら
れる微小変位手段を有する軸方向伸縮部と、所定の粗動
制御目標信号に基づいて送りねじ軸を所定量回転駆動す
ることによってナット部を送りねじ軸に対して所定スト
ロークだけ粗動送りさせる回転駆動手段と、前記軸方向
伸縮部による微動送り量を検出する微動送り量検出手段
と、この微動送り量検出手段の出力と所定の微動制御目
標信号とに基づいて上記微小変位手段を駆動制御する微
動制御装置と、前記回転駆動手段に粗動制御目標信号
を、前記微小変位手段に微動制御目標信号を与える指令
装置と、を備えてなることを特徴とする。
On the other hand, the fine positioning fine movement feed system of the present invention comprises a feed screw shaft, a nut portion screwed to the feed screw shaft, and a minute displacement means provided so as to be capable of expanding and contracting in the axial direction with respect to the nut portion. An axially extending / contracting portion, and a rotary driving means for coarsely feeding the nut portion to the feed screw shaft by a predetermined stroke by rotating the feed screw shaft by a predetermined amount based on a predetermined coarse movement control target signal; A fine movement feed amount detecting means for detecting a fine movement feed amount by the axial expansion / contraction portion, and a fine movement control device for driving and controlling the fine displacement means based on an output of the fine movement feed amount detecting means and a predetermined fine movement control target signal, And a command device for giving a coarse movement control target signal to the rotation driving means and a fine movement control target signal to the minute displacement means.

【0023】送りねじ軸に対するナット部の粗動送り量
を検出する粗動送り量検出手段と、該粗動送り量検出手
段の出力と所定の粗動制御目標信号とに基づいて前記回
転駆動手段を駆動制御する粗動制御装置とを備えた構成
とすることが好ましい。
A coarse movement feed amount detecting means for detecting a coarse movement feed amount of the nut portion with respect to the feed screw shaft, and the rotation driving means based on an output of the coarse movement feed amount detecting means and a predetermined coarse movement control target signal. It is preferable to have a configuration including a coarse movement control device that drives and controls the.

【0024】また、指令装置から微動制御装置へ出力さ
れる微動制御目標信号をディジタル信号からアナログ信
号に変換する変換器を設け、前記回転駆動手段の制御は
ディジタル信号にて行い、軸方向伸縮部の制御はアナロ
グ信号にて行うことが好適である。
Further, a converter is provided for converting the fine movement control target signal output from the command device to the fine movement control device from a digital signal to an analog signal, and the rotation driving means is controlled by a digital signal, and the axial expansion / contraction unit. It is preferable that the control is performed by an analog signal.

【0025】[0025]

【作用】上記構成の精密位置決め微動送り装置にあって
は、送りねじ軸を回転駆動することによってナット部を
所定量だけ直線運動させ、ナット部に対して軸方向伸縮
部を介して取付けられる移動部材の粗動送りを行う。さ
らに、軸方向伸縮部を駆動することによって被送り部材
をナット部に対して微動送りし、超精密な分解能の送り
を可能にする。このように、軸方向伸縮部のストローク
は短いストロークであっても、送りねじ軸と軸方向伸縮
部を組み合わせることにより、長いストローク間を高速
に移動させることができる。
In the fine positioning fine movement feed device having the above-mentioned structure, the feed screw shaft is rotationally driven to linearly move the nut portion by a predetermined amount, and the movement is attached to the nut portion via the axial expansion / contraction portion. Coarse feed of the member is performed. Further, the driven member is finely fed to the nut portion by driving the axially extending / contracting portion, which enables feeding with super-precision resolution. In this way, even if the stroke of the axial expansion / contraction portion is short, by combining the feed screw shaft and the axial expansion / contraction portion, it is possible to move at high speed during a long stroke.

【0026】また、軸方向伸縮部をナット部に設けるた
めに、従来のようにテーブルを積み重ねるタイプの装置
に比べて、はるかにコンパクトにできる。
Further, since the axially extending / contracting portion is provided on the nut portion, it can be made much more compact than the conventional type in which the tables are stacked.

【0027】さらに、従来のインチワーム機構のように
軸をクランプして軸方向の位置を支えるものではなく、
軸方向伸縮部および送りねじ軸によって位置決め支持す
るので、従来のインチワーム機構に比べて大きな軸方向
荷重を受けることができ、また装置構成の背も低くでき
るので、モーメント荷重に対しても強い。
Further, unlike the conventional inchworm mechanism, it does not clamp the shaft to support the axial position,
Since it is positioned and supported by the axial expansion / contraction part and the feed screw shaft, it can receive a large axial load as compared with the conventional inchworm mechanism, and since the height of the device configuration can be made short, it is also strong against moment load.

【0028】また、位置決め時の微小振動は、たとえば
軸方向伸縮部に交流を印加して振動を打ち消すように動
作させることにより解消することができ、位置決め完了
に要する時間を大幅に短縮することができる。
Further, minute vibrations at the time of positioning can be eliminated by, for example, applying an alternating current to the axial expansion / contraction portion so as to cancel the vibrations, and the time required to complete the positioning can be greatly shortened. it can.

【0029】本発明の精密位置決め微動送りシステムに
あっては、指令装置に粗動および微動制御目標値を入力
する。そして、指令装置から出力される粗動制御目標信
号に基づいて回転駆動手段によって送りねじ軸が回転す
る。この送りねじ軸の回転に伴ってナット部が直線運動
し、ナット部と一体的に移動する軸方向伸縮部を介して
被送り部材が粗動送りされ、所定の粗動制御目標位置に
位置決めされる。
In the fine positioning fine movement feed system of the present invention, the coarse movement and fine movement control target values are input to the command device. Then, the feed screw shaft is rotated by the rotation drive means based on the coarse movement control target signal output from the command device. With the rotation of the feed screw shaft, the nut part moves linearly, and the member to be fed is coarsely fed through the axial expansion / contraction part that moves integrally with the nut part, and is positioned at a predetermined coarse movement control target position. It

【0030】また、微動送り検出手段の出力と所定の微
動制御目標信号とに基づいて微動制御装置により、軸方
向伸縮部の微小変位手段が伸縮駆動されて、移動部材が
所定の微動制御目標位置に位置決めされる。
Further, based on the output of the fine movement feed detection means and a predetermined fine movement control target signal, the fine movement control device drives the fine displacement means of the axial extension / contraction portion to extend / contract, thereby moving the moving member to a predetermined fine movement control target position. Be positioned at.

【0031】一方、送りねじ軸に対するナット部の粗動
送り量を検出する粗動送り量検出手段を設け、この粗動
送り量検出手段の出力と所定の粗動制御目標信号とに基
づいて回転駆動手段を駆動制御するようにすれば、より
精密に位置決め制御することができる。
On the other hand, coarse movement feed amount detecting means for detecting the coarse movement feed amount of the nut portion with respect to the feed screw shaft is provided, and rotation is performed based on the output of the coarse movement feed amount detecting means and a predetermined coarse movement control target signal. If the drive means is drive-controlled, the positioning can be controlled more precisely.

【0032】さらに、指令装置から微動制御装置へ出力
される微動制御目標信号をディジタル信号からアナログ
信号に変換する変換器を設け、回転駆動手段の制御をデ
ィジタル制御にて行い、軸方向伸縮部の制御をアナログ
制御にて行えば、アナログ制御とディジタル制御の指令
系統を一つの指令装置で可能となる。
Further, a converter for converting the fine motion control target signal output from the command device to the fine motion control device from a digital signal to an analog signal is provided, and the rotation driving means is controlled digitally to control the axial expansion / contraction portion. If the control is performed by analog control, the command system for analog control and digital control can be realized by one command device.

【0033】また、微動送り制御をアナログ制御で行う
ために、指令装置に微動制御用の高周波発信回路が不要
となり、回路構成を単純化できる。
Further, since the fine movement feed control is performed by analog control, the command device does not require a high frequency oscillation circuit for fine movement control, and the circuit configuration can be simplified.

【0034】[0034]

【実施例】以下に本発明を図示の実施例に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to illustrated embodiments.

【0035】図1(a) は本発明の精密位置決め微動送り
装置を工作機械等のテーブル移送装置に適用した場合の
概念構成を示している。
FIG. 1 (a) shows a conceptual configuration when the fine positioning fine movement feed device of the present invention is applied to a table transfer device such as a machine tool.

【0036】すなわち、この精密位置決め微動送り装置
1は被送り部材としての可動テーブル2を直線方向に移
送するもので、送りねじ軸3と、この送りねじ軸3にボ
ール4を介して螺合されるナット部5と、このナット部
5に対して軸方向に伸縮可能な軸方向伸縮部6と、を具
備している。軸方向伸縮部6はナット部5の一方の端面
に一体的に設けられ、この軸方向伸縮部6に可動テーブ
ル2が取りつけられている。
That is, the fine positioning fine movement feed device 1 moves the movable table 2 as a fed member in a linear direction, and is screwed onto the feed screw shaft 3 and the feed screw shaft 3 via balls 4. A nut portion 5 and an axially stretchable portion 6 that is axially stretchable with respect to the nut portion 5. The axial expansion / contraction portion 6 is integrally provided on one end surface of the nut portion 5, and the movable table 2 is attached to the axial expansion / contraction portion 6.

【0037】そして、送りねじ軸3の回転によってナッ
ト部5が軸方向に所定量送られ、テーブルは軸方向伸縮
部6を介してナット部5と一体的に移動して所定量粗動
送りされる。さらに、軸方向伸縮部6を軸方向に伸縮さ
せることによってテーブルの微動送りを行い精密な位置
決め行うようになっている。
Then, the nut portion 5 is fed by a predetermined amount in the axial direction by the rotation of the feed screw shaft 3, and the table is moved integrally with the nut portion 5 via the axial expansion / contraction portion 6 and is coarsely fed by the predetermined amount. It Further, the axial expansion / contraction part 6 is expanded / contracted in the axial direction to feed the table in fine movements for precise positioning.

【0038】図1(b) は軸方向伸縮部6の概念的な構成
を示している。この軸方向伸縮部6は、軸方向に弾性変
形可能でかつ回転方向には剛な弾性部材7と、軸方向に
伸縮可能な圧電素子や電歪素子等の微小変位手段8と、
軸方向伸縮部6の軸方向の伸縮量、すなわち微動送り量
を検出する微動送り量検出手段としての変位検出手段9
と、を具備し、変位検出手段9によって検出された検出
値に基づいて微小変位手段8のストロークを制御するよ
うになっている。
FIG. 1B shows a conceptual structure of the axial expansion / contraction part 6. The axial expansion / contraction part 6 includes an elastic member 7 elastically deformable in the axial direction and rigid in the rotation direction, and a minute displacement means 8 such as an axially expandable / contractible piezoelectric element or electrostrictive element.
Displacement detection means 9 as fine movement feed amount detection means for detecting the amount of axial extension / contraction of the axial extension / contraction part 6, that is, the fine movement feed amount.
And the stroke of the minute displacement means 8 is controlled based on the detection value detected by the displacement detection means 9.

【0039】微小変位手段としては、圧電素子や電歪素
子の他に,物体の熱膨張を利用して伸縮させる熱アクチ
ュエータや、図1(c) ,(d) に示すような流体圧によっ
て伸縮するアクチュエータ8a、その他ボイスコイルや
磁歪素子等、要するに指令値に基づいて指令値に比例し
て伸縮する各種アクチュエータを適用することができ
る。
As the minute displacement means, in addition to the piezoelectric element and the electrostrictive element, a thermal actuator that expands and contracts by utilizing the thermal expansion of an object, and expansion and contraction by fluid pressure as shown in FIGS. 1 (c) and 1 (d) are used. It is possible to apply various actuators that expand and contract in proportion to the command value, that is, based on the command value, such as the actuator 8a that operates, the voice coil, and the magnetostrictive element.

【0040】また、変位検出手段としては、たとえば図
2(a) に示すような歪みゲージ等の抵抗式センサ9a、
同図(b) に示すような圧電素子を用いて変位を電圧変化
として検出するセンサ9b、同図(c) に示すような差動
トランスやうず電流センサ等の電磁誘導式センサ9c、
同図(d) に示すような静電容量式のセンサ、同図(e)に
示すような光ファイバ等を用いた光干渉方式のセンサ9
e等、その他微小変位を検出可能な種々のセンサを用い
ることができる。
Further, as the displacement detecting means, for example, a resistance type sensor 9a such as a strain gauge as shown in FIG. 2 (a),
A sensor 9b that detects displacement as a voltage change using a piezoelectric element as shown in FIG. 7B, an electromagnetic induction sensor 9c such as a differential transformer or an eddy current sensor as shown in FIG.
An electrostatic capacitance type sensor as shown in FIG. 2D, and an optical interference type sensor 9 using an optical fiber as shown in FIG. 2E.
It is possible to use various sensors such as e, which can detect minute displacements.

【0041】図3は本発明の精密位置決め微動送りシス
テムの制御構成を示している。
FIG. 3 shows the control configuration of the fine positioning fine movement feed system of the present invention.

【0042】移送される可動テーブル2は直線運動案内
機構17によって直線方向に案内されるようになってお
り、直線運動案内機構17は、軌道レール17aとこの
軌道レール17aに転動体17bを介して摺動自在に組
み付けられる案内機構本体17cと、から構成されてい
る。
The movable table 2 to be transferred is guided in a linear direction by a linear motion guide mechanism 17. The linear motion guide mechanism 17 has a track rail 17a and rolling elements 17b on the track rail 17a. The guide mechanism main body 17c is slidably assembled.

【0043】制御系は、大別して送りねじ軸3を駆動制
御する粗動制御系と、軸方向伸縮部6を制御する微動制
御系と、から構成されている。
The control system is roughly divided into a coarse movement control system for driving and controlling the feed screw shaft 3 and a fine movement control system for controlling the axial expansion / contraction portion 6.

【0044】粗動制御系は、可動テーブル2の位置を検
出するためのリニアスケール10と、送りねじ軸3を回
転駆動するための回転駆動手段としてのモータ11と、
このモータ11を駆動するためのモータドライバ12
と、モータドライバ12に粗動制御目標となる指令信号
を出力する指令装置13と、から構成されている。
The coarse movement control system includes a linear scale 10 for detecting the position of the movable table 2, a motor 11 as a rotation driving means for driving the feed screw shaft 3 to rotate,
Motor driver 12 for driving this motor 11
And a command device 13 for outputting to the motor driver 12 a command signal that is a target for coarse movement control.

【0045】一方、微動制御系は、微小変位手段8を駆
動するための微小変位手段ドライバ14と、微小変位手
段8の軸方向のストロークを検出するための変位検出手
段9と、この軸方向伸縮部6の動きを制御するための微
動制御装置15と、から構成されている。この微動制御
装置15には、指令装置13から微動制御目標としての
ディジタルの指令信号がD/Aコンバータ16を介して
アナログ信号に変換されて入力される。
On the other hand, the fine movement control system includes a fine displacement means driver 14 for driving the fine displacement means 8, a displacement detection means 9 for detecting a stroke of the fine displacement means 8 in the axial direction, and an expansion / contraction in the axial direction. And a fine movement control device 15 for controlling the movement of the section 6. A fine command control device 15 receives a digital command signal as a target of the fine motion control from the command device 13 after being converted into an analog signal via the D / A converter 16.

【0046】上記構成の精密位置決め微動送りシステム
にあっては、まず、指令装置13に目標とする送り量が
入力される。
In the fine positioning fine movement feed system having the above structure, first, the target feed amount is input to the command device 13.

【0047】この目標送り量に対応してモータドライバ
12に粗動制御目標となる指令信号が出力され、この指
令信号に基づいて、モータ11が回転駆動される。この
モータ11の駆動によって送りねじ軸3が回転し、送り
ねじ軸3の回転に応じてナット部5が直進し、可動テー
ブル2が所定位置まで粗動送りされ停止する。
A command signal as a coarse control target is output to the motor driver 12 corresponding to the target feed amount, and the motor 11 is rotationally driven based on the command signal. The feed screw shaft 3 is rotated by the drive of the motor 11, the nut portion 5 is moved straight according to the rotation of the feed screw shaft 3, and the movable table 2 is coarsely fed to a predetermined position and stopped.

【0048】粗動送りの制御は、粗動送り量検出手段と
してのリニアスケール10を用いることにより、可動テ
ーブル2の位置を常時モニタしながらモータドライバ1
2にフィードバックし、モータドライバ12を粗動制御
手段として機能させて目標位置との偏差を補正するクロ
ーズドループ制御とすることもできる。
The coarse feed is controlled by using the linear scale 10 as the coarse feed amount detecting means, so that the motor driver 1 is constantly monitored while monitoring the position of the movable table 2.
It is also possible to perform closed loop control in which the motor driver 12 is fed back to 2 to function as coarse movement control means to correct the deviation from the target position.

【0049】送りねじ軸3の停止後、軸方向伸縮部6に
より可動テーブル2の微動送りを行う。この微動送り
は、送りねじ軸3による粗動送りの分解能よりも精密な
分解能で送るもので、たとえば、ミクロン単位までの送
りを粗動送りで行い、ミクロン単位以下の送りを軸方向
伸縮部6で行うようになっている。
After the feed screw shaft 3 is stopped, the movable table 2 is finely moved by the axial expansion / contraction part 6. This fine movement feed is performed with a resolution that is more precise than the resolution of coarse movement feed by the feed screw shaft 3. For example, the feed up to the micron unit is performed by the coarse feed, and the feed in the micron unit or less is performed in the axial expansion / contraction unit 6. It is supposed to be done in.

【0050】すなわち、指令装置13からの微動制御目
標となる指令信号がD/Aコンバータ16によりアナロ
グ信号に変換されて微動制御装置15に入力される。こ
の指令信号に基づいて微小変位手段ドライバ14に駆動
信号が出力され、圧電素子等の微小変位手段8が伸縮作
動する。この微小変位手段8のストローク量は変位検出
手段9によって常時検出されて微動制御装置15にフィ
ードバックされ、可動テーブル2の位置が正確に決めら
れる。このように軸方向伸縮部6を用いることにより、
分解能はボールねじとは比較にならないナノメータ単位
の精密送りが可能になる。
That is, the command signal which is the target of the fine movement control from the command device 13 is converted into an analog signal by the D / A converter 16 and input to the fine movement control device 15. A drive signal is output to the micro displacement means driver 14 based on this command signal, and the micro displacement means 8 such as a piezoelectric element expands and contracts. The stroke amount of the minute displacement means 8 is constantly detected by the displacement detection means 9 and fed back to the fine movement control device 15 to accurately determine the position of the movable table 2. By using the axial expansion / contraction part 6 in this way,
The resolution enables precision feed in nanometer units, which is not comparable to ball screws.

【0051】また、軸方向伸縮部6は短いストロークで
あっても、送りねじ軸3によって長いストローク間を高
速に移動させることができる。
Further, even if the axial expansion / contraction part 6 has a short stroke, it can be moved at high speed during a long stroke by the feed screw shaft 3.

【0052】一方、送りねじ軸3のリードの加工誤差や
温度変化による送りねじ軸3の熱膨張等によって、入力
された目標位置との間に誤差があるものであるが、この
誤差を、軸方向伸縮部6を動作させることにより補正
し、可動テーブル2を正確に位置決めすることができ
る。
On the other hand, there is an error from the input target position due to the machining error of the lead of the feed screw shaft 3 or the thermal expansion of the feed screw shaft 3 due to the temperature change. The movable table 2 can be accurately positioned by performing correction by operating the direction expansion / contraction unit 6.

【0053】すなわち、微動制御装置15に予め送りね
じ軸3のリードの加工誤差や温度変化による送りねじ軸
3の軸方向の熱膨張量等のデータを入力し、このデータ
と指令装置13から入力された目標データから補正量を
演算すればよい。演算された補正量を微小変位手段ドラ
イバ14に入力し、この補正量を目標値として圧電素子
等の微小変位手段8を駆動すれば、可動テーブル2を目
標とする位置に精密に位置決めすることができる。
That is, data such as the machining error of the lead of the feed screw shaft 3 and the amount of thermal expansion in the axial direction of the feed screw shaft 3 due to the temperature change are input to the fine movement control device 15 in advance and input from this data and the command device 13. The correction amount may be calculated from the obtained target data. By inputting the calculated correction amount to the minute displacement means driver 14 and driving the minute displacement means 8 such as a piezoelectric element using this correction amount as a target value, the movable table 2 can be precisely positioned at a target position. it can.

【0054】また、送りねじ軸3の駆動モータ11はパ
ルスで制御し、軸方向伸縮部6は別のアナログ指令値で
制御する2つの異なる制御系で制御するために、高分解
能でありながら高周波発振の指令装置13でなくてもよ
く、回路構成を簡略化でき有利である。
Further, since the drive motor 11 for the feed screw shaft 3 is controlled by pulse and the axial expansion / contraction part 6 is controlled by two different control systems which are controlled by different analog command values, high resolution and high frequency are achieved. It is not necessary to use the oscillation command device 13, and the circuit configuration can be simplified, which is advantageous.

【0055】さらに、精密位置決めに関連して位置決め
時の微小振動の問題がある。これは高速で位置決めして
も可動テーブル2等が慣性力により微小振動を起こす現
象である。このような微小振動の問題も、軸方向伸縮部
6を振動を打ち消すように動作させることにより解消で
き、位置決め完了時間の大幅な短縮が可能となる。
Further, there is a problem of minute vibration during positioning in relation to the precise positioning. This is a phenomenon in which the movable table 2 or the like causes minute vibrations due to inertial force even when it is positioned at a high speed. The problem of such minute vibration can be solved by operating the axial expansion / contraction portion 6 so as to cancel the vibration, and the positioning completion time can be greatly shortened.

【0056】図4は本発明の精密位置決め微動送り装置
のより具体的な実施例を示すものである。
FIG. 4 shows a more specific embodiment of the fine positioning fine movement feed device of the present invention.

【0057】すなわち、この実施例装置は、送りねじ軸
32に螺合するナット部25と、軸方向伸縮部26と、
可動テーブル2が取付けられるフランジ部25aと、か
ら構成されており、ナット部25と軸方向伸縮部26と
フランジ部25aとが一体構造となっている。ナット部
51と送りねじ軸3のねじ溝間には、多数のボール4が
転動自在に介装されている。
That is, the apparatus of this embodiment has a nut portion 25 screwed onto the feed screw shaft 32, an axially extending / contracting portion 26,
The movable table 2 is attached to the flange portion 25a, and the nut portion 25, the axial expansion / contraction portion 26, and the flange portion 25a are integrally structured. A large number of balls 4 are rotatably interposed between the nut portion 51 and the thread groove of the feed screw shaft 3.

【0058】軸方向伸縮部26は、軸方向に弾性変形可
能で回転方向に剛な弾性部材27と、ナット部25とフ
ランジ部25aの対向面間に介在される圧電素子等の微
小変位手段28と、軸方向の変位を検出する変位検出手
段29と、から構成されている。
The axial expansion / contraction portion 26 is elastically deformable in the axial direction and rigid in the rotational direction, and a minute displacement means 28 such as a piezoelectric element interposed between the opposing surfaces of the nut portion 25 and the flange portion 25a. And displacement detecting means 29 for detecting the displacement in the axial direction.

【0059】弾性部材27は軸方向に対して直交する環
状平板形状の薄肉部によって構成される板ばねで、形状
的に軸方向に弾性変形可能で回転方向に剛な形状となっ
ている。弾性部材27の外端はナット部25に一体的に
接続され、内端がフランジ部25aに一体的に接続され
ている。
The elastic member 27 is a leaf spring composed of an annular flat plate-shaped thin portion orthogonal to the axial direction, and is elastically deformable in the axial direction and rigid in the rotational direction. The outer end of the elastic member 27 is integrally connected to the nut portion 25, and the inner end thereof is integrally connected to the flange portion 25a.

【0060】そして、変位検出手段29としては歪みゲ
ージが用いられて弾性部材27表面に貼着され、変位に
対応して弾性変形する弾性部材27の歪み量を検出する
ことによって微動送り量を検出するようになっている。
変位検出手段29の貼着位置は、図4(b) 及び(c) に示
すように、弾性部材27のもっとも歪みの大きい部分、
この図示例では弾性部材27の接続端部近傍に貼着して
感度を高めている。
A strain gauge is used as the displacement detecting means 29 and is attached to the surface of the elastic member 27, and the amount of fine movement is detected by detecting the amount of strain of the elastic member 27 that elastically deforms in response to the displacement. It is supposed to do.
As shown in FIGS. 4 (b) and 4 (c), the displacement detection means 29 is attached at a position where the elastic member 27 has the largest distortion,
In this illustrated example, the elastic member 27 is attached in the vicinity of the connection end to enhance the sensitivity.

【0061】弾性部材27は、図5(a) に示すような環
状平板形状としてもよく、同図(b),(c) に示すよう
に、適当な穴27aを設けた形状としてもよい。
The elastic member 27 may have an annular flat plate shape as shown in FIG. 5 (a) or may have a suitable hole 27a as shown in FIGS. 5 (b) and (c).

【0062】また、図6(a) 〜(c) には、微小変位手段
と弾性部材の配置構成例を示している。
6 (a) to 6 (c) show an example of the arrangement of the minute displacement means and the elastic member.

【0063】図6(a) は、弾性部材27と微小変位手段
28を共にリング状に形成して同心的に配置した例であ
る。
FIG. 6A shows an example in which the elastic member 27 and the minute displacement means 28 are both formed in a ring shape and arranged concentrically.

【0064】図6(b) は、棒状の微小変位手段28a
と、リング状の弾性部材27を用いたもので、棒状の微
小変位手段28aを3か所に配置した例を示している。
FIG. 6B shows a rod-shaped minute displacement means 28a.
In this example, a ring-shaped elastic member 27 is used, and rod-shaped minute displacement means 28a are arranged at three positions.

【0065】図6(c) は、棒状の微小変位手段28aを
用いると共に、弾性部材27bを棒状の微小変位手段2
8aを避けるように円周方向に分割したものである。
In FIG. 6 (c), the rod-shaped minute displacement means 28a is used, and the elastic member 27b is used as the rod-shaped minute displacement means 2.
It is divided in the circumferential direction so as to avoid 8a.

【0066】また、弾性部材27の形状としては、上記
したような軸方向に直交する薄肉の環状平板形状である
必要はなく、たとえば、図7(a) に示すように軸方向に
対して円錐状に傾斜する構造としてもよく、また図7
(b) に示すように軸方向と平行な薄肉円筒形状としても
よく、要するに軸方向に弾性変形可能で円周方向には剛
な形状を選択すればよい。
Further, the shape of the elastic member 27 does not have to be a thin annular flat plate shape orthogonal to the axial direction as described above. For example, as shown in FIG. It is also possible to have a structure inclining in a circular shape, and FIG.
As shown in (b), a thin-walled cylindrical shape parallel to the axial direction may be used. In short, a shape that is elastically deformable in the axial direction and rigid in the circumferential direction may be selected.

【0067】以上の実施例はナット部と軸方向伸縮部が
一体構造となっている場合を示したが、場合によって
は、図8に示すように別体構成としてもよい。
In the above embodiment, the nut portion and the axially extending / contracting portion are integrally formed, but in some cases, they may be formed separately as shown in FIG.

【0068】すなわち、軸方向伸縮部36は、弾性部材
37と圧電素子等の微小変位手段38とが、互いに平行
に対向配置される環状の第1,第2ホルダ36a,36
bの間に介在されている。弾性部材37は、図4に示し
た実施例と同様に環状平板状の薄肉部により構成される
板ばねであり、その内端が第1ホルダ36aに接合さ
れ、外端が第2ホルダ36bに接合されて一体構造とな
っている。また、変位検出手段39についても歪みゲー
ジ等の抵抗式センサが用いられ、弾性部材37の表面に
貼着されている。
That is, in the axial expansion / contraction part 36, the annular first and second holders 36a, 36 in which the elastic member 37 and the minute displacement means 38 such as a piezoelectric element are arranged so as to face each other in parallel.
It is interposed between b. The elastic member 37 is a leaf spring composed of an annular flat plate-like thin portion as in the embodiment shown in FIG. 4, the inner end of which is joined to the first holder 36a and the outer end of which is attached to the second holder 36b. It is joined to form an integral structure. A resistance sensor such as a strain gauge is also used as the displacement detecting means 39 and is attached to the surface of the elastic member 37.

【0069】この実施例では微小変位手段38として棒
状のものが用いられ、弾性部材37を一部切り欠き、こ
の切り欠き穴37aに微小変位手段38を装着するよう
になっている。
In this embodiment, a rod-shaped member is used as the minute displacement means 38, the elastic member 37 is partially cut away, and the minute displacement means 38 is mounted in this cutout hole 37a.

【0070】そして、この軸方向伸縮部36をナット部
35の外周側に組みつけ、第1ホルダ36aをナット部
35のフランジ35aに接合し、第2ホルダ36bをテ
ーブル2に取付けている。
The axial expansion / contraction portion 36 is assembled to the outer peripheral side of the nut portion 35, the first holder 36a is joined to the flange 35a of the nut portion 35, and the second holder 36b is attached to the table 2.

【0071】このような分割タイプの場合は、軸方向伸
縮部36とナット部35の接合部で誤差が生じるために
調整を要し、また特性も接合状態で変化するきらいがあ
る。この点、一体構造の場合は接合部がないために設計
通りの特性を得ることができ有利である。ただ、分割タ
イプの場合は比較的作り易い利点があり、一体とするか
分割タイプとするかは必要に応じて選択すればよい。
In the case of such a split type, an error occurs at the joint between the axially extending / contracting portion 36 and the nut portion 35, which requires adjustment, and the characteristics may change depending on the joint state. In this respect, in the case of the integral structure, since there is no joint portion, it is possible to obtain the characteristics as designed and is advantageous. However, the split type has an advantage that it is relatively easy to make, and it may be selected whether it is integrated or split type according to need.

【0072】なお、図5に示した弾性部材の形状、図6
に示す弾性部材と微小変位手段の配置構成、図7に示す
弾性部材の変形例等については、すべてこの分割タイプ
実施例に適用できることはもちろんである。
The shape of the elastic member shown in FIG.
It is needless to say that the arrangement configuration of the elastic member and the minute displacement means shown in FIG. 7, the modification of the elastic member shown in FIG. 7, and the like can all be applied to this split type embodiment.

【0073】[0073]

【発明の効果】以上説明したように、本発明は、送りね
じ軸とナット部によって粗動送りを行うと共に軸方向伸
縮部により微動送りをするようにしたので、分解能が高
く、しかもストロークの長い精密位置決め微動送り装置
を実現できる。
As described above, according to the present invention, coarse feed is performed by the feed screw shaft and nut portion and fine feed is performed by the axial expansion / contraction portion, so that the resolution is high and the stroke is long. A precise positioning and fine movement feeder can be realized.

【0074】また、軸方向伸縮部をナット部に設けるた
めに、従来のようにテーブルを積み重ねるタイプの装置
に比べて、はるかにコンパクトにできる。
Further, since the axially extending / contracting portion is provided on the nut portion, it can be made much more compact than the conventional type of apparatus that stacks tables.

【0075】さらに、従来のインチワーム機構のよう
に、クランプによって軸方向の位置を支えるものではな
く、微小変位手段および送りねじ軸によって位置決め支
持するので、軸方向の大きな荷重を受けることができ、
また装置構成も低くできるのでモーメント荷重に対して
も強い精密位置決め微動送り装置を実現できる。
Further, unlike the conventional inchworm mechanism, the clamp does not support the axial position, but the minute displacement means and the feed screw shaft positionally support so that a large axial load can be received.
Also, since the device structure can be made low, a fine positioning fine feed device that is strong against moment load can be realized.

【0076】さらにまた、位置決め時の微小振動の問題
については、軸方向伸縮部を振動を打ち消すように動作
させることにより解決することができ、短時間で位置決
めを完了することができる。
Furthermore, the problem of microvibration during positioning can be solved by operating the axial expansion / contraction part so as to cancel the vibration, and positioning can be completed in a short time.

【0077】一方、本発明の精密位置決め微動送りシス
テムによれば、精密位置決め及び微動送りを迅速かつ確
実に行うことができる。
On the other hand, according to the fine positioning fine movement feed system of the present invention, the fine positioning and fine movement feed can be performed quickly and reliably.

【0078】また、指令装置から微動制御装置へ出力さ
れる微動制御目標信号をディジタル信号からアナログ信
号に変換する変換器を設けておけば、微動制御と粗動制
御をの指令系統を一つの指令装置で行うことができる。
Further, if a converter for converting the fine motion control target signal output from the command device to the fine motion control device from a digital signal to an analog signal is provided, the command system for the fine motion control and the coarse motion control is provided as one command. It can be done in the device.

【0079】さらに、微動送り制御をアナログ制御で行
えば、指令装置に微動制御用の高周波発信回路が不要と
なり、回路構成を単純化でき、低コスト化を図ることが
できる。
Further, if the fine movement feed control is performed by analog control, the command device does not require a high frequency oscillation circuit for fine movement control, the circuit structure can be simplified, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a) は本発明の精密位置決め微動送り装置
の概念構成を示す図、同図(b)は同図(a) の軸方向伸縮
部の概念構成を示す図、同図(c) ,(d) は微小変位手段
として流体圧アクチュエータを用いた例を示す軸方向伸
縮部の構成図である。
FIG. 1 (a) is a diagram showing a conceptual configuration of a fine positioning fine movement feeding device of the present invention, FIG. 1 (b) is a diagram showing a conceptual configuration of an axial expansion / contraction portion of FIG. 1 (a), and FIG. (c) and (d) are configuration diagrams of the axial expansion / contraction part showing an example in which a fluid pressure actuator is used as the minute displacement means.

【図2】図2(a) 〜(e) は図1の軸方向伸縮部の変位検
出手段の各種態様を示す構成図である。
2 (a) to 2 (e) are configuration diagrams showing various modes of displacement detecting means of an axially expanding / contracting portion of FIG.

【図3】図3は本発明の精密位置決め微動送りシステム
の構成図である。
FIG. 3 is a block diagram of a fine positioning fine movement feed system of the present invention.

【図4】図4は本発明の精密位置決め微動送り装置をよ
り具体化した実施例を示すもので、同図(a) は全体縦断
面図、同図(b) ,(c) は同図(a) の軸方向伸縮部の作動
状態を説明するための要部断面図である。
FIG. 4 shows an embodiment in which the fine positioning fine movement feed device of the present invention is further embodied. FIG. 4 (a) is an overall longitudinal sectional view, and FIGS. 4 (b) and 4 (c) are same diagrams. FIG. 6 is a cross-sectional view of relevant parts for explaining an operating state of the axially stretchable part of (a).

【図5】図5(a) 〜(c) は図4の軸方向伸縮部の弾性部
材の各種変形例を示す平面図である。
5 (a) to 5 (c) are plan views showing various modifications of the elastic member of the axial expansion / contraction part of FIG.

【図6】図6(a) 〜(c) は図4の軸方向伸縮部の弾性部
材と微小変位手段の各種配置例を示す図である。
6 (a) to 6 (c) are views showing various arrangement examples of the elastic member and the minute displacement means of the axially stretchable portion of FIG.

【図7】図7(a) ,(b) は図4の軸方向伸縮部の弾性部
材の変形例を示す要部断面図である。
7 (a) and 7 (b) are main-portion cross-sectional views showing a modified example of the elastic member of the axially stretchable portion of FIG.

【図8】図8は本発明の精密位置決め微動送り装置の他
の実施例を示すもので、同図(a) は全体縦断面図、同図
(b) は軸方向伸縮部の縦断面図、同図(c) は軸方向伸縮
部の弾性部材の変形状態を示す要部拡大断面図である。
FIG. 8 shows another embodiment of the fine positioning fine movement feed device of the present invention. FIG. 8 (a) is an overall longitudinal sectional view, FIG.
(b) is a vertical cross-sectional view of the axially stretchable portion, and (c) is an enlarged cross-sectional view of essential parts showing a deformed state of the elastic member of the axially stretchable portion.

【図9】図9(a) は従来の送り装置の概略斜視図、同図
(b) は同図(a) のインチワーム機構の概略断面図であ
る。
9 (a) is a schematic perspective view of a conventional feeding device, FIG.
(b) is a schematic sectional view of the inchworm mechanism shown in (a).

【符号の説明】[Explanation of symbols]

1 精密位置決め微動送り装置 2 テーブル(被送り部材) 3 送りねじ軸 4 ボール 5,25,35 ナット部 6,26,36 軸方向伸縮部 7,27,37 弾性部材 8,28,38 微小変位手段 9,28,38 変位検出手段 11 モータ(回転駆動手段) 13 指令装置 14 微小変位手段ドライバ 15 微動制御装置 16 ディジタル,アナログ変換器 1 Precision Positioning Fine-motion Feeding Device 2 Table (Fed Member) 3 Feed Screw Shaft 4 Ball 5, 25, 35 Nut Part 6, 26, 36 Axial Expansion / Contraction Part 7, 27, 37 Elastic Member 8, 28, 38 Micro Displacement Means 9, 28, 38 Displacement detecting means 11 Motor (rotation driving means) 13 Command device 14 Micro displacement means driver 15 Fine motion control device 16 Digital, analog converter

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 送りねじ軸に螺合され送りねじ軸の回転
によって直線運動するナット部に、該ナット部に対して
送りねじ軸の軸方向に伸縮可能の軸方向伸縮部を設け、
該軸方向伸縮部に被送り部材を取付け、該被送り部材の
粗動送りを送りねじ軸により行うと共に、微動送りを軸
方向伸縮部により行うことを特徴とする精密位置決め微
動送り装置。
1. A nut portion which is screwed onto a feed screw shaft and moves linearly by the rotation of the feed screw shaft, is provided with an axial expanding / contracting portion which is expandable / contractible in the axial direction of the feed screw shaft with respect to the nut portion,
A fine positioning fine feed device characterized in that a fed member is attached to the axially extending / contracting portion, and coarse feed of the fed member is performed by a feed screw shaft, and fine movement is performed by the axial extending / contracting portion.
【請求項2】 軸方向伸縮部は、軸方向に弾性変形可能
でかつ回転方向には剛な弾性部材と、軸方向に伸縮可能
な微小変位手段と、ナット部に対する微動送り量を検出
する微動送り量検出手段と、を具備してなる請求項1に
記載の精密位置決め微動送り装置。
2. The axial expansion / contraction part is an elastic member that is elastically deformable in the axial direction and is rigid in the rotation direction, a minute displacement means that can be expanded / contracted in the axial direction, and a fine movement for detecting a fine movement feed amount to the nut portion. The fine positioning fine feed device according to claim 1, further comprising a feed amount detecting means.
【請求項3】 微動送り量検出手段によって検出された
検出値に基づいて微小変位手段の伸縮量を制御してなる
ことを特徴とする請求項2に記載の精密位置決め微動送
り装置。
3. The fine positioning fine feed apparatus according to claim 2, wherein the expansion / contraction amount of the fine displacement means is controlled based on the detection value detected by the fine movement feed amount detecting means.
【請求項4】 微小変位手段は、指令値を与えると該指
令値に比例して軸方向に変位する手段である請求項2ま
たは3に記載の精密位置決め微動送り装置。
4. The fine positioning fine movement feed device according to claim 2, wherein the fine displacement means is a means which, when a command value is given, is displaced in the axial direction in proportion to the command value.
【請求項5】 微小変位手段は圧電素子または電歪素子
により構成される請求項4に記載の精密位置決め微動送
り装置。
5. The fine positioning fine movement feed device according to claim 4, wherein the fine displacement means is composed of a piezoelectric element or an electrostrictive element.
【請求項6】微小変位手段が流体圧を利用して伸縮する
アクチュエータである請求項4に記載の精密位置決め微
動送り装置。
6. The fine positioning fine movement feed device according to claim 4, wherein the fine displacement means is an actuator that expands and contracts by utilizing fluid pressure.
【請求項7】 微小変位手段が熱膨張を利用して伸縮す
るアクチュエータである請求項4に記載の精密位置決め
微動送り装置。
7. The precision positioning fine movement feed device according to claim 4, wherein the fine displacement means is an actuator that expands and contracts by utilizing thermal expansion.
【請求項8】 微小変位手段がボイスコイルを利用した
アクチュエータである請求項4に記載の精密位置決め微
動送り装置。
8. The fine positioning fine movement feed device according to claim 4, wherein the fine displacement means is an actuator using a voice coil.
【請求項9】 微小変位手段が磁歪素子を利用したアク
チュエータである請求項4に記載の精密位置決め微動送
り装置。
9. The fine positioning fine feed device according to claim 4, wherein the fine displacement means is an actuator using a magnetostrictive element.
【請求項10】 ナット部に被送り部材としての可動テ
ーブルが取付けられ、該可動テーブルを直線運動案内機
構を介して移動自在に案内保持し、送りねじ軸を回転駆
動手段によって回転させて粗動送りを行う請求項1,
2,3,4,5,6または7に記載の精密位置決め微動
送り装置。
10. A movable table as a member to be fed is attached to the nut portion, the movable table is movably guided and held through a linear motion guide mechanism, and the feed screw shaft is rotated by a rotation driving means to perform coarse movement. Claim 1 for sending
The fine positioning fine feed device according to 2, 3, 4, 5, 6 or 7.
【請求項11】 送りねじ軸と、 該送りねじ軸に螺合されるナット部と、 該ナット部に対して軸方向に伸縮可能に設けられる微小
変位手段を有する軸方向伸縮部と、 所定の粗動制御目標信号に基づいて送りねじ軸を所定量
回転駆動することによってナット部を送りねじ軸に対し
て所定ストロークだけ粗動送りさせる回転駆動手段と、 前記軸方向伸縮部による微動送り量を検出する微動送り
量検出手段と、 該微動送り量検出手段の出力と所定の微動制御目標信号
とに基づいて上記微小変位手段を駆動制御する微動制御
装置と、 前記回転駆動手段に粗動制御目標信号を、前記微小変位
手段に微動制御目標信号を与える指令装置と、を備えて
なることを特徴とする精密位置決め微動送りシステム。
11. A feed screw shaft, a nut portion screwed to the feed screw shaft, an axially extending / contracting portion having a minute displacement means provided so as to be extendable / contractible in the axial direction with respect to the nut portion, and a predetermined portion. A rotation driving means for coarsely feeding the nut portion to the feed screw shaft by a predetermined stroke by rotating the feed screw shaft by a predetermined amount based on the coarse movement control target signal, and a fine movement feed amount by the axial expansion / contraction portion. A fine movement feed amount detecting means for detecting, a fine movement control device for driving and controlling the fine displacement means based on an output of the fine movement feed amount detecting means and a predetermined fine movement control target signal, and a coarse movement control target for the rotation driving means. A fine positioning fine movement feed system comprising: a command device for giving a signal to the fine displacement means to give a fine movement control target signal.
【請求項12】 送りねじ軸に対するナット部の粗動送
り量を検出する粗動送り量検出手段と、該粗動送り量検
出手段の出力と所定の粗動制御目標信号とに基づいて前
記回転駆動手段を駆動制御する粗動制御装置とを備えて
なる請求項11記載の精密位置決め微動送りシステム。
12. A coarse movement feed amount detecting means for detecting a coarse movement feed amount of a nut portion with respect to a feed screw shaft, and the rotation based on an output of the coarse movement feed amount detecting means and a predetermined coarse movement control target signal. 12. The fine positioning fine movement feed system according to claim 11, further comprising a coarse movement control device for driving and controlling the driving means.
【請求項13】 指令装置から微動制御装置へ出力され
る微動制御目標信号をディジタル信号からアナログ信号
に変換する変換器を設け、回転駆動手段の制御はディジ
タル信号にて行い、軸方向伸縮部の制御はアナログ信号
にて行う請求項11または12に記載の精密位置決め微
動送りシステム。
13. A converter for converting a fine movement control target signal output from a command device to a fine movement control device from a digital signal to an analog signal is provided, and the rotation driving means is controlled by a digital signal to control the axial expansion / contraction portion. The precise positioning fine feed system according to claim 11 or 12, wherein the control is performed by an analog signal.
JP32833591A 1991-11-15 1991-11-18 Precision positioning fine moving feed device and system Pending JPH05138484A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP32833591A JPH05138484A (en) 1991-11-18 1991-11-18 Precision positioning fine moving feed device and system
PCT/JP1992/001490 WO1993009911A1 (en) 1991-11-15 1992-11-13 Feed screw device and precisely positioning micromotion feed system
EP92923562A EP0569595B1 (en) 1991-11-15 1992-11-13 Feed screw device and precisely positioning micromotion feed system
US08/087,699 US5644951A (en) 1991-11-15 1992-11-13 Feed screw apparatus and precise positioning and fine feed system
DE69230137T DE69230137T2 (en) 1991-11-15 1992-11-13 FEED DEVICE WITH A SCREW AND WITH A FINE ADJUSTMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32833591A JPH05138484A (en) 1991-11-18 1991-11-18 Precision positioning fine moving feed device and system

Publications (1)

Publication Number Publication Date
JPH05138484A true JPH05138484A (en) 1993-06-01

Family

ID=18209088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32833591A Pending JPH05138484A (en) 1991-11-15 1991-11-18 Precision positioning fine moving feed device and system

Country Status (1)

Country Link
JP (1) JPH05138484A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233060A (en) * 1995-02-24 1996-09-10 Kyushu Toshiba Kikai Kk Ball screw device equipped with mechanism of fine displacement between double nuts
JP2006189129A (en) * 2005-01-07 2006-07-20 Nsk Ltd Axially inching mechanism provided with rotary mechanism and positioning device in which the axially inching mechanism is used
US7107693B2 (en) 2005-01-14 2006-09-19 Illinois Institute Of Technology Apparatus and method for precise angular positioning
CN102069415A (en) * 2010-12-23 2011-05-25 长春设备工艺研究所 High-rigidity and high-precision nut seat driving connection device
JP2011144927A (en) * 2011-02-01 2011-07-28 Nsk Ltd Positioning device
CN107061655A (en) * 2016-11-02 2017-08-18 广东理工学院 Ball guide screw nat and pre-tension method
CN113857919A (en) * 2021-09-18 2021-12-31 哈尔滨理工大学 Voice coil motor type micro-feeding device of fly-cutting machining tool
US11320028B2 (en) 2017-10-19 2022-05-03 Thk Co., Ltd. Preload detectable screw device
CN115533591A (en) * 2022-09-29 2022-12-30 江苏贵钰航空工业有限公司 Feeding device for high-precision industrial mother machine and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221240A (en) * 1984-04-17 1985-11-05 Citizen Watch Co Ltd Feed device
JPS63500362A (en) * 1985-07-23 1988-02-12 エ−イ− パブリツク リミテイド カンパニ− Machine Tools
JPS63193089A (en) * 1987-02-06 1988-08-10 株式会社日立製作所 Freedom-degree fine adjustment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221240A (en) * 1984-04-17 1985-11-05 Citizen Watch Co Ltd Feed device
JPS63500362A (en) * 1985-07-23 1988-02-12 エ−イ− パブリツク リミテイド カンパニ− Machine Tools
JPS63193089A (en) * 1987-02-06 1988-08-10 株式会社日立製作所 Freedom-degree fine adjustment device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233060A (en) * 1995-02-24 1996-09-10 Kyushu Toshiba Kikai Kk Ball screw device equipped with mechanism of fine displacement between double nuts
JP2006189129A (en) * 2005-01-07 2006-07-20 Nsk Ltd Axially inching mechanism provided with rotary mechanism and positioning device in which the axially inching mechanism is used
US7107693B2 (en) 2005-01-14 2006-09-19 Illinois Institute Of Technology Apparatus and method for precise angular positioning
CN102069415A (en) * 2010-12-23 2011-05-25 长春设备工艺研究所 High-rigidity and high-precision nut seat driving connection device
JP2011144927A (en) * 2011-02-01 2011-07-28 Nsk Ltd Positioning device
CN107061655A (en) * 2016-11-02 2017-08-18 广东理工学院 Ball guide screw nat and pre-tension method
US11320028B2 (en) 2017-10-19 2022-05-03 Thk Co., Ltd. Preload detectable screw device
CN113857919A (en) * 2021-09-18 2021-12-31 哈尔滨理工大学 Voice coil motor type micro-feeding device of fly-cutting machining tool
CN115533591A (en) * 2022-09-29 2022-12-30 江苏贵钰航空工业有限公司 Feeding device for high-precision industrial mother machine and control method thereof
CN115533591B (en) * 2022-09-29 2023-11-10 江苏贵钰航空工业有限公司 Feeding device for high-precision industrial master machine and control method thereof

Similar Documents

Publication Publication Date Title
WO1993009911A1 (en) Feed screw device and precisely positioning micromotion feed system
US8283837B2 (en) Piezoelectric actuator, piezoelectric actuator device, lens barrel, optical device and manufacturing method thereof
US4987526A (en) System to provide high speed, high accuracy motion
EP3301325A1 (en) Linear actuator
JPH05138484A (en) Precision positioning fine moving feed device and system
Fujita et al. Dynamic characteristics and dual control of a ball screw drive with integrated piezoelectric actuator
US5055760A (en) Linear actuator drive control apparatus
JP2886452B2 (en) Linear motion device with deformation detection means
US5097161A (en) Linear actuator
JPH07334245A (en) Ultra-precision feeding device, xy table using the same and table transferring device
US11290030B2 (en) Drive device and method for linear or rotary positioning
JPH05141498A (en) Feed screw device
JP2000176761A (en) Vertical axis linear motion mechanism
JPH07299700A (en) Attitude control system for machine tool and tool, and grinding system
JPH08233060A (en) Ball screw device equipped with mechanism of fine displacement between double nuts
Zhang et al. A linear piezomotor of high stiffness and nanometer resolution
JPH0230452A (en) Piezoelectric driving device
JP2004140946A (en) Actuator
Sato et al. Control and elimination of lead screw backlash for ultra-precision positioning
JPH11179605A (en) Non-circular boring device
JPS61159349A (en) Minute distance moving device
Matsubara et al. Nano-positioning drive with piezoelectric actuator integrated into support bearing unit of ball screw
JP4573604B2 (en) Feeder
JP3746199B2 (en) Positioning device
Yao et al. Synchronization Control Scheme for Hybrid Linear Actuator Based on One Common Position Sensor with Long Travel Range and Nanometer Resolution