JPH11179605A - Non-circular boring device - Google Patents

Non-circular boring device

Info

Publication number
JPH11179605A
JPH11179605A JP35148897A JP35148897A JPH11179605A JP H11179605 A JPH11179605 A JP H11179605A JP 35148897 A JP35148897 A JP 35148897A JP 35148897 A JP35148897 A JP 35148897A JP H11179605 A JPH11179605 A JP H11179605A
Authority
JP
Japan
Prior art keywords
boring
tool
piezoelectric element
circular
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35148897A
Other languages
Japanese (ja)
Other versions
JP4185176B2 (en
Inventor
Toshihiko Matsuguchi
敏彦 松口
Hiroki Hara
弘樹 原
Toshiro Higuchi
俊郎 樋口
Akihide Kin
明秀 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IZUMI KOGYO KK
Original Assignee
IZUMI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IZUMI KOGYO KK filed Critical IZUMI KOGYO KK
Priority to JP35148897A priority Critical patent/JP4185176B2/en
Publication of JPH11179605A publication Critical patent/JPH11179605A/en
Application granted granted Critical
Publication of JP4185176B2 publication Critical patent/JP4185176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)

Abstract

PROBLEM TO BE SOLVED: To work a complicated non-circular internal surface shape at a high speed and in high accuracy, by eliminating the necessity for manufacturing a master and a fixing jig in accordance with a work shape. SOLUTION: In a device applying non-circular boring work to a workpiece by mounting a boring tool 4 in a spindle 1 through a tool eccentric vibration device, synchronously with rotation of the spindle, and eccentrically vibrating the boring tool, eccentric vibration of the boring tool 4 is performed by a piezoelectric element 5. Here, a tool holder 3 is mounted in the spindle 1 through an elastic deformation unit 2, and deformation vibration is applied thereto by the piezoelectric element 5, so as to perform eccentric vibration of the boring tool 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばピストンに
ピストンピン穴を明ける場合のように、機械部品の円筒
状内面の中ぐり加工において、軸直角断面を非円形形状
に切削可能な中ぐり加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boring process capable of cutting a cross section perpendicular to an axis into a non-circular shape in boring of a cylindrical inner surface of a machine part, for example, when drilling a piston pin hole in a piston. Related to the device.

【0002】[0002]

【従来の技術】近年の内燃機関用ピストンにおいては、
そのピン穴にかかる圧力がますます増大する傾向にあ
り、従来の如くピン穴中心軸直角断面が真円のピン穴で
はこの圧力に抗することができず、亀裂を生じることも
稀ではなかった。これを解決するため、最近では軸直角
断面が非円形のピン穴が採用されるようになってきた。
2. Description of the Related Art In recent pistons for internal combustion engines,
The pressure on the pin hole tends to increase more and more, and the pin hole whose cross section perpendicular to the center axis of the pin hole is a perfect circle cannot withstand this pressure as before, and it is not uncommon for cracks to occur. . In order to solve this, a pin hole having a non-circular cross section perpendicular to the axis has recently been adopted.

【0003】而して、非円形の中ぐり加工を行うには、
これまで、倣い加工方式、油圧サーボ方式、サーボモー
タ方式、ワーク揺動方式などの加工方式が用いられてい
た。これら各方式の概要と問題点を略記すれば以下の通
りである。
[0003] In order to perform non-circular boring,
Heretofore, processing methods such as a copying processing method, a hydraulic servo method, a servomotor method, and a work swinging method have been used. The outline and problems of each of these systems are briefly described below.

【0004】倣い加工方式は、主軸と工具ホルダーとの
間に弾性変形体を設け、バネ力等で弾性変形体を軸直角
な一方向に変形させることにより、主軸の軸線に対して
変形量だけ工具ホルダーの軸線をずらせるようになって
いる。また、工具ホルダーの軸線をずらす方向にスタイ
ラスと工具(バイト)を設置する。一方、加工したい非
円形の円筒内面を有するマスタを、主軸と同心に工具ホ
ルダー外周ベッド上に固定する。このとき、工具ホルダ
ーに固定されたスタイラスを、弾性変形体に設けられた
バネ力等によりマスタ内面に押し付けるようにする。加
工時は、ワークを主軸と同心に取り付けた後、弾性変形
体の変形によりスタイラスがマスタ内面に押し付けられ
た状態で工具ホルダーが回転するので、マスタ内面に倣
って工具ホルダー及び工具は主軸に対して半径方向に振
動しながら回転する。その結果、ワーク内面は非円形形
状に加工される。
In the copying method, an elastically deformable body is provided between a main spindle and a tool holder, and the elastically deformable body is deformed in one direction perpendicular to the axis by a spring force or the like, so that an amount of the deformation with respect to the axis of the main spindle is reduced. The axis of the tool holder is shifted. In addition, the stylus and the tool (tool) are installed in the direction in which the axis of the tool holder is shifted. On the other hand, a master having a non-circular cylindrical inner surface to be machined is fixed on the outer peripheral bed of the tool holder concentrically with the spindle. At this time, the stylus fixed to the tool holder is pressed against the inner surface of the master by a spring force or the like provided on the elastically deformable body. At the time of machining, after the work is mounted concentrically with the spindle, the tool holder rotates while the stylus is pressed against the master inner surface due to deformation of the elastic deformation body, so the tool holder and tool follow the master inner surface with respect to the spindle. Rotate while vibrating in the radial direction. As a result, the inner surface of the work is processed into a non-circular shape.

【0005】このような倣い加工方式の問題点は、マス
タや固定治具(ベッドへの)の製作及び段取り替えに多
くの時間とコストがかかること、マスタへの倣いの追従
性の点から、加工形状に制限(特定の長円のみ加工可
能)があり、変化の大きい形状には対応できず、高速回
転加工も困難であること、などである。
[0005] The problems of such a copying process are that it takes a lot of time and cost to manufacture and set up a master and a fixing jig (on a bed), and that the copying of the master can be followed. There is a limitation on the processing shape (only a specific ellipse can be processed), it is not possible to cope with a shape having a large change, and it is difficult to perform high-speed rotation processing.

【0006】油圧サーボ方式は、主軸と工具ホルダーと
の間に弾性変形体を設け、油圧により弾性変形体を軸直
角な一方向に規定量変形させることにより、主軸の軸線
に対して変形量だけ工具ホルダーの軸線をずらせるよう
になっている。また、工具ホルダーの軸線をずらす方向
に工具を設置する。この場合、倣い加工方式と異なり、
非円形加工を行うには、軸方向の位置と回転角度毎の工
具の変位量(弾性変形体の変形量)を記憶させ、その通
り実行させるための油圧のコンピュータ制御が必要とな
る。切削抵抗が加わった場合の実際の工具変位をより精
度良く行うためには、工具変位量のフィードバック制御
を行う。
In the hydraulic servo system, an elastically deformable body is provided between a spindle and a tool holder, and the elastically deformable body is deformed by a hydraulic pressure in a predetermined direction in a direction perpendicular to the axis, so that only an amount of deformation with respect to the axis of the spindle is provided. The axis of the tool holder is shifted. Also, the tool is installed in a direction to shift the axis of the tool holder. In this case, unlike the copying method,
In order to perform the non-circular machining, it is necessary to store the amount of displacement of the tool (the amount of deformation of the elastically deformable body) for each position in the axial direction and the rotation angle, and to perform computer control of the hydraulic pressure to execute the processing. In order to more accurately perform actual tool displacement when a cutting force is applied, feedback control of the tool displacement is performed.

【0007】このような油圧サーボ方式の問題点は、油
圧制御による油圧シリンダの応答性が低いこと、油温の
変化で油圧が変わり加工精度に影響するため油温の管理
が必要となるが、この管理が難しいこと、そしてこれら
の理由により高速回転加工が困難であること、などであ
る。
The problems with such a hydraulic servo system are that the response of the hydraulic cylinder by the hydraulic control is low, and the oil temperature changes because the oil pressure changes due to the change in the oil temperature, and the oil temperature must be controlled. This management is difficult, and high-speed rotation processing is difficult for these reasons.

【0008】サーボモータ方式は、油圧サーボ方式にお
ける弾性変形体の変形を、主軸に取り付けたサーボモー
タにより行うようにしたもので、その点を除き油圧サー
ボ方式と同様である。このようなサーボモータ方式の問
題点は、頻繁にモータの正逆転を行うため、モータの慣
性力が増大し、ボールネジや送りテーブルに弾性変形が
発生すること、そのため、工具変位量の正確な制御がで
きず、応答性も悪くなり、最終的には加工精度も悪くな
ること、である。
The servomotor system is such that the elastically deformable body in the hydraulic servo system is deformed by a servomotor attached to the main shaft, and is similar to the hydraulic servo system except for this point. The problem with such a servo motor method is that the motor frequently rotates in the forward and reverse directions, thereby increasing the inertia of the motor and causing elastic deformation of the ball screw and the feed table. And the responsiveness is deteriorated, and finally the processing accuracy is also deteriorated.

【0009】以上の3種の方式は、ワークを固定し、工
具ホルダーを半径方向に全範囲にわたって振動させるの
に対して、ワーク揺動方式はワークの方を振動(揺動)
させるようにしたものである。ワークの揺動は、原理的
には前記3方式と同様に、倣い、油圧、サーボモータ等
の手段で行うことができる。このようなワーク揺動方式
の問題点は、原理的には全角度の揺動が可能であっても
実際には難しく、一方向の揺動(振動)しかできないこ
と、そのため加工可能な形状が限定(特定の長円のみ加
工可能)されること、ワークとその取付け治具の重量が
大きくなり、揺動による慣性力も大きくなるので、主軸
の高速回転に対応できないこと、などである。
In the above three methods, the work is fixed and the tool holder is vibrated in the radial direction over the entire range. On the other hand, the work oscillating method vibrates (oscillates) the work.
It is intended to be. The swing of the work can be performed by means of copying, hydraulic pressure, a servomotor, or the like, in principle, as in the above three methods. The problem with such a work swinging method is that, in principle, it is actually difficult even if swinging at all angles is possible, and only swinging (vibration) can be performed in one direction. That is, it is limited (only a specific ellipse can be processed), and the weight of the work and its mounting jig increases, and the inertia force due to the swing increases, so that it cannot cope with high-speed rotation of the main shaft.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためなされたものであり、その目的とする
ところは、加工形状に応じたマスタや固定治具を作製す
る必要がなく、複雑な非円形の内面形状を高速かつ高精
度に加工することが可能な非円形中ぐり加工装置を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to eliminate the need to manufacture a master or a fixing jig according to a processing shape. Another object of the present invention is to provide a non-circular boring apparatus capable of processing a complicated non-circular inner surface shape at high speed and with high accuracy.

【0011】[0011]

【課題を解決するための手段】上記の課題は、主軸に、
工具偏心振動装置を介して中ぐり工具を取り付け、主軸
の回転に同期して中ぐり工具を偏心振動させることによ
りワークに非円形中ぐり加工を施す装置において、圧電
素子により中ぐり工具の偏心振動を行わせることを特徴
とする非円形中ぐり加工装置によって達成できる。その
場合、主軸に弾性変形体を介して工具ホルダーを取り付
け、当該弾性変形体を圧電素子により変形振動させるこ
とにより、中ぐり工具の偏心振動を行わせるようにす
る。圧電素子の振動は、通常、中ぐり工具の取付け軸に
直角な1軸方向に加えるようにするが、場合によって
は、中ぐり工具の取付け軸に直角な2軸方向に加えるよ
うにしてもよい。上記圧電素子に代えて磁歪素子により
中ぐり工具の偏心振動を行わせるようにしてもよい。ま
た、上記弾性変形体の軸直角方向変位量を変位センサー
により検知してフィードバック制御を行うことが望まし
い。
Means for Solving the Problems The above-mentioned problems are mainly solved by
An eccentric vibration of a boring tool by a piezoelectric element in a device that mounts a boring tool via a tool eccentric vibration device and eccentrically vibrates the boring tool in synchronization with the rotation of the spindle Can be achieved by a non-circular boring apparatus. In that case, a tool holder is attached to the main shaft via an elastic deformable body, and the elastic deformable body is deformed and vibrated by the piezoelectric element, thereby causing eccentric vibration of the boring tool. Normally, the vibration of the piezoelectric element is applied in one axis direction perpendicular to the mounting axis of the boring tool, but in some cases, the vibration may be applied in two axial directions perpendicular to the mounting axis of the boring tool. . The eccentric vibration of the boring tool may be performed by a magnetostrictive element instead of the piezoelectric element. Further, it is desirable to perform feedback control by detecting the amount of displacement of the elastic deformation body in a direction perpendicular to the axis by a displacement sensor.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しつゝ本発明を
具体的に説明する。図1は、本発明に係る非円形中ぐり
加工装置の一実施例の概略図、図2は、その主軸先端部
の構成を示す斜視図、図3は、図1に示した加工装置の
制御系統図、図4は、本発明に係る非円形中ぐり加工装
置のもう1つの実施例の概略図、図5は、更に異なった
実施例の主軸先端部の構成を示す斜視図、図6は、図5
に示した実施例を主軸の先端側から見た拡大図、図7
は、本発明に係る非円形中ぐり加工装置によるピストン
ピン穴の加工例を示すグラフである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic view of an embodiment of a non-circular boring machine according to the present invention, FIG. 2 is a perspective view showing a configuration of a spindle tip portion, and FIG. 3 is a control of the machining device shown in FIG. System diagram, FIG. 4 is a schematic view of another embodiment of the non-circular boring apparatus according to the present invention, FIG. 5 is a perspective view showing a configuration of a spindle tip portion of still another embodiment, and FIG. , FIG.
7 is an enlarged view of the embodiment shown in FIG.
5 is a graph showing an example of processing a piston pin hole by the non-circular boring apparatus according to the present invention.

【0013】図1ないし図3中、1は加工装置の主軸、
2は主軸の先端に取り付けた弾性変形体、3は弾性変形
体の先端に取り付けた工具ホルダー、4は工具ホルダー
に取り付けた中ぐり工具、5は弾性変形体2の内部に設
けた圧電素子(又は磁歪素子)、6は弾性変形体2の軸
直角方向変位量を検知する変位センサー、7は主軸回転
用モータ、8は主軸の回転角検出用のロータリーエンコ
ーダ、9は変位センサー6の出力を取り出すと共に、圧
電素子5への駆動電流を供給するスリップリング、11
は加工送りその他の動作を制御するNC装置、12はN
C装置11からの制御信号及び変位センサー6、ロータ
リーエンコーダ8からの出力信号に基づいて圧電素子5
の動作を制御することにより、非円形中ぐり形状の加工
を制御するコンピューター、13はD/Aコンバータ
ー、14はA/Dコンバーター、15はコンピューター
12からの制御信号に基づいて圧電素子の動作を制御す
る圧電素子コントローラ、16は圧電素子5へ駆動電流
を供給する圧電素子ドライバ、21は送りテーブル、2
2は送りテーブルのX軸方向駆動用サーボモータ、23
はY軸方向駆動用サーボモータ、24は中ぐり加工を施
すべきワークである。
1 to 3, reference numeral 1 denotes a main shaft of a processing apparatus;
2 is an elastically deformable body attached to the tip of the main shaft, 3 is a tool holder attached to the tip of the elastically deformable body, 4 is a boring tool attached to the tool holder, 5 is a piezoelectric element provided inside the elastically deformable body 2 ( Or a magnetostrictive element), 6 is a displacement sensor for detecting the amount of displacement of the elastic deformation body 2 in the direction perpendicular to the axis, 7 is a motor for rotating the spindle, 8 is a rotary encoder for detecting the rotation angle of the spindle, and 9 is an output of the displacement sensor 6. A slip ring for taking out and supplying a drive current to the piezoelectric element 5;
Is an NC device for controlling machining feed and other operations, and 12 is N
Based on the control signal from the C device 11 and the output signals from the displacement sensor 6 and the rotary encoder 8, the piezoelectric element 5
, A computer that controls the processing of the non-circular boring shape, 13 is a D / A converter, 14 is an A / D converter, and 15 is a computer that controls the operation of the piezoelectric element based on a control signal from the computer 12. A piezoelectric element controller for controlling, a piezoelectric element driver 16 for supplying a drive current to the piezoelectric element 5, a feed table 21,
2 is a servo motor for driving the feed table in the X-axis direction;
Is a servomotor for driving in the Y-axis direction, and 24 is a work to be subjected to boring.

【0014】上記実施例において、主軸1に取り付けら
れた弾性変形体2に圧電素子又は磁歪素子5が組み付け
られ、この圧電素子又は磁歪素子5に、ロータリーエン
コーダ8で検知した主軸1の回転数及び回転角に同期す
るようスリップリング9を介して、所望の非円形軌跡に
合わせて制御された出力電圧をかける。これにより、弾
性変形体2を軸直角方向の一方向(工具4の取付け方
向)に加圧変形させ、弾性変形体と一体となった工具ホ
ルダー3及び工具4を弾性変形体の変形量分だけ軸直角
方向に変位させる。即ち、図2及び図3に示すように、
弾性変形体2の外壁面には凹溝2a及び2bが形成さ
れ、圧電素子5の伸縮振動によりこれらの溝より先端側
が図中において上下方向へ変位し、これによって、主軸
1の回転により工具ホルダー3が偏心回転する。この軸
直角方向の工具変位量を、NC装置11及びコンピュー
ター12を用いて、軸方向位置と回転角毎にコントロー
ルしながら主軸を回転させることによって、所望の非円
形中ぐり加工を行うことができる。ワーク24は、例え
ば図3に示した例においてはピストンであり、これに断
面が非円形のピン穴24aを中ぐり加工する様子を示し
ている。より精度のよい加工を行うため、弾性変形体2
の軸直角方向変位量を変位センサー6によって検知し、
フィードバック制御を行うことが望ましい。
In the above embodiment, the piezoelectric element or the magnetostrictive element 5 is assembled to the elastically deformable body 2 attached to the main shaft 1, and the rotational speed of the main shaft 1 detected by the rotary encoder 8 and the piezoelectric element or the magnetostrictive element 5 An output voltage controlled according to a desired non-circular locus is applied via the slip ring 9 so as to be synchronized with the rotation angle. As a result, the elastically deformable body 2 is pressurized and deformed in one direction perpendicular to the axis (the direction in which the tool 4 is attached), and the tool holder 3 and the tool 4 integrated with the elastically deformable body are moved by the amount of deformation of the elastically deformable body. Displace in the direction perpendicular to the axis. That is, as shown in FIGS. 2 and 3,
Concave grooves 2a and 2b are formed on the outer wall surface of the elastically deformable body 2, and the distal end side of these grooves is displaced in the vertical direction in the figure by the expansion and contraction vibration of the piezoelectric element 5, whereby the tool holder is rotated by the rotation of the main shaft 1. 3 rotates eccentrically. The desired non-circular boring can be performed by rotating the main shaft while controlling the amount of tool displacement in the direction perpendicular to the axis using the NC device 11 and the computer 12 for each axial position and rotation angle. . The work 24 is, for example, a piston in the example shown in FIG. 3, and shows a state in which a boring process is performed on a pin hole 24 a having a non-circular cross section. In order to perform more accurate processing, the elastic deformable body 2
Is detected by the displacement sensor 6 in the direction perpendicular to the axis of
It is desirable to perform feedback control.

【0015】この動作を、具体的加工工程により説明す
ると次の通りである。 (1)送りテーブル21上にワーク24をセットする。 (2)主軸回転用モーター7を回転させる。これにより主
軸1に取り付けてある弾性変形体2及び工具ホルダー3
も回転する。 (3)サーボモータ22により送りテーブル21を主軸側
へ移動させる。 (4)ワーク24が工具ホルダー3に取り付けた工具4の
近くの所定位置に達した時、コンピューター12から圧
電素子コントローラ15へ指令を送り、圧電素子ドライ
バ16を動作させる。 (5)圧電素子ドライバ16は、弾性変形体2の内部に設
けた圧電素子5へスリップリング9を通じて駆動電流を
供給する。 (6)圧電素子5はこの電流により変位し、弾性変形体2
を変形させる。これにより、弾性変形体の先端面に取り
付けてある工具ホルダー3及びこれに取り付けた工具4
も変位する。 (7)主軸1に取り付けたロータリーエンコーダ8により
主軸の回転角度位置を検出し、あらかじめコンピュータ
ー12に記憶してある形状に基づき加工断面の分割角度
位置に応じて圧電素子の変位量を変化させ、任意の形状
を加工する。 (8)弾性変形体2が変位する量は、変位センサー6で検
出し、その出力信号をスリップリング9を通じてコンピ
ューター12へ送って、圧電素子コントローラ15の動
作をフィードバック制御し、加工精度を向上させる。
This operation will be described below with reference to specific processing steps. (1) The work 24 is set on the feed table 21. (2) The spindle rotation motor 7 is rotated. As a result, the elastically deformable body 2 and the tool holder 3 attached to the spindle 1
Also rotate. (3) The feed table 21 is moved toward the spindle by the servo motor 22. (4) When the work 24 reaches a predetermined position near the tool 4 attached to the tool holder 3, a command is sent from the computer 12 to the piezoelectric element controller 15 to operate the piezoelectric element driver 16. (5) The piezoelectric element driver 16 supplies a drive current to the piezoelectric element 5 provided inside the elastic deformation body 2 through the slip ring 9. (6) The piezoelectric element 5 is displaced by this electric current,
To transform. As a result, the tool holder 3 attached to the distal end surface of the elastically deformable body and the tool 4 attached thereto
Also displaces. (7) The rotation angle position of the main shaft is detected by the rotary encoder 8 attached to the main shaft 1, and the displacement amount of the piezoelectric element is changed according to the division angle position of the processing cross section based on the shape stored in the computer 12 in advance. Process any shape. (8) The amount of displacement of the elastically deformable body 2 is detected by the displacement sensor 6 and the output signal is sent to the computer 12 through the slip ring 9 to feedback-control the operation of the piezoelectric element controller 15 to improve the processing accuracy. .

【0016】図4に示した実施例においては、圧電素子
5を弾性変形体2の外部に設けて、弾性変形体を変形さ
せるように構成してある。即ち、主軸1に支柱1aを設
け、工具ホルダー3の基部に取り付けたベアリング10
と支柱1aの間に圧電素子5を挿入し、圧電素子の伸縮
により工具ホルダー3をその軸直角方向に変位させるよ
うになっている。
In the embodiment shown in FIG. 4, the piezoelectric element 5 is provided outside the elastically deformable body 2 so as to deform the elastically deformable body. That is, a supporting column 1 a is provided on the main shaft 1, and a bearing 10 attached to the base of the tool holder 3 is provided.
The piezoelectric element 5 is inserted between the support 1a and the support 1a, and the tool holder 3 is displaced in a direction perpendicular to the axis thereof by expansion and contraction of the piezoelectric element.

【0017】次に、図5及び図6に示した実施例は、工
具ホルダー3の軸に直角な2軸方向に圧電素子の振動を
加えるようにしたものである。即ち、主軸1に支柱1a
及び1bを設け、工具ホルダー3の基部に取り付けたベ
アリング10と支柱1a及び1bの間にそれぞれ圧電素
子5A及び5Bを挿入して、互いの出力方向が90°に
なるように構成し、弾性変形体2を2軸方向に加圧変形
させるようになっている。その変形量は、変位センサー
6A及び6Bで検知し、フィードバック制御を行いなが
ら、工具の運動軌跡を2軸制御する。この方法によれ
ば、弾性変形体の駆動周波数の2倍の応答性が得られる
ため、1軸制御に比べ、より高速回転での安定した非円
形中ぐり加工が可能となる。
Next, in the embodiment shown in FIGS. 5 and 6, the vibration of the piezoelectric element is applied in two axial directions perpendicular to the axis of the tool holder 3. FIG. That is, the support 1a is attached to the main shaft 1.
And 1b, and the piezoelectric elements 5A and 5B are inserted between the bearing 10 attached to the base of the tool holder 3 and the columns 1a and 1b, respectively, so that the output directions of the piezoelectric elements 5A and 5B become 90 °, and elastic deformation is performed. The body 2 is deformed under pressure in two axial directions. The amount of deformation is detected by the displacement sensors 6A and 6B, and the axis of motion of the tool is biaxially controlled while performing feedback control. According to this method, a response twice as high as the driving frequency of the elastically deformable body can be obtained, so that stable non-circular boring at a higher rotation speed can be performed as compared with the one-axis control.

【0018】図7は、本発明に係る非円形中ぐり加工装
置を用いて、長径36mmの楕円形状のピストンピン穴
Pを加工した例を示している。グラフ上、0°の位置が
ピストンの頭部側、180°の位置がスカート側であ
る。
FIG. 7 shows an example in which an elliptical piston pin hole P having a long diameter of 36 mm is machined by using the non-circular boring machine according to the present invention. On the graph, the position at 0 ° is the head side of the piston, and the position at 180 ° is the skirt side.

【0019】[0019]

【発明の効果】本発明による非円形中ぐり加工装置は、
従来方式に比べて以下のような利点を有する。 (1)倣い加工方式に対して 倣いマスタ等の製作が不要となり、段取り替え時間の
短縮も含めて、コスト低減になる。 変化の大きい形状も加工でき、高速回転加工も可能と
なる。 (2)油圧サーボ方式に対して 油圧に比べて加圧の応答性がよい。 油を使わないため、油温による影響がなく、正確な制
御が可能となる。 これらの理由から、変化の大きい形状でも加工で
き、高速回転加工も可能となる。 同じくの理由から、同一形状、同一回転加工の場
合は特に加工精度が高い。 (3)サーボモータ方式に対して 頻繁なモータの正逆回転がないので、モータの慣性力
増大とボールネジ、送りテーブルの弾性変形もなく、正
確な制御が可能となる。 そのため、変化の大きい形状でも加工でき、高速回転
加工も可能となる。また、同一形状、同一回転加工の場
合の加工精度も高い。 (4)ワーク揺動方式に対して 工具を360°全方向に自在に変位可能なため、加工
可能形状が限定されず、さまざまな非円形の加工が可能
である。 重いワーク等の揺動に比べ、同一形状であれば、より
高速での回転加工が可能となる。
The non-circular boring device according to the present invention is
It has the following advantages over the conventional method. (1) In contrast to the copying method, there is no need to manufacture a copying master, etc., and costs are reduced, including shortening of the setup change time. Shapes with large changes can be processed, and high-speed rotation processing is also possible. (2) Responsiveness of pressurization is better than hydraulic servo system compared to hydraulic pressure. Since no oil is used, accurate control is possible without being affected by the oil temperature. For these reasons, it is possible to machine even a shape with a large change, and high-speed rotation machining is also possible. For the same reason, the processing accuracy is particularly high in the case of the same shape and the same rotation processing. (3) Compared to the servo motor method, since there is no frequent forward / reverse rotation of the motor, accurate control is possible without increasing the inertia of the motor and elastic deformation of the ball screw and feed table. Therefore, it is possible to process even a shape having a large change, and high-speed rotation processing is also possible. Further, the processing accuracy in the case of the same shape and the same rotation processing is high. (4) The tool can be freely displaced in all directions of 360 ° with respect to the work swinging method, so that the workable shape is not limited and various non-circular workings are possible. As compared with the swinging of a heavy work or the like, if the shape is the same, the rotation processing can be performed at a higher speed.

【0020】以上の如く、本発明によるときは、加工形
状に応じたマスタや固定治具を作製する必要がなく、複
雑な非円形の内面形状を高速かつ高精度に加工すること
が可能であるなど、多くの利点を有する非円形中ぐり加
工装置を提供し得るものである。
As described above, according to the present invention, it is not necessary to manufacture a master or a fixing jig corresponding to a processing shape, and a complicated non-circular inner surface shape can be processed at high speed and with high precision. Thus, it is possible to provide a non-circular boring apparatus having many advantages.

【0021】なお、本発明は上記実施例に限定されるも
のでなく、弾性変形体の形状や取付け方法、これに対す
る圧電素子又は磁歪素子の取付け形態等々は、必要に応
じて適宜設計変更し得るものであり、従って、本発明は
その目的の範囲内において上記の説明から当業者が容易
に想到し得るすべての変更実施例を包摂するものであ
る。
The present invention is not limited to the above embodiment, and the shape and mounting method of the elastically deformable body, the mounting form of the piezoelectric element or the magnetostrictive element for the elastic deformation body, and the like can be appropriately changed as necessary. Therefore, the present invention covers all modifications within the scope of the object that are easily conceived by those skilled in the art from the above description.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る非円形中ぐり加工装置の一実施
例の概略図である。
FIG. 1 is a schematic view of one embodiment of a non-circular boring apparatus according to the present invention.

【図2】 その主軸先端部の構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of a spindle tip portion.

【図3】 図1に示した加工装置の制御系統図である。FIG. 3 is a control system diagram of the processing apparatus shown in FIG. 1;

【図4】 本発明に係る非円形中ぐり加工装置のもう1
つの実施例の概略図である。
FIG. 4 shows another non-circular boring apparatus according to the present invention.
FIG. 3 is a schematic diagram of one embodiment.

【図5】 更に異なった実施例の主軸先端部の構成を示
す斜視図である。
FIG. 5 is a perspective view showing a configuration of a spindle tip portion of still another embodiment.

【図6】 図5に示した実施例を主軸の先端側から見た
拡大図である。
FIG. 6 is an enlarged view of the embodiment shown in FIG. 5 as viewed from a tip end side of a spindle.

【図7】 本発明に係る非円形中ぐり加工装置によるピ
ストンピン穴の加工例を示すグラフである。
FIG. 7 is a graph showing a processing example of a piston pin hole by the non-circular boring apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 加工装置の主軸 1a,1b 支柱 2 弾性変形体 2a,2b 凹溝 3 工具ホルダー 4 中ぐり工具 5 圧電素子(又は磁歪素子) 6 変位センサー 7 主軸回転用モータ 8 回転角検出用ロータリーエンコーダ 9 スリップリング 10 ベアリング 11 NC装置 12 コンピューター 13 D/Aコンバーター 14 A/Dコンバーター 15 圧電素子コントローラ 16 圧電素子ドライバ 21 送りテーブル 22 X軸方向駆動用サーボモータ 23 Y軸方向駆動用サーボモータ 24 ワーク DESCRIPTION OF SYMBOLS 1 Main shaft of processing apparatus 1a, 1b Column 2 Elastic deformation body 2a, 2b Groove 3 Tool holder 4 Boring tool 5 Piezoelectric element (or magnetostrictive element) 6 Displacement sensor 7 Motor for main shaft rotation 8 Rotary encoder for rotation angle detection 9 Slip Ring 10 Bearing 11 NC device 12 Computer 13 D / A converter 14 A / D converter 15 Piezoelectric element controller 16 Piezoelectric element driver 21 Feed table 22 Servomotor for X-axis direction drive 23 Servomotor for Y-axis direction drive 24 Work

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】主軸(1)に、工具偏心振動装置を介して
中ぐり工具(4)を取り付け、主軸の回転に同期して中
ぐり工具を偏心振動させることによりワークに非円形中
ぐり加工を施す装置において、圧電素子(5)により中
ぐり工具(4)の偏心振動を行わせることを特徴とする
上記の非円形中ぐり加工装置。
1. A boring tool (4) is attached to a main shaft (1) via a tool eccentric vibration device, and the boring tool is eccentrically vibrated in synchronization with the rotation of the main shaft to form a non-circular boring work on a workpiece. The non-circular boring machine described above, wherein the eccentric vibration of the boring tool (4) is performed by the piezoelectric element (5).
【請求項2】主軸(1)に弾性変形体(2)を介して工
具ホルダー(3)を取り付け、当該弾性変形体(2)を
圧電素子(5)により変形振動させることにより、中ぐ
り工具(4)の偏心振動を行わせることを特徴とする請
求項1に記載の非円形中ぐり加工装置。
2. A boring tool by attaching a tool holder (3) to a main shaft (1) via an elastic deformable body (2) and deforming and vibrating the elastic deformable body (2) by a piezoelectric element (5). The non-circular boring apparatus according to claim 1, wherein the eccentric vibration of (4) is performed.
【請求項3】中ぐり工具(4)の取付け軸に直角な1軸
方向に圧電素子(5)の振動を加えることを特徴とする
請求項1又は2に記載の非円形中ぐり加工装置。
3. The non-circular boring apparatus according to claim 1, wherein the vibration of the piezoelectric element is applied in one axial direction perpendicular to a mounting axis of the boring tool.
【請求項4】中ぐり工具(4)の取付け軸に直角な2軸
方向に圧電素子(5A,5B)の振動を加えることを特
徴とする請求項1又は2に記載の非円形中ぐり加工装
置。
4. The non-circular boring according to claim 1, wherein the vibration of the piezoelectric element is applied in two axial directions perpendicular to the mounting axis of the boring tool. apparatus.
【請求項5】上記圧電素子(5)に代えて磁歪素子によ
り中ぐり工具(4)の偏心振動を行わせることを特徴と
する請求項1から4までのいずれかに記載の非円形中ぐ
り加工装置。
5. The non-circular boring according to claim 1, wherein eccentric vibration of the boring tool (4) is performed by a magnetostrictive element instead of the piezoelectric element (5). Processing equipment.
【請求項6】上記弾性変形体(2)の軸直角方向変位量
を変位センサー(6)により検知してフィードバック制
御を行うことを特徴とする請求項1から5までのいずれ
かに記載の非円形中ぐり加工装置。
6. The method according to claim 1, wherein a feedback control is performed by detecting a displacement of the elastic deformation body in a direction perpendicular to the axis by a displacement sensor. Circular boring machine.
JP35148897A 1997-12-19 1997-12-19 Non-circular boring machine Expired - Fee Related JP4185176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35148897A JP4185176B2 (en) 1997-12-19 1997-12-19 Non-circular boring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35148897A JP4185176B2 (en) 1997-12-19 1997-12-19 Non-circular boring machine

Publications (2)

Publication Number Publication Date
JPH11179605A true JPH11179605A (en) 1999-07-06
JP4185176B2 JP4185176B2 (en) 2008-11-26

Family

ID=18417641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35148897A Expired - Fee Related JP4185176B2 (en) 1997-12-19 1997-12-19 Non-circular boring machine

Country Status (1)

Country Link
JP (1) JP4185176B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063437A1 (en) * 2003-12-23 2005-07-14 Franz Haimer Maschinenbau Kg Tool holder comprising electrostrictive actuator bodies used to influence the concentric behaviour of the tool holder
JP2008263731A (en) * 2007-04-12 2008-10-30 Utsunomiya Univ Displacement conversion unit and working machine
EP2549633A2 (en) 2011-07-19 2013-01-23 Kanzaki Kokyukoki Mfg. Co., Ltd. Linear actuator and boring device
JP2015020270A (en) * 2013-07-23 2015-02-02 株式会社 神崎高級工機製作所 Boring device
US9399259B2 (en) 2013-07-17 2016-07-26 Kanzaki Kokyukoki Mfg. Co., Ltd. Boring device
US11154939B2 (en) * 2018-07-24 2021-10-26 Enshu Limited Hole drilling machine and method for drilling oval hole and inner-diameter-changing hole by means of hole drilling machine
CN114535633A (en) * 2022-04-01 2022-05-27 哈尔滨理工大学 Rotary variable-rigidity variable-damping vibration attenuation boring rod

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063437A1 (en) * 2003-12-23 2005-07-14 Franz Haimer Maschinenbau Kg Tool holder comprising electrostrictive actuator bodies used to influence the concentric behaviour of the tool holder
JP2008263731A (en) * 2007-04-12 2008-10-30 Utsunomiya Univ Displacement conversion unit and working machine
EP2549633A2 (en) 2011-07-19 2013-01-23 Kanzaki Kokyukoki Mfg. Co., Ltd. Linear actuator and boring device
US9071120B2 (en) 2011-07-19 2015-06-30 Kanzaki Kokyukoki Mfg. Co., Ltd. Linear actuator and boring device
US9399259B2 (en) 2013-07-17 2016-07-26 Kanzaki Kokyukoki Mfg. Co., Ltd. Boring device
JP2015020270A (en) * 2013-07-23 2015-02-02 株式会社 神崎高級工機製作所 Boring device
US11154939B2 (en) * 2018-07-24 2021-10-26 Enshu Limited Hole drilling machine and method for drilling oval hole and inner-diameter-changing hole by means of hole drilling machine
CN114273696A (en) * 2018-07-24 2022-04-05 远州有限公司 Hole processing machine and method for processing elliptical hole and inner diameter-variable hole using same
US11724321B2 (en) 2018-07-24 2023-08-15 Enshu Limited Hole drilling machine and method for drilling oval hole and inner-diameter-changing hole by means of hole drilling machine
CN114273696B (en) * 2018-07-24 2023-08-29 远州有限公司 Hole processing machine and method for processing elliptical hole and inner diameter variation hole using the same
CN114535633A (en) * 2022-04-01 2022-05-27 哈尔滨理工大学 Rotary variable-rigidity variable-damping vibration attenuation boring rod
CN114535633B (en) * 2022-04-01 2022-08-02 哈尔滨理工大学 Rotary variable-rigidity variable-damping vibration attenuation boring rod

Also Published As

Publication number Publication date
JP4185176B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP5278758B2 (en) Cam drive device and processing method
JP5079496B2 (en) Apparatus and method for forming a microstructure
EP2283956B1 (en) Device for boring a non-round hole
JP2008030190A (en) Machine tool improved in concentricity
JP6693457B2 (en) Processing equipment
JP6029761B2 (en) Circular hole processing method and circular hole processing apparatus
JP4185176B2 (en) Non-circular boring machine
JPH10118811A (en) Machining device
JP2011011293A (en) Method and device for machining inner diameter of work
US5181442A (en) Device for machining a non-circular sectioned workpiece
JP2010017809A (en) Method and device for electrical discharge machining of small-diameter tapered hole
JP4761679B2 (en) Non-circular processing machine
JPH05138484A (en) Precision positioning fine moving feed device and system
JPH10166204A (en) Machining device
JP2002036004A (en) Method and device for manufacturing fluid bearing
US5274564A (en) Method and apparatus for machining a non-circular workpiece
JP3736039B2 (en) Processing method
KR20050108454A (en) A vibration cutting machine having piezoelectric actuator located parallelly
JPH1119804A (en) Device and method for machining helical groove
JP2005288604A (en) Boring device
JP2005169601A (en) Work turning device
JP2002126901A (en) Cutting method, cutting device, and mold
JPH0346241B2 (en)
JP2002144101A (en) Vibration cutting apparatus and method
CN110014176B (en) Machining method and machining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees