JP2010017809A - Method and device for electrical discharge machining of small-diameter tapered hole - Google Patents

Method and device for electrical discharge machining of small-diameter tapered hole Download PDF

Info

Publication number
JP2010017809A
JP2010017809A JP2008180867A JP2008180867A JP2010017809A JP 2010017809 A JP2010017809 A JP 2010017809A JP 2008180867 A JP2008180867 A JP 2008180867A JP 2008180867 A JP2008180867 A JP 2008180867A JP 2010017809 A JP2010017809 A JP 2010017809A
Authority
JP
Japan
Prior art keywords
axis
electrode
equation
hole
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008180867A
Other languages
Japanese (ja)
Inventor
Tadami Izumi
忠美 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2008180867A priority Critical patent/JP2010017809A/en
Publication of JP2010017809A publication Critical patent/JP2010017809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for boring a hole having a circular, elliptic, or elongated shape and tapered in a horn shape by electrical discharge machining using a small-diameter electrode. <P>SOLUTION: In this electric discharge machining, a C-axis table on which a workpiece is placed, an XY-axis stage, and a Z-axis electrode head are numerically controlled in synchronism with each other. The Z-axis electrode head includes an axially feeding device and a mechanism for tilting the axial direction in one plane. The distance between the designated boring point of the workpiece attached to the C-axis table and the center of the C-axis table is set at R. While moving the Z-axis feeding device by a reciprocating shuttle motion, the circular tapered hole having a profile cross section of horn shape is electrical discharge-machined by synthesizing the synchronous motions calculated by using the swing angle θ of a C-axis and the following formulas [expression 2], [expression 3], or [expression 4] of the XY stage. The formula [expression 2]: Ci=θi, Xi=Rsinθi, Yi=Rcosθ, the formula [expression 3]: Ci=θi, Xi=Rsinθi, Yi=Rcosθi+β, and the formula [expression 4]: Ci=θi, Xi=Rsinθi, Yi=Rcosθi+qi. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、NC放電加工の分野で、細孔の加工、微細形状のNC放電加工に関するものであり、詳しくは非回転で小径の片持ち支持電極を用いて、被加工物に丸孔または異形輪郭断面の孔を穿孔し、更に電極を傾斜させて加工し輪郭断面をテーパ状に開拡する技術に関する。 The present invention relates to NC electric discharge machining, and relates to machining of fine pores and fine-shaped NC electric discharge machining. More specifically, the present invention relates to a non-rotating, small-diameter cantilever supporting electrode, and a round hole or irregular shape on a workpiece. The present invention relates to a technique for drilling a hole having a contour cross section, further processing an electrode by inclining, and expanding the contour cross section in a tapered shape.

燃料噴射ノズルは高温に耐える金属が使用され、ノズル孔は小さいから、切削加工よりも放電加工、レーザ加工などが適している。
ある種の内燃機関の燃料噴射ノズルでは、円筒形、楕円、長円などの、一様断面の直孔だけではなく、図6(a)、(b)のノズル体断面のように、燃料導入部を噴出部より拡大したテーパ形状が求められることがある。ノズル体は筒状であり内部空間は狭いから外部から内部に拡がるテーパの孔加工は外部から細い電極でしか実施できない。
The fuel injection nozzle is made of a metal that can withstand high temperatures and has a small nozzle hole, so electric discharge machining, laser machining, and the like are more suitable than cutting.
In a fuel injection nozzle of a certain type of internal combustion engine, not only a straight hole having a uniform cross section such as a cylindrical shape, an ellipse, or an ellipse, but also a fuel introduction like a nozzle body cross section of FIGS. The taper shape which expanded the part from the ejection part may be calculated | required. Since the nozzle body is cylindrical and the internal space is narrow, the drilling of the taper extending from the outside to the inside can be performed only with the thin electrode from the outside.

例えば、(特許文献1)には、内燃機関の噴射ノズルの噴射通路の断面輪郭形状が非円であり、かつ、輪郭断面がラッパ状に拡大している例が開示され、その放電加工法については、電極側面から磁界を加えローレンツ力による電極撓みを利用して円錐形を加工する方法を説明している。 For example, (Patent Document 1) discloses an example in which the cross-sectional contour shape of the injection passage of the injection nozzle of the internal combustion engine is non-circular and the contour cross-section is enlarged in a trumpet shape. Describes a method of processing a conical shape by applying a magnetic field from the electrode side surface and utilizing electrode deflection caused by Lorentz force.

近年の内燃機関の燃料消費率改善の要求に対し、噴射ノズルの改良には、設計形状の自由さと寸法精度が重要な役割を果たすから、多様な要求に応えるため、本発明人は、NC制御による非回転パイプ電極による細孔加工法(特許文献2)、ワイヤ電極線によるNC穿孔放電加工法(特許文献3)、また、数値制御単一刃具輪郭加工方法(特許文献4)などを提案した。 In response to recent demands for improving the fuel consumption rate of internal combustion engines, the freedom of design shape and dimensional accuracy play an important role in improving injection nozzles. Proposed method of pore machining by non-rotating pipe electrode (Patent Document 2), NC drilling electric discharge machining method by wire electrode line (Patent Document 3), numerically controlled single cutting tool contour machining method (Patent Document 4), etc. .

特開2007−263114号公報JP 2007-263114 A 特開2007−260878号公報JP 2007-260878 A 特開2008−834号公報JP 2008-834 A 特開2007−18495号公報JP 2007-18495 A

燃料噴射ノズルは、小径の孔であるが、流体抵抗を低減し、また、スプレイ効果を得るために、通路長を短縮し、断面を円形または非円形とし、またラッパ状に断面積を変化させるなど種種の工夫が施される。この場合においても、噴射口断面は小径を保っていることが要求されるから、通常の切削加工では困難であり、放電加工がその役割を担う。 The fuel injection nozzle is a small-diameter hole, but in order to reduce fluid resistance and to obtain a spray effect, the passage length is shortened, the cross-section is circular or non-circular, and the cross-sectional area is changed to a trumpet shape. Various ingenuity is given. Even in this case, since the cross section of the injection port is required to have a small diameter, it is difficult to perform normal cutting, and electric discharge plays a role.

放電加工において小径の電極により細孔を加工するには電極を回転させる必要があったが、電極回転には装置的困難があるため、加工物の旋回と電極のXY平面内の円弧補間運動の合成により加工物と電極を相対運動させる方式が本発明人により提案された。具体的には電極側はXYのNC制御軸を備えておりXY平面内の同時二軸補間の運動を行なう。加工物をC軸テーブル上に取り付け定速旋回させ、併せて加工物の定点P上で電極を同時二軸補間運動により追従させると、電極と加工点は相対運動をすることになる。このように小径電極に対して加工点を相対回転させながら放電加工を実施することが本発明の基本原理である。 In electrical discharge machining, it was necessary to rotate the electrode in order to process the pores with a small-diameter electrode. However, since the electrode rotation is difficult in terms of device rotation, the rotation of the workpiece and the circular interpolation motion of the electrode in the XY plane The present inventor has proposed a method of moving the workpiece and the electrode relative to each other by synthesis. Specifically, the electrode side has an XY NC control axis, and performs simultaneous biaxial interpolation in the XY plane. When the workpiece is mounted on the C-axis table and swung at a constant speed, and the electrode is made to follow the fixed point P of the workpiece by simultaneous biaxial interpolation, the electrode and the machining point move relative to each other. Thus, it is a basic principle of the present invention to perform electric discharge machining while rotating the machining point relative to the small-diameter electrode.

本発明は、加工物を載せるC軸テーブルとXY軸ステージおよびZ軸電極ヘッドが同期NC制御される放電加工において、前記Z軸電極ヘッドには電極の軸方向送り装置と、該軸方向を一平面内において傾斜させる傾斜機構を設け、加工物を前記C軸テーブルに取り付けるときに加工物に指定される孔あけ指定点PがC軸テーブル中心Oから任意の距離(R)の位置にあり、またZ軸と孔の方向が一致するような姿勢で取り付け、前記電極送り装置に往復シャトル運動をさせながらC軸の旋回(θ)と、XY軸ステージの式「数2」、または式「数3」、または式「数4」によって計算される同期運動の合成により、輪郭断面がラッパ状となる円形、楕円形、または長円形などのテーパ孔の放電加工を実現する。
「数2」
Ci=θi、Xi=Rsinθi、Yi=Rcosθ
「数3」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi+β、 ただし、βは定数。
「数4」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi+qi、 ただし、qiは孔の断面形状を決定する変数。
In the electric discharge machining in which a C-axis table on which a workpiece is placed, an XY-axis stage, and a Z-axis electrode head are synchronously controlled by the NC, the Z-axis electrode head includes an electrode axial feed device and a single axial direction. A tilting mechanism for tilting in a plane is provided, and a drilling specified point P specified for the workpiece when the workpiece is attached to the C-axis table is at an arbitrary distance (R) from the center O of the C-axis table, Also, it is mounted in such a posture that the direction of the Z axis coincides with the direction of the hole, and the reciprocating shuttle motion of the electrode feeding device is performed, and the C axis rotation (θ) and the XY axis stage equation “Equation 2”, or 3 ”or the synthesis of the synchronous motion calculated by the formula“ Equation 4 ”realizes electric discharge machining of a tapered hole such as a circle, an ellipse, or an oval having a trumpet outline.
"Number 2"
Ci = θi, Xi = Rsinθi, Yi = Rcosθ
"Equation 3"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi + β, where β is a constant.
"Equation 4"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi + qi, where qi is a variable that determines the cross-sectional shape of the hole.

本発明はではテーパ状の孔を加工するのであるが、そのためには電極側を傾斜させればよいことは自明である。しかしながらZ軸運動により穿孔することはできないので前記電極送り装置に往復シャトル運動させることが必要になる。
また、本発明は前段落〔0008〕に記載の放電加工方法を実施するに当たり、イニシャルホール加工と傾斜角加工と横サーボ輪郭加工を順次に実行する装置を提供して目的を達成する。
In the present invention, a tapered hole is processed, but it is obvious that the electrode side may be inclined for this purpose. However, since drilling cannot be performed by the Z-axis motion, it is necessary to cause the electrode feeding device to perform a reciprocating shuttle motion.
Further, the present invention achieves the object by providing an apparatus that sequentially executes initial hole machining, tilt angle machining, and lateral servo contour machining in carrying out the electric discharge machining method described in the preceding paragraph [0008].

この発明は、電極と被加工体を相対的に回転させる放電加工方法として、本発明人が前述特許文献2,3、及び4で提案したものに、テーパ機能と電極のシャトル運動機能を付加したものであり、テーパ加工に伴う放電加工の課題を解決するものである。 In the present invention, a taper function and an electrode shuttle motion function are added to the one proposed by the present inventors in the aforementioned Patent Documents 2, 3, and 4 as an electric discharge machining method for relatively rotating an electrode and a workpiece. It solves the problem of electric discharge machining accompanying taper machining.

念のため、本発明が提案するテーパ孔加工と他の方式と比較すると、次の通りである。電極と被加工体が相対的に回転するには、ワークターニング(旋盤方式)と、ツールターニング(ボール盤方式)の二形式がある。前者は砲身、シリンダ等の長い孔や高精度の加工に適するが、位置決めに不便であるから、多数孔の加工には不向きであり、後者は反対になる。細孔放電加工では主としてツールターニングが用いられるが、通電・通液に難点がある。本発明の方式は、上記二形式のいづれにも属さず、また、いづれの難点をも解決している。 As a precaution, the taper hole machining proposed by the present invention is compared with other methods as follows. There are two types of rotation of the electrode and the workpiece: work turning (lathe method) and tool turning (drilling method). The former is suitable for long holes such as barrels and cylinders and high-precision machining, but is inconvenient for positioning, and is not suitable for machining a large number of holes, and the latter is the opposite. Tool turning is mainly used in micro-hole electrical discharge machining, but there are difficulties in energization and liquid flow. The system of the present invention does not belong to any of the above two types, and solves any difficulty.

本発明の基礎となり前段に記載した「電極と被加工体を相対的に回転させて放電加工する方法」とは、XYテーブル上に設置されるC軸テーブル上の加工物の指定点Pに電極中心Oを合わせ、C軸を旋回させるとともに、X、Y軸に式「数2」の式に従う円弧補間運動をなさしめてC軸旋回に追従せしめれば、電極はXY機械座標系については静止しているが、被加工体座標のP点上を回転することになる。このとき電極軸を傾斜させれば、テーパ状の孔が加工される。 The “method of performing electrical discharge machining by relatively rotating an electrode and a workpiece” described in the previous stage, which is the basis of the present invention, refers to an electrode at a specified point P of a workpiece on a C-axis table installed on an XY table. If the center O is aligned and the C axis is swiveled, and the X and Y axes are made to follow the C axis swivel by applying an arc interpolation motion according to the formula “Equation 2”, the electrode will be stationary with respect to the XY machine coordinate system. However, it rotates on the point P of the workpiece coordinates. At this time, if the electrode axis is inclined, a tapered hole is processed.

そして、放電加工電圧を印加して軸方向サーボ送りを加えると、電極径の円形断面の孔を旋回穿孔する。また穿孔される円の半径をβだけ拡大せんとするときは、式「数3」のように、Yi=Rcosθi+βとすればよい。さらに穿孔する孔の断面に円、長円のごとき非円形を求めるには、図5のように求める図形内の定点からの動径(qi)をもとめ、式「数4」のように、 Yi=Rcosθi+qi とすればよい。 Then, when an electric discharge machining voltage is applied and axial servo feed is applied, a hole having a circular cross section with an electrode diameter is turned and punched. If the radius of the circle to be drilled is enlarged by β, Yi = Rcosθi + β may be set as shown in the expression “Equation 3”. Further, in order to obtain a non-circular shape such as a circle or an ellipse in the cross section of the hole to be drilled, the radius (qi) from a fixed point in the figure to be obtained is obtained as shown in FIG. = Rcosθi + qi.

本発明の方式により電極とワークを相対回転させる効果は、電極の撓みを防止し、電極回転機構を不要とし、更に通電・通液の手段を簡略化するから、装置の小型化が図れる。しかも、一般のワークターニング方式の欠点であった回転中心と加工点との位置決めは、NC機能により簡単化されているから、利点が多い。
ただし、電極の消耗は無視できないから、電極の軸方向シャトル運動は電極消耗を補うために必要である。
The effect of rotating the electrode and the workpiece relative to each other by the method of the present invention prevents the electrode from being bent, eliminates the need for an electrode rotating mechanism, and simplifies the means for energization / fluidization, thereby reducing the size of the apparatus. Moreover, the positioning of the rotation center and the processing point, which has been a drawback of the general work turning method, is simplified by the NC function, and thus has many advantages.
However, since electrode wear cannot be ignored, axial shuttle movement of the electrodes is necessary to compensate for electrode wear.

ラッパ状に拡がるテ−パ−孔の放電加工は、図4(a)、または図4(b)の原理図で説明される回転テーブルの旋回と、NC円弧補間運動との合成による電極と加工点の相対運動と、電極軸の傾斜機能によって可能になるが、解決すべき課題は次の点である。 The electric discharge machining of the taper hole expanding in a trumpet shape is performed by combining the rotation of the rotary table and the NC circular interpolation motion described in the principle diagram of FIG. 4A or FIG. This is made possible by the relative movement of the points and the tilting function of the electrode axis, but the problems to be solved are as follows.

図7(a)のように、テーパ部の加工において、電極送り方向(U)に加工を進め、同時に電極側面方向(V)にも加工を進めることは放電加工の制御方式として不適である。何故ならば、短絡またはアーク検出をした場合に、退避方向が不明であるから乱調し、正常な加工状態に戻ることが出来ないからである。 As shown in FIG. 7 (a), in the machining of the tapered portion, it is unsuitable as an electric discharge machining control method to advance the machining in the electrode feed direction (U) and at the same time the machining in the electrode side surface direction (V). This is because when the short circuit or the arc is detected, the retreat direction is unknown, so that it is distorted and cannot return to a normal machining state.

したがって、選び得る方式は電極送り方向(U)か、電極側面方向(V)かのいずれかである。本明細書では前者を軸サーボ、後者を横サーボと呼ぶ。 Therefore, the method that can be selected is either the electrode feed direction (U) or the electrode side surface direction (V). In the present specification, the former is called an axis servo and the latter is called a lateral servo.

課題としているラッパ状の加工の場合、横サーボは二方向である。一つは周回方向であり横サーボ輪郭加工となり、他の一つは径方向に傾斜角を切り込む加工である。 In the case of the trumpet-shaped processing, which is a problem, the lateral servo is in two directions. One is the circumferential direction, which is the horizontal servo contour machining, and the other is the machining that cuts the inclination angle in the radial direction.

最適な加工順序は、まず、孔の中心にテーパのない一様断面の直立孔を加工する。次に、電極を傾斜させつつ角度(α0)まで加工する。その後に、角度(α0)を保ったまま、周回方向に横サーボ加工する。 The optimum processing sequence is to first process an upright hole having a uniform cross section without a taper at the center of the hole. Next, the electrode is processed to an angle (α 0 ) while being inclined. After that, lateral servo processing is performed in the circumferential direction while maintaining the angle (α 0 ).

所望の角度が(α0)であるときは、電極消耗と電極剛性による取り残し分を除去するために、何度かの周回加工を行って終了する。 When the desired angle is (α 0 ), in order to remove the leftover due to electrode wear and electrode rigidity, the process is completed after several rounds.

角度(α0)は、図7(b)のように、除去部分の最大寸法(孔の口径差の1/2)と、電極10の直径(d)の関係と、電極消耗の関係から配慮されるべきである。孔の口径差の1/2が、電極10の直径(d)よりも大きいときは、(α0)の値を分割し、
数式(1) (α0)=(α1)+(α2)+(α3)+・・・・・(αn)
として加工ステップをn回繰り返すことになる。
As shown in FIG. 7B, the angle (α 0 ) is considered from the relationship between the maximum dimension of the removed portion (1/2 of the difference in the aperture diameter), the diameter (d) of the electrode 10 and the electrode consumption. It should be. When 1/2 of the hole diameter difference is larger than the diameter (d) of the electrode 10, the value of (α 0 ) is divided,
Formula (1) (α 0 ) = (α 1 ) + (α 2 ) + (α 3 ) + (αn)
The processing steps are repeated n times.

加工ステップを繰り返さなければならない理由は、単に前記口径差だけではなく、片持ち支持の細い電極を、使用しなければならない制限から、電極剛性が低く、また最良の選択をなしたとしても、電極消耗を無視し得ないからである。 The reason for having to repeat the processing step is not only the difference in the diameter, but also because the electrode must have a low rigidity and the best choice because of the limitation to use a thin electrode with a cantilever support. This is because wear cannot be ignored.

本発明の装置は次のように構成される。図1は全体の説明図であり、加工物1を載せるC軸テーブル2、X軸ステージ3、Y軸ステージ4、Z軸ヘッド5が同期NC制御されるNC放電加工装置であり、電極ヘッド6は、Z軸ヘッド5の正面にボス8を支点として、傾斜自由に取り付けられている。傾斜機構8aは、モータ14により電極ヘッド6をZ軸に対して傾斜させる。
電極ヘッド6には、電極の軸方向送り装置7が設けられ、モータ15とローラセット16の作用により、電極10の軸方向移動、または、放電加工送り、または軸方向のシャトル運動をなさしめる。
The apparatus of the present invention is configured as follows. FIG. 1 is an explanatory diagram of the whole, and is an NC electric discharge machining apparatus in which a C-axis table 2 on which a workpiece 1 is mounted, an X-axis stage 3, a Y-axis stage 4, and a Z-axis head 5 are synchronously controlled by an NC. Are attached to the front surface of the Z-axis head 5 with the boss 8 as a fulcrum and freely tilted. The tilt mechanism 8a causes the motor 14 to tilt the electrode head 6 with respect to the Z axis.
The electrode head 6 is provided with an electrode axial feed device 7, and the action of the motor 15 and the roller set 16 causes the electrode 10 to move in the axial direction, or to perform electric discharge machining, or to perform an axial shuttle motion.

前段落番号〔0023〕に記載の装置は、イニシャルホール加工において、次のように動作する。
イニシャルホール加工とは、必要とする形状の円または楕円または長円などの、一様断面輪郭の直孔の加工を、加工物1の指定位置と方向に細孔放電加工することであり、電極10を加工物1に挿入して横サーボを行う準備である。
The apparatus described in the preceding paragraph [0023] operates as follows in the initial hole machining.
The initial hole machining is a process of forming a hole having a uniform cross section such as a circle, an ellipse, or an ellipse having a required shape into a specified position and direction of the workpiece 1 by means of a pore discharge process. 10 is inserted into the workpiece 1 to prepare for lateral servo.

図6(a)、(b)で示すように、加工物1は任意の位置に取り付けられているが、孔の指定方向(噴射方向)が、Z軸方向になるように、冶具11(図1)などを用いて姿勢を定めることが必要である。孔の位置とC軸中心Oとの距離Rは、NC操作で容易に測定される。
電極先端を指定点に位置決めし、図4(a)、(b)のように、C軸中心Oとの距離Rを、NC装置に定数として与え、前記式「数2」、または式「数3」、または、式「数4」の式で用いる。
As shown in FIGS. 6A and 6B, the workpiece 1 is attached at an arbitrary position, but the jig 11 (see FIG. 6) is arranged so that the designated direction (injection direction) of the hole is the Z-axis direction. It is necessary to determine the posture using 1) or the like. The distance R between the hole position and the C-axis center O is easily measured by NC operation.
The electrode tip is positioned at a specified point, and as shown in FIGS. 4A and 4B, the distance R from the C-axis center O is given as a constant to the NC device. 3 ”or the expression“ Equation 4 ”.

イニシャルホール加工においては、図1および図2のように、電極10の軸方向がZ軸方向に一致している。放電加工を実施するには、Z軸運動を利用することと、電極送り装置7の機能を利用して、放電加工サーボ送りとすることが可能であり、選択は自由である。 In the initial hole processing, as shown in FIGS. 1 and 2, the axial direction of the electrode 10 coincides with the Z-axis direction. In order to carry out the electric discharge machining, it is possible to make the electric discharge machining servo feed by utilizing the Z-axis motion and the function of the electrode feeding device 7, and the selection is free.

C軸テーブル2に旋回運動を与え、XY軸ステージ3と4の運動を、式「数2」によりNC制御することに併せて放電加工サーボ送りを加えれば、円形断面のイニシャルホールが貫通する。 If a swivel motion is given to the C-axis table 2 and NC control is performed on the motions of the XY-axis stages 3 and 4 in accordance with the expression “Equation 2”, an electric discharge machining servo feed is added, and an initial hole having a circular cross section penetrates.

イニシャルホール加工につづいて、輪郭形状を仕上げるには、電極を貫通させたまま輪郭加工を行なう。電極軸方向のシャトル運動を加えても良い。輪郭形状が、(電極半径+加工ギャップ)の半径の円形であるときは、C軸テーブル2の旋回に同期してXYステージ3と4に下記式「数2」の運動が指令される。
式「数2」 Ci=θi、Xi=Rsinθi、Yi=Rcosθi
Following the initial hole processing, in order to finish the contour shape, the contour processing is performed with the electrode penetrated. A shuttle motion in the electrode axis direction may be added. When the contour shape is a circle having a radius of (electrode radius + machining gap), the movement of the following expression “Equation 2” is commanded to the XY stages 3 and 4 in synchronization with the turning of the C-axis table 2.
Expression “Equation 2” Ci = θi, Xi = Rsinθi, Yi = Rcosθi

輪郭形状の半径が、(電極半径+β+加工ギャップ)の円形であるときは、C軸テーブル2の旋回に同期してXYステージ3と4に下記式「数3」の運動が指令される。
式「数3」 Ci=θi、Xi=Rsinθi、Yi=Rcosθi+β、 ただし、βは定数。
When the radius of the contour shape is a circle of (electrode radius + β + machining gap), the movement of the following formula “Equation 3” is commanded to the XY stages 3 and 4 in synchronization with the turning of the C-axis table 2.
Formula “Equation 3” Ci = θi, Xi = Rsinθi, Yi = Rcosθi + β, where β is a constant.

輪郭形状が楕円、長円のような非円形であるときは、図5(a)、(b)のように、輪郭図形内部に定点Aを定め、極座標の原点として輪郭線までの動径qとθの関係を全周にわたって求め、θiとqiの関係を、下記式「数4」に与える。
式「数4」 Ci=θi、Xi=Rsinθi、Yi=Rcosθi+qi、 ただし、qiは、孔の断面形状を決定する変数。
これにより、C軸テーブル2の旋回に同期して、XYステージ3と4に式「数4」の運動が指令され、求める図形の内径が加工される。ただし、加工ギャップ分が拡大される。
When the contour shape is a non-circular shape such as an ellipse or an ellipse, a fixed point A is defined inside the contour figure as shown in FIGS. 5A and 5B, and the radius q to the contour line is set as the polar coordinate origin. And θ are obtained over the entire circumference, and the relationship between θi and qi is given by the following equation (Equation 4).
Formula [Equation 4] Ci = θi, Xi = Rsinθi, Yi = Rcosθi + qi, where qi is a variable that determines the cross-sectional shape of the hole.
As a result, in synchronization with the turning of the C-axis table 2, the movement of the expression “Equation 4” is commanded to the XY stages 3 and 4, and the inner diameter of the figure to be obtained is processed. However, the machining gap is enlarged.

イニシャルホールが加工されると、次に傾斜角加工に移る。傾斜角加工とは、イニシャルホールに電極10を挿入して傾斜をつける放電加工である。Z軸電極ヘッド5を移動して、図1の傾斜支点ボス8の中心の高さ(S)を加工物の上面(L)に合わせ、電極をイニシャルホールに挿入し、電極送り装置7に往復シャトル運動をさせて放電加工電圧を印加するとともに、傾斜機構8aの動作を傾斜角(α)まで徐々に加えて放電加工をおこなう。傾斜角は微小であるから、ワイヤ放電加工と同様に加工が進行する。 When the initial hole is processed, the process proceeds to tilt angle processing. Inclination angle machining is electric discharge machining in which an electrode 10 is inserted into an initial hole to be inclined. The Z-axis electrode head 5 is moved, the center height (S) of the inclined fulcrum boss 8 in FIG. 1 is adjusted to the upper surface (L) of the workpiece, the electrode is inserted into the initial hole, and reciprocates to the electrode feeder 7. The electrical discharge machining voltage is applied by causing the shuttle motion, and the electrical discharge machining is performed by gradually adding the operation of the tilt mechanism 8a to the tilt angle (α). Since the inclination angle is very small, processing proceeds in the same manner as wire electric discharge processing.

傾斜角加工が終了してから、横サーボ輪郭加工に移る。横サーボ輪郭加工は、開孔出口が入口部よりも拡大している円形、楕円形、長円形などの孔の放電加工を、前記電極送り装置7により、電極10に往復シャトル運動を与えながら、C軸テーブル2を旋回させるとともにXY軸ステージ3と4に式「数2」、または、式「数3」、または、式「数4」の同期運動を加えて行う横サーボ放電加工である。これにより、イニシャルホールの側面が、ラッパ状に拡大される。前記式「数1」のように、α1、α2、α3、・・・(αn)と傾斜角を加えつつ傾斜角加工と、横サーボ輪郭加工を繰り返して最終形状を得る。 After the tilt angle machining is completed, the process moves to the lateral servo contour machining. In the horizontal servo contour machining, the electric discharge machining of a hole such as a circle, an ellipse, or an oval having an opening exit larger than the entrance portion is performed by the electrode feeder 7 while giving a reciprocating shuttle motion to the electrode 10. The horizontal servo electric discharge machining is performed by rotating the C-axis table 2 and adding the synchronous motion of the expression “Equation 2”, the expression “Equation 3”, or the expression “Equation 4” to the XY axis stages 3 and 4. Thereby, the side surface of the initial hole is enlarged in a trumpet shape. As shown in the above equation (1), the final shape is obtained by repeating the inclination angle processing and the lateral servo contour processing while adding the inclination angles α 1 , α 2 , α 3 ,... (Αn).

傾斜支点ボス8の中心、即ち、電極傾斜支点の高さ(S)は、加工物1の上面(L)に一致させているから、傾斜角(α)が微小な場合には無視できるほどであるが、電極の傾斜により図8のように輪郭が拡大する。その値(δ)は電極半径を(r)とすると、式「数5」である。
式「数5」 δ=r{(1/cosα)−1}
The center of the tilt fulcrum boss 8, that is, the height (S) of the electrode tilt fulcrum coincides with the upper surface (L) of the workpiece 1, so that it can be ignored when the tilt angle (α) is small. However, the contour expands as shown in FIG. 8 due to the inclination of the electrode. The value (δ) is expressed by the equation “Equation 5” where the electrode radius is (r).
Formula “Formula 5” δ = r {(1 / cos α) −1}

δを補正するには、式「数3」、または、式「数4」をそれぞれ、式「数6」、または、式「数7」に修正する。
式「数6」 Ci=θi、Xi=Rsinθi、Yi=Rcosθi+β−δ、 ただし、β>δ。
式「数7」 Ci=θi、Xi=Rsinθi、Yi=Rcosθi+qi−δ、 ただし、qi >δ。
In order to correct δ, the expression “Equation 3” or the expression “Equation 4” is corrected to the expression “Equation 6” or the expression “Equation 7”, respectively.
Formula “Equation 6” Ci = θi, Xi = Rsinθi, Yi = Rcosθi + β−δ, where β> δ.
Expression “Equation 7” Ci = θi, Xi = Rsinθi, Yi = Rcosθi + qi−δ, where qi> δ.

放電加工電極は、剛性が大きく、電極消耗の少ない材質のものが選ばれる。たとえば、タングステン、超硬合金である。 As the electric discharge machining electrode, a material having high rigidity and low electrode consumption is selected. For example, tungsten or cemented carbide.

図1の機械本体は、X、Y、Z、C軸の4軸NC工作機械であり、図示されていないNC制御装置、放電加工電源、および電極サーボ制御回路によって構成されている。全体として小型に構成され、卓上使用に適する。冶具11に保持される加工物1は、筒状のノズル体を図示しているが、平板の場合もあり、C軸テーブル2の軸心からRの距離に加工指定点をおく。ベース13上に、コラム12とXYステージ3,4を配置している。 The machine body in FIG. 1 is a four-axis NC machine tool with X, Y, Z, and C axes, and includes an NC control device, an electric discharge machining power source, and an electrode servo control circuit (not shown). As a whole, it is compact and suitable for desktop use. Although the workpiece 1 held by the jig 11 is a cylindrical nozzle body, it may be a flat plate, and a processing designation point is set at a distance R from the axis of the C-axis table 2. A column 12 and XY stages 3 and 4 are disposed on the base 13.

コラム12の図示しないZ軸ガイドに沿って、Z軸ヘッド5が、電極ヘッド6をZ軸運動させる。電極ヘッド6は、ボス8を支点として、一平面内に傾斜角±45で傾斜することができる。傾斜機構8aは、モータ14で作動桿8bを直線移動させて電極ヘッド6を傾斜させ、図示しない角スケールとセンサによりNC制御される。 The Z-axis head 5 moves the electrode head 6 along the Z-axis guide (not shown) of the column 12. The electrode head 6 can be inclined at an inclination angle of ± 45 in one plane with the boss 8 as a fulcrum. The tilting mechanism 8a linearly moves the operating rod 8b with the motor 14 to tilt the electrode head 6, and is NC controlled by a not-shown angular scale and sensor.

電極送り装置7は、電極ヘッド6の上面に備えられ、振れ止めガイド9と協働して、電極10を軸方向に運動させる。電極送り装置7には、モータ15により駆動されるローラセット16が設けられ、常時電極10に圧接しており、NC制御装置の指令によるモータ15の回転に従い、電極の軸方向サーボ送り運動と往復シャトル運動および位置決め運動を行う。 The electrode feeding device 7 is provided on the upper surface of the electrode head 6 and moves the electrode 10 in the axial direction in cooperation with the steady guide 9. The electrode feed device 7 is provided with a roller set 16 driven by a motor 15 and is always in pressure contact with the electrode 10, and reciprocates with the axial servo feed motion of the electrode according to the rotation of the motor 15 according to the command of the NC control device. Perform shuttle movement and positioning movement.

放電加工作用は、C軸テーブル2に取り付けられる加工物1と、電極10との間隙に、放電加工電源からの放電電圧パルスを印加して、生ずる短間隙放電によるものであり、電極サーボ制御回路が、極間間隙の電圧を検出し、極間間隙を調節するように電極10にサーボ送り運動をさせる。 The electric discharge machining action is due to a short gap discharge generated by applying a discharge voltage pulse from the electric discharge machining power source to the gap between the workpiece 1 attached to the C-axis table 2 and the electrode 10, and an electrode servo control circuit However, the voltage of the gap between the electrodes is detected, and the electrode 10 is caused to perform a servo feed movement so as to adjust the gap between the poles.

前記傾斜機構の設計は、他にも種々の様式があり、この実施例に限られるものでない。また、前記電極送り装置の設計も、この実施例に限られず、前述特許文献2のパイプ電極方式、および、特許文献3のワイヤ電極方式など、種々の方式がある。振れ止めガイド9については、簡単なガイドブッシュを例示したが、電極10の加工先端になるべく近付けるため、パイプガイドにすることもある。 The design of the tilt mechanism has various other modes and is not limited to this embodiment. Also, the design of the electrode feeding device is not limited to this embodiment, and there are various methods such as the pipe electrode method disclosed in Patent Document 2 and the wire electrode method disclosed in Patent Document 3. For the steady rest guide 9, a simple guide bush is illustrated, but a pipe guide may be used as close as possible to the processing tip of the electrode 10.

特に記述しないが、電極10と加工物1への通電、または、両者間の絶縁方法、或は、両者の間隙に対する加工液の供給に関しては、一般の放電加工技術と共通である。 Although not particularly described, energization of the electrode 10 and the workpiece 1, an insulating method between them, or supply of a working fluid to the gap between them is common to general electric discharge machining techniques.

NC制御により、正確なテーパ付きの小径の孔を加工することが可能になり、内燃機関の燃料噴射ノズル、塗料、薬品のスプレイガンなどの改良に利用される可能性がある。 NC control makes it possible to machine an accurate tapered small-diameter hole, which may be used to improve fuel injection nozzles, paints, chemical spray guns and the like of internal combustion engines.

本発明の実施例の全体構成の説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 図1の正面図。The front view of FIG. 電極ヘッドが傾斜された正面図。The front view in which the electrode head was inclined. (a)遊星方式の原理図、式「数2」の説明図。(b)遊星方式の原理図、式「数3」の説明図。(A) The principle diagram of a planetary system, explanatory drawing of Formula "Formula 2". (B) The principle diagram of the planetary system, an explanatory diagram of the formula “Equation 3”. (a)、(b)非円形断面の場合、式「数4」の説明図。(A), (b) In the case of a non-circular cross section, an explanatory diagram of the formula “Equation 4”. (a)、(b)加工物の取り付け姿勢方向とZ軸の関係および加工物上面(L)を示す図。The figure which shows the relationship between the attachment attitude | position direction of a workpiece, and a Z-axis, and a workpiece upper surface (L). (a)軸サーボ(U)方向と、横サーボ(V)方向(電極の側面方向)の説明図。(b)傾斜角αと電極径dの説明図。(A) Explanatory drawing of an axial servo (U) direction and a horizontal servo (V) direction (side surface direction of an electrode). (B) Explanatory drawing of inclination-angle (alpha) and the electrode diameter d. 電極傾斜の影響の説明図。Explanatory drawing of the influence of an electrode inclination.

符号の説明Explanation of symbols

1 加工物
1a ノズル孔
2 C軸テーブル
3 Xステージ
4 Yステージ
5 Z軸ヘッド
6 電極ヘッド
7 電極送り装置
8 ボス
8a 傾斜機構
8b 作動桿
9 電極の振れ止めガイド
10 電極
11 冶具
12 コラム
13 ベース
14 傾斜機構モータ
15 電極送りモータ
16 電極送りローラセット
(U)軸送り方向
(V)横サーボ方向
(S)ボスの中心の高さ
(L)加工物の上面または指定孔開始点の高さ
1 Workpiece
1a Nozzle hole
2 C axis table 3 X stage
4 Y stage
5 Z-axis head
6 Electrode head
7 Electrode feeder
8 Boss 8a Tilting mechanism
8b Working rod
9 Electrode steady rest guide
10 electrodes
11 Jig
12 columns
13 base
14 Inclination mechanism motor
15 Electrode feed motor
16 Electrode feed roller set
(U) Shaft feed direction
(V) Lateral servo direction (S) Center height of boss
(L) Height of workpiece top surface or specified hole start point

Claims (3)

加工物を載せるC軸テーブルとXY軸ステージ、およびZ軸電極ヘッドが、同期NC制御される放電加工において、
前記Z軸電極ヘッドには電極の軸方向送り装置と、該軸方向を一平面内において傾斜させる傾斜機構を設け、
前記C軸テーブルに取り付ける加工物の孔明け指定点PとC軸テーブル中心Oとの距離を(R)とし、
また、Z軸と孔の方向が一致するような姿勢で加工物を取り付け、
前記電極軸方向送り装置に往復シャトル運動をさせながら、C軸の旋回(θ)と、XY軸ステージの下記式「数2」、または式「数3」、または式「数4」によって計算される同期運動の合成により、輪郭断面がラッパ状となる円形、楕円形、または長円形などの孔の加工をすることを特徴とするテーパ孔の放電加工方法。
「数2」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi
「数3」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi+β、 ただし、βは定数。
「数4」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi+qi、 ただし、qiは孔の断面形状を決定する変数。
In electrical discharge machining where the C-axis table, XY-axis stage, and Z-axis electrode head on which the workpiece is placed are synchronously NC controlled,
The Z-axis electrode head is provided with an electrode axial feeding device and an inclination mechanism for inclining the axial direction in one plane,
The distance between the specified drilling point P of the workpiece to be attached to the C-axis table and the C-axis table center O is (R),
Also, attach the workpiece in such a posture that the direction of the Z axis and the hole match,
The reciprocating shuttle motion is performed on the electrode axial direction feeding device, and the rotation is calculated by the following equation “Equation 2”, “Equation 3”, or “Equation 4” of the XY axis stage and the XY axis stage. An electrical discharge machining method for a tapered hole, characterized by machining a circular, elliptical, or oval hole having a cross-sectional outline in a trumpet shape by synthesizing a synchronous motion.
"Number 2"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi
"Equation 3"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi + β, where β is a constant.
"Equation 4"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi + qi, where qi is a variable that determines the cross-sectional shape of the hole.
Z軸に平行な電極軸方向のイニシャルホール加工の後に、傾斜角加工と横サーボ輪郭加工を順次に行う請求項1に記載のテーパ孔の放電加工方法。 2. The electric discharge machining method for a tapered hole according to claim 1, wherein after the initial hole machining in the direction of the electrode axis parallel to the Z axis, the tilt angle machining and the lateral servo contour machining are sequentially performed. 加工物を載せるC軸テーブルと、XY軸ステージ、およびZ軸電極ヘッドが、同期NC制御される放電加工装置において、
前記Z軸電極ヘッドには、電極の軸方向サーボ送り運動と往復シャトル運動および位置決め運動を行う電極送り装置と、該軸方向を一平面内において傾斜させる傾斜機構が設けられ、加工物の穴あけ指定点PをC軸テーブル中心Oから任意の距離(R)の位置に取り付け、
前記電極送り装置に往復シャトル運動をさせながら、C軸の旋回(θ)と、XY軸ステージの下記式「数2」、または式「数3」または式「数4」によって計算される同期運動の合成により、輪郭断面がラッパ状となる円形、楕円形、または長円形などの孔の加工をするテーパ孔の放電加工装置。
「数2」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi
「数3」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi+β、 ただし、βは定数。
「数4」
Ci=θi、Xi=Rsinθi、Yi=Rcosθi+qi、 ただし、qiは孔の断面形状を決定する変数。
In an electric discharge machining apparatus in which a C-axis table on which a workpiece is placed, an XY-axis stage, and a Z-axis electrode head are synchronously NC controlled
The Z-axis electrode head is provided with an electrode feeding device that performs axial servo feed movement, reciprocating shuttle movement, and positioning movement of the electrode, and a tilting mechanism that tilts the axial direction within a single plane. Point P is attached at an arbitrary distance (R) from the C-axis table center O,
Synchronous motion calculated by the following equation “Equation 2”, Equation “Equation 3” or Equation “Equation 4” of the XY axis stage while causing the electrode feeder to make a reciprocating shuttle motion. The electrical discharge machining apparatus of the taper hole which processes the hole of circular shape, elliptical shape, or oval shape whose outline cross-section becomes a trumpet shape by combining the above.
"Number 2"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi
"Equation 3"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi + β, where β is a constant.
"Equation 4"
Ci = θi, Xi = Rsinθi, Yi = Rcosθi + qi, where qi is a variable that determines the cross-sectional shape of the hole.
JP2008180867A 2008-07-11 2008-07-11 Method and device for electrical discharge machining of small-diameter tapered hole Pending JP2010017809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180867A JP2010017809A (en) 2008-07-11 2008-07-11 Method and device for electrical discharge machining of small-diameter tapered hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180867A JP2010017809A (en) 2008-07-11 2008-07-11 Method and device for electrical discharge machining of small-diameter tapered hole

Publications (1)

Publication Number Publication Date
JP2010017809A true JP2010017809A (en) 2010-01-28

Family

ID=41703188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180867A Pending JP2010017809A (en) 2008-07-11 2008-07-11 Method and device for electrical discharge machining of small-diameter tapered hole

Country Status (1)

Country Link
JP (1) JP2010017809A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220111B2 (en) * 2008-07-29 2013-06-26 三菱電機株式会社 Pore electric discharge machining apparatus and electric discharge machining method
CN104162724A (en) * 2013-05-20 2014-11-26 苏州工业园区凯德机电科技有限公司 Taper Z-direction integration device of electric spark linear cutting machine
CN104174942A (en) * 2014-07-29 2014-12-03 广东工业大学 Electrolytic wire turning equipment for narrow and deep grooves in revolving body
JP2016203370A (en) * 2015-04-24 2016-12-08 ゼネラル・エレクトリック・カンパニイ Method for profile machining
CN109434225A (en) * 2018-12-18 2019-03-08 中北大学 Small Lavalle hole micro-electrode electric discharge machining apparatus and assembly and processing method
CN114473091A (en) * 2022-03-15 2022-05-13 江苏理工学院 Horizontal electrolytic electric spark machining device and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220111B2 (en) * 2008-07-29 2013-06-26 三菱電機株式会社 Pore electric discharge machining apparatus and electric discharge machining method
US8933361B2 (en) 2008-07-29 2015-01-13 Mitsubishi Electric Corporation Microhole electric discharge machining apparatus and electric discharge machining method
CN104162724A (en) * 2013-05-20 2014-11-26 苏州工业园区凯德机电科技有限公司 Taper Z-direction integration device of electric spark linear cutting machine
CN104174942A (en) * 2014-07-29 2014-12-03 广东工业大学 Electrolytic wire turning equipment for narrow and deep grooves in revolving body
JP2016203370A (en) * 2015-04-24 2016-12-08 ゼネラル・エレクトリック・カンパニイ Method for profile machining
US10974336B2 (en) 2015-04-24 2021-04-13 General Electric Company Method for profile machining
CN109434225A (en) * 2018-12-18 2019-03-08 中北大学 Small Lavalle hole micro-electrode electric discharge machining apparatus and assembly and processing method
CN109434225B (en) * 2018-12-18 2023-08-29 中北大学 micro-Laval hole micro-electrode electric spark machining device and assembling and machining method
CN114473091A (en) * 2022-03-15 2022-05-13 江苏理工学院 Horizontal electrolytic electric spark machining device and method
CN114473091B (en) * 2022-03-15 2023-08-11 江苏理工学院 Horizontal electrolytic electric spark machining device and method

Similar Documents

Publication Publication Date Title
JP2010017809A (en) Method and device for electrical discharge machining of small-diameter tapered hole
JP5129971B2 (en) Manufacturing method of injection nozzle for internal combustion engine
US9676046B2 (en) Electrical discharge machining method
JP5460039B2 (en) Small hole electric discharge machine
JP2007190671A (en) Duplex electric discharge machine and its usage
Meshram et al. Review of research work in die sinking EDM for machining curved hole
US7964817B2 (en) Electrical discharge machine apparatus for reverse taper bores
KR20190134697A (en) Machine tools and machine tools
EP3486018A1 (en) Method and device for machining shapes using electrical machining
JP2014205226A (en) Wire electric discharge machine for taper processing
JP2013176820A (en) Electric discharge machining method and electric discharge machining device for tapered hole
CN108655523B (en) A kind of device improving high current arc discharging milling machining accuracy
CN108067755A (en) The processing method of transporter burner inner liner shaped air film hole
JP2001054808A (en) Nozzle hole machining method
JP2008000834A (en) Nc boring electric-discharge machining method by wire electrode line
JP4185176B2 (en) Non-circular boring machine
JP2011045906A (en) Machining method and machining system for micromachining part in machine component
JP2005335055A (en) Apparatus and method for machining circular bore
JP2017109253A (en) Rotary tool having function for fixing workpiece
JP2007260878A (en) Pore electric discharge machining method by non-rotating pipe electrode
JP2001150248A (en) Method and device for machining tiny hole
JP6539453B2 (en) Fine hole electric discharge machine
KR101531908B1 (en) Eccentric Electrode For Electric Discharging And Manufacturing Method Thereof And Electric Discharging Micro Apparatus Comprising The Same
RU2430816C2 (en) Method of producing shaped bores
JP3158882U (en) Deep hole grooving machine using air turbine