JP2004140946A - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
JP2004140946A
JP2004140946A JP2002304558A JP2002304558A JP2004140946A JP 2004140946 A JP2004140946 A JP 2004140946A JP 2002304558 A JP2002304558 A JP 2002304558A JP 2002304558 A JP2002304558 A JP 2002304558A JP 2004140946 A JP2004140946 A JP 2004140946A
Authority
JP
Japan
Prior art keywords
plane
moving body
piezoelectric element
moving
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002304558A
Other languages
Japanese (ja)
Inventor
Junichi Seki
関 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002304558A priority Critical patent/JP2004140946A/en
Priority to PCT/JP2003/013298 priority patent/WO2004036727A2/en
Priority to AU2003272100A priority patent/AU2003272100A1/en
Publication of JP2004140946A publication Critical patent/JP2004140946A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0095Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/028Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems associated with conventional in-plane positioning stages, since a biaxially laminated stage whose directions of movement are orthogonal to each other is used, the size of the entire mechanism is increased, and the dynamic characteristic is degraded due to increase in mass, and since it is different in load mass in each of two axes, the controllability of paths is degraded due to the asymmetry of dynamic characteristics from axis to axis. <P>SOLUTION: In an actuator, the tip of a deformable element in the triaxial direction is in contact with a moving body having a degree of freedom in the biaxial directions on a plane. The moving body is biaxially moved on the plane by frictional force between the element and the moving body. For this reason, a mechanism for moving a moving body in arbitrary directions on a plane, which is compact and reduced in the asymmetry of biaxial dynamic characteristic, is constituted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、振動子を振動させ、振動子の接触する物体を動作させる振動波アクチュエータを用いたアクチュエータの構成、制御方法並びにこれを用いた位置決め装置の構成、制御方法の技術分野に関するものである。
【0002】
【背景技術】
近年、位置決めステージ等のアクチュエータとして、圧電素子に固定された振動子を移動部材に押し当て、圧電素子を可聴域以上の周波数で高速で駆動することにより、移動部材を運動させる、いわゆる振動波アクチュエータの応用が盛んであり、特許文献1等にその構造が提案されている。
【0003】
特開平7−184382号公報に記載された振動波アクチュエータの構成を説明する。平板の圧電体の両面に電極が形成され、一方の面の電極が複数に分割されている。この両面の電極間に電圧を印加することによって圧電体は微小変形を行う。適当な電極を選択して電圧を印加することで、圧電体を任意の方向に変形させることが可能である。圧電体の端部にはスペーサが設けられており、例えば、圧電体の電極間に交流信号あるいはパルス信号を印加することでスペーサには楕円運動が生じ、スペーサと接触する移動部材を一方向に動かすことができる。
【0004】
振動波アクチュエータを使用した位置決めステージの一例を図2に示す。x駆動回路102により駆動されるアクチュエータ201の振動子108は、図中xy平面内において振動子軌跡117に示すように楕円状に高速に振動し、図中x方向に可動する移動テーブル111に固定された駆動板109を介し、同テーブルを移動させる。変位センサ113はテーブルの現在位置を検出し、位置制御回路101は目標と現在位置との比較結果に制御定数をかけ、x駆動回路102に制御量を送り、いわゆるフィードバック位置決め系を構成する。
【0005】
このような機構は、従来より用いられてきたサーボモータ等の回転型モータと送りねじを組み合わせた機構に比べコンパクトであり、リニア磁気モータを使用した機構に比べ、モータ静止時に摩擦による保持力がある、非磁性部材のみによる構成が可能等の利点がある。
【0006】
【特許文献1】
特開平7−184382
【0007】
【発明が解決しようとする課題】
さて、前述のような機構を用いて、xy平面内の位置決めステージを構成する際には、前述の構成を移動方向が直交するように2軸積層したものが一般的に用いられている。このような構成では積層により、機構全体の大型化や、質量増による動特性の低下を招く。
【0008】
また、2軸の負荷質量が異なるため、特に、レーザ直描装置等、動作時の経路が重要なアプリケーションにおいては、軸間の動特性の非対称性による、経路の制御性の低下が問題となる。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、3軸方向に変形可能な素子の先端が平面2軸方向に自由度を持つ駆動板に接しており、前記素子が変形することにより前記平面2軸方向に駆動力を発生する事を特徴とするアクチュエータを提供するものである。
【0010】
【発明の実施の形態】
本発明の実施の形態においては、上記構成を適用して、3軸方向に変形可能な素子の先端を平面2軸方向に自由度を持つ移動体に接触させ、前記先端を前記平面に垂直な任意の平面内で楕円運動させることにより、前記平面内の任意の方向に前記移動体を移動させるコンパクトかつ前記2軸方向動特性の非対称性を抑えた機構を構成することができる。また、前記先端と前記移動体との静止摩擦状態を保ったまま、前記素子を前記平面2軸方向に変形させる事により、前記平面内微小領域での高精度な移動が可能になる。さらに、前記素子を複数配置し、前記平面2軸方向に加え前記平面内における回転方向にも自由度を持つ移動体に対して、個々の前記素子に同様の動作をさせることにより、前記平面内の移動に加え前記平面内における回転動作も可能になる。
【0011】
(実施例1)
以下、本発明の第1の実施例について説明を行う。
【0012】
まず、本発明を適用した位置決めステージの装置構成について図1を用いて説明する。
【0013】
図1は,xy平面を構成する固定されたベース112に対して,移動体である移動テーブル111が同平面内で移動可能に設定され駆動される機構を示す。移動テーブル111は、その上に載せた物体を移動させるものであり、移動距離を制御できる場合にはステージと呼ばれる。
【0014】
x方向とy方向の2つのスライド機構を内在するガイド110は,一端がベース112に固定され,もう一方の端が移動テーブル111に固定されている。これによって,移動テーブル111は,z方向には固定され,xy方向に自由に移動することができる。
【0015】
ベース112上に、円筒型圧電素子118が設置され、その先端に固定された振動子108は、移動テーブル111に固定された駆動板109に圧力をもって押しつけられており、同板を介し、同テーブルを移動させる。円筒型圧電素子118とベース112の間は、不図示のばねによって結合されて,このばねの弾性力により上記の圧力が生じている.この所定の圧力(予圧)は、ばねによるものである必要はなく、他の弾性体によって生じさせてもよく、空気圧、油圧であってもよい。
【0016】
x変位センサ113及びy変位センサ114はそれぞれx変位ミラー115及びy変位ミラー116との距離から移動テーブル111の図中x軸方向及びy軸方向の現在位置を測定する。位置制御回路101は各時刻での現在位置と目標位置とを比較演算し、制御量をx駆動回路102、y駆動回路103、z駆動回路104に送る。
【0017】
次に,円筒型圧電素子118の動作について図4を用いて説明する。
【0018】
図4は図1の円筒型圧電素子118を図中y軸の正の方向から負の方向に見たものである。円筒型圧電素子118は圧電素子を円筒形に加工したものであり、内壁に対し、外壁が正の電位を持つときに図中z方向に伸び、負の電位を持つ場合には縮む様に分極されている。図示はしないが、内壁は全面が電極で覆われており、接地されている。外壁を覆う電極はまずz方向に上下に分かれており、下部を一周する電極をz駆動電極107とする。また、上部の電極は円周方向にxy軸と45度の角度をもって4分割されており、x軸方向の対をx駆動電極105、y軸方向の対をy駆動電極106とする。例えば、x駆動電極105のx軸方向の正の側に正の電圧をかけ、負の側に負の電圧をかけた場合、正の側は伸び、負の側は縮むため、振動子117は、図4中の矢印の向きに変位する。
【0019】
この円筒型圧電素子118の先端に固定された振動子108は、移動テーブル111に固定された駆動板109にばねの圧力をもって押しつけられているので、円筒型圧電素子118にz方向の伸びを与えたとき、振動子108は駆動板109に強い力で押し付けられ、逆に円筒型圧電素子118にz方向の縮みを与えたとき、振動子108が駆動板109を押し付ける力は弱まる。
【0020】
このときの振動子108と駆動板109との摩擦力の差を利用することにより、移動テーブル111を所望の方向に駆動することができる。すなわち、円筒型圧電素子118にz方向の伸びを与えると同時にこれに同期してxおよびy軸方向にも変位させると、振動子108と駆動板109との摩擦力によって移動テーブル111はその方向に変位する。一方、円筒型圧電素子118をz方向に縮ませると同時にこれに同期してxおよびy軸方向の変位をもとに戻すと、摩擦力が弱いために、振動子108と駆動板109との間にすべりが生じて移動テーブル111はもとの位置には戻らない。その結果、円筒型圧電素子118の伸縮の1周期で移動テーブル111を一定距離だけxy方向に移動させることができる。1周期の移動距離は、円筒型圧電素子118のxy方向の変形量によって変えることができ,またz方向の伸縮の大きさによっても変わる。
【0021】
円筒型圧電素子118とベース112の間のばねの力を調節して,円筒型圧電素子118にz方向の縮みを与えたとき、振動子108が駆動板109から離れるようにしてもよい。
【0022】
x駆動回路102、y駆動回路103、z駆動回路104は指示された制御量に応じて、それぞれ、x駆動電極105、y駆動電極106、z駆動電極107に駆動信号を出力し、図1中xy平面に対して垂直な平面内において振動子108を楕円状に高速に振動させる。例えば、図5の電圧波形をx駆動電極105、y駆動電極106の各軸正の側、図6の電圧波形をx駆動電極105、y駆動電極106の各軸負の側、図7の電圧波形をz駆動電極107にかけることにより、移動テーブル111は図中x軸正の方向からy軸正の方向へπ/4rad回転した方向に移動する。
【0023】
x駆動電極105、y駆動電極106、z駆動電極107の電圧振幅を変えることにより,1回の振動によって生じる移動距離を調節することができる.また,x剪断圧電素子301とy剪断圧電素子302に印加する電圧の振幅を変えることにより,π/4rad以外の方向への移動も可能である。移動方向は、x剪断圧電素子301による変形とy剪断圧電素子302による変形のベクトル和の方向になる。
【0024】
以上説明した動作に加え、本発明はさらに微小な領域での動作も可能である。まず、z駆動電極107に+20V程度のDC電圧をかけ、振動子108を駆動板109により強く押しつける。こうして振動子108と駆動板109との接触状態を保ったまま、x駆動電極105、y駆動電極106に任意の電圧をかけることで移動テーブル111を移動させる。この動作では、移動領域が円筒型圧電素子118の変形範囲内に限られるが、位置分解能は非常に高い。
【0025】
上記のz方向の変形に同期してx方向とy方向に変形させ、移動体を移動させる動作をステージの粗移動とし、z方向の変形を固定してx方向とy方向に変形させ、移動体を移動させる動作をステージの微移動として、両者を組み合わせたステージ移動制御を行なうこともできる。
【0026】
(実施例2)
以下、図3を用いて、本発明の第2の実施例について以下に詳細な説明を行う。
【0027】
まず、本発明を適用した位置決めステージの装置構成について説明する。図3中xy平面を構成するベース112上に移動テーブル111が配置される。両者の間は空気圧により非接触の状態を保つ、いわゆるエアスライド構成になっており、移動テーブル111はxy2軸方向に加え、xy平面内の回転自由度を持っている。
【0028】
x剪断圧電素子301、y剪断圧電素子302、z伸縮圧電素子303は上下両面に電極を持っており、上面電極を接地し、下面電極に駆動電圧をかけて駆動する。各素子は上面に対し、下面が正の電位を持つときにそれぞれ各軸負の方向に変位するように分極されており、これらを3層積層して構成された駆動素子a304〜駆動素子d307はそれぞれその上面の位置がベース112に対して固定されている。各駆動素子の下面に固定された振動子108は、移動テーブル111に固定された4枚の駆動板109に予圧をもって押しつけられており、同板を介し、同テーブルを移動させる。位置制御回路101は各時刻での制御量をx駆動回路102、y駆動回路103、z駆動回路104に送る。
【0029】
x駆動回路102、y駆動回路103、z駆動回路104は指示された制御量に応じて、それぞれ、x剪断圧電素子301、y剪断圧電素子302、z伸縮圧電素子303の下面電極に駆動信号を出力し、図中xy平面に対して垂直な平面内において振動子108を楕円状に高速に振動させる。例えば、図5の電圧波形を全駆動素子のx剪断圧電素子301、y剪断圧電素子302の下面電極、図7の電圧波形をz伸縮圧電素子303の下面電極にかけることにより、移動テーブル111は図中x軸正の方向からy軸正の方向へπ/4rad回転した方向に移動する。
【0030】
電圧振幅を変えることにより,1回の振動によって生じる移動距離を調節することができる。x剪断圧電素子301とy剪断圧電素子302に印加する電圧の振幅を変えることにより,π/4rad以外の方向への移動も可能である。移動方向は、x剪断圧電素子301による移動とy剪断圧電素子302による移動のベクトル和の方向になる。
【0031】
また、図5の電圧波形を駆動素子a304のy剪断圧電素子302、駆動素子d307のx剪断圧電素子301それぞれの下面電極、図6の電圧波形を駆動素子b305のx剪断圧電素子301、駆動素子c306のy剪断圧電素子302それぞれの下面電極、図7の電圧波形を全z伸縮圧電素子303の下面電極にかけることにより、移動テーブル111は図中x軸正の方向からy軸正の方向へ回転する。
【0032】
電圧振幅または周波数を変えることにより,回転速度を調節することができる。また、回転中心を4つの駆動素子a304−a307の重心からずらせて回転させるには、それぞれの駆動素子による移動量を、回転中心からその駆動素子までの距離に比例させ、それぞれの駆動素子による移動の方向を、回転中心とその駆動素子を結ぶ方向に直角の方向に設定すればよい。
【0033】
以上説明した動作に加え、本発明はさらに微小な領域での動作も可能である。まず、全z伸縮圧電素子303の下面電極にに+20V程度のDC電圧をかけ、各振動子108を駆動板109により強く押しつける。こうして振動子108と駆動板109との接触状態を保ったまま、任意のx剪断圧電素子301、y剪断圧電素子302に任意の電圧をかけることで移動テーブル111を微小移動及び回転させる。この動作では、移動及び回転領域が各駆動素子の変形範囲内に限られるが、位置及び角度分解能は非常に高い。
【0034】
【発明の効果】
以上説明したように、3軸方向に変形可能な素子の先端を平面2軸方向に自由度を持つ移動体に接触させ、前記先端を前記平面に垂直な任意の平面内で楕円運動させることにより、前記平面内の任意の方向に前記移動体を移動させるコンパクトかつ前記2軸方向動特性の非対称性を抑えた機構を構成することができる。また、前記先端と前記移動体との静止摩擦状態を保ったまま、前記素子を前記平面2軸方向に変形させる事により、前記平面内微小領域での高精度な移動が可能になる。さらに、前記素子を複数配置し、前記平面2軸方向に加え前記平面内における回転方向にも自由度を持つ移動体に対して、個々の前記素子に同様の動作をさせることにより、前記平面内の移動に加え前記平面内における回転動作も可能になる。
【0035】
以下に本発明の特徴と実施形態を例示する.
1.3軸方向に変形可能な素子の先端が平面2軸方向に自由度を持つ移動体に接しており、前記素子と前記移動体との摩擦力により前記移動体を平面2軸方向に移動させることを特徴とするアクチュエータ。
2.前記素子の平面2軸方向の変形により、該変形の方向に前記移動体を移動させる上記1に記載のアクチュエータ。
3.前記素子の平面2軸と垂直な軸方向の変形により、前記摩擦力の大きさを変化させる上記1に記載のアクチュエータ。
4.前記素子の平面2軸と垂直な軸方向の変形と同期した平面2軸方向の変形により、前記移動体を移動させる上記2に記載のアクチュエータ。
5.前記素子の平面2軸と垂直な軸方向の変形と同期した平面2軸方向の変形を繰り返すことにより、前記素子の変形範囲を超えて前記移動体を移動させる上記2に記載のアクチュエータ。
6.前記素子の平面2軸と垂直な軸方向の変形を一定に保ったまま前記素子を平面2軸方向に変形させ前記移動体を移動する上記1に記載のアクチュエータ。
7.上記5に記載の移動と上記6に記載の移動を組み合わせて前記移動体を移動させるアクチュエータ。
8.同一の構造をもって上記5及び上記6に記載のアクチュエータの機能を兼ねる事を特徴とするアクチュエータ。
9.平面2軸方向に自由度を有する移動体と上記1から8のうちのいずれか1項に記載のアクチュエータを有し、前記移動体上の物体を前記平面2軸方向に移動させる事を特徴とするステージ。
10.平面2軸方向及び前記平面内の回転方向に自由度を有する移動体と、上記1から6のいずれか1項に記載の複数のアクチュエータとを有し、前記移動体上の物体を前記平面2軸方向及び前記平面内の回転方向に移動させる事を特徴とするステージ。
【図面の簡単な説明】
【図1】本発明の第1の実施例における装置構成を説明する図
【図2】従来の技術による装置構成の例を説明する図
【図3】本発明の第2の実施例における装置構成を説明する図
【図4】本発明の第1の実施例における動作を説明する図
【図5】本発明の第1及び第2の実施例における動作を説明する図
【図6】本発明の第1及び第2の実施例における動作を説明する図
【図7】本発明の第1及び第2の実施例における動作を説明する図
【符号の説明】
101 位置制御回路
102 x駆動回路
103 y駆動回路
104 z駆動回路
105 x駆動電極
106 y駆動電極
107 z駆動電極
108 振動子
109 駆動板
110 ガイド
111 移動テーブル
112 ベース
113 x変位センサ
114 y変位センサ
115 x変位ミラー
116 y変位ミラー
117 振動子軌跡
118 円筒型圧電素子
201 アクチュエータ
301 x剪断圧電素子
302 y剪断圧電素子
303 z伸縮圧電素子
304 駆動素子1
305 駆動素子2
306 駆動素子3
307 駆動素子4
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technical field of an actuator configuration and a control method using a vibration wave actuator that vibrates a vibrator and moves an object in contact with the vibrator, and a configuration and a control method of a positioning device using the same. .
[0002]
[Background Art]
In recent years, as an actuator such as a positioning stage, a so-called vibration wave actuator that moves a moving member by pressing a vibrator fixed to a piezoelectric element against a moving member and driving the piezoelectric element at a frequency higher than an audible range at a high speed. Is widely used, and its structure is proposed in Patent Document 1 and the like.
[0003]
The configuration of the vibration wave actuator described in Japanese Patent Application Laid-Open No. 7-184382 will be described. Electrodes are formed on both sides of a flat piezoelectric body, and the electrodes on one side are divided into a plurality. By applying a voltage between the electrodes on both surfaces, the piezoelectric material undergoes minute deformation. By selecting an appropriate electrode and applying a voltage, the piezoelectric body can be deformed in an arbitrary direction. A spacer is provided at the end of the piezoelectric body.For example, by applying an AC signal or a pulse signal between the electrodes of the piezoelectric body, an elliptical motion occurs in the spacer, and the moving member that contacts the spacer is moved in one direction. You can move.
[0004]
FIG. 2 shows an example of a positioning stage using a vibration wave actuator. The vibrator 108 of the actuator 201 driven by the x drive circuit 102 vibrates at high speed in an elliptical shape as shown by a vibrator trajectory 117 in the xy plane in the figure and is fixed to the moving table 111 movable in the x direction in the figure. The table is moved via the driven plate 109 thus set. The displacement sensor 113 detects the current position of the table, and the position control circuit 101 multiplies the comparison result between the target and the current position by a control constant and sends a control amount to the x drive circuit 102, thereby forming a so-called feedback positioning system.
[0005]
Such a mechanism is more compact than a mechanism that combines a rotary motor such as a servomotor and a feed screw that have been used in the past, and has a lower holding force due to friction when the motor is stationary than a mechanism that uses a linear magnetic motor. There is an advantage that a configuration using only a non-magnetic member is possible.
[0006]
[Patent Document 1]
JP-A-7-184382
[0007]
[Problems to be solved by the invention]
When a positioning stage in the xy plane is configured by using the above-described mechanism, a configuration in which the above-described configuration is biaxially stacked such that the moving directions are orthogonal to each other is generally used. In such a configuration, the lamination causes an increase in the size of the entire mechanism and a decrease in dynamic characteristics due to an increase in mass.
[0008]
In addition, since the load masses of the two axes are different, especially in an application in which a path at the time of operation is important, such as a laser direct-writing apparatus, a decrease in path controllability due to asymmetry of dynamic characteristics between axes becomes a problem. .
[0009]
[Means for Solving the Problems]
According to the present invention, in order to solve the above-mentioned problem, the tip of an element which can be deformed in three axial directions is in contact with a driving plate having a degree of freedom in two plane directions, and the element is deformed in the two axial directions. The present invention provides an actuator characterized by generating a driving force.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the embodiment of the present invention, by applying the above configuration, the tip of the triaxially deformable element is brought into contact with a moving body having a degree of freedom in a plane and two axes, and the tip is perpendicular to the plane. By performing the elliptical movement in an arbitrary plane, a compact mechanism for moving the moving body in an arbitrary direction in the plane and suppressing the asymmetry of the biaxial dynamic characteristics can be configured. In addition, by deforming the element in the two-axis direction of the plane while maintaining the static friction state between the tip and the moving body, highly accurate movement in the minute area in the plane becomes possible. Further, a plurality of the elements are arranged, and a moving body having a degree of freedom also in a rotational direction in the plane in addition to the two axial directions of the plane is caused to perform the same operation for each of the elements, so that the same In addition to the movement, the rotation operation in the plane can be performed.
[0011]
(Example 1)
Hereinafter, a first embodiment of the present invention will be described.
[0012]
First, a device configuration of a positioning stage to which the present invention is applied will be described with reference to FIG.
[0013]
FIG. 1 shows a mechanism in which a moving table 111, which is a moving body, is set so as to be movable within the xy plane and is driven with respect to a fixed base 112 constituting the xy plane. The moving table 111 is for moving an object placed thereon, and is called a stage if the moving distance can be controlled.
[0014]
The guide 110 having two slide mechanisms in the x direction and the y direction has one end fixed to the base 112 and the other end fixed to the moving table 111. Thus, the moving table 111 is fixed in the z direction and can move freely in the xy directions.
[0015]
A cylindrical piezoelectric element 118 is installed on a base 112, and a vibrator 108 fixed to the tip of the cylindrical piezoelectric element 118 is pressed against a driving plate 109 fixed to a moving table 111 with pressure. To move. The cylindrical piezoelectric element 118 and the base 112 are connected by a spring (not shown), and the above-mentioned pressure is generated by the elastic force of the spring. The predetermined pressure (preload) does not need to be generated by a spring, but may be generated by another elastic body, or may be pneumatic or hydraulic.
[0016]
The x-displacement sensor 113 and the y-displacement sensor 114 measure the current position of the moving table 111 in the x-axis direction and the y-axis direction in the drawing from the distances from the x-displacement mirror 115 and the y-displacement mirror 116, respectively. The position control circuit 101 performs a comparison operation between the current position and the target position at each time, and sends a control amount to the x drive circuit 102, the y drive circuit 103, and the z drive circuit 104.
[0017]
Next, the operation of the cylindrical piezoelectric element 118 will be described with reference to FIG.
[0018]
FIG. 4 shows the cylindrical piezoelectric element 118 of FIG. 1 viewed from the positive direction of the y-axis in the figure in the negative direction. The cylindrical piezoelectric element 118 is obtained by processing a piezoelectric element into a cylindrical shape. The piezoelectric element extends in the z direction with respect to the inner wall when the outer wall has a positive potential and contracts when the outer wall has a negative potential. Have been. Although not shown, the entire inner wall is covered with electrodes and is grounded. The electrode covering the outer wall is first divided vertically in the z direction, and the electrode that goes around the lower part is referred to as a z drive electrode 107. The upper electrode is divided into four in the circumferential direction at an angle of 45 degrees with respect to the xy axis. A pair in the x axis direction is referred to as an x drive electrode 105, and a pair in the y axis direction is referred to as a y drive electrode 106. For example, when a positive voltage is applied to the positive side in the x-axis direction of the x driving electrode 105 and a negative voltage is applied to the negative side, the positive side expands and the negative side contracts. , In the direction of the arrow in FIG.
[0019]
Since the vibrator 108 fixed to the tip of the cylindrical piezoelectric element 118 is pressed against the driving plate 109 fixed to the moving table 111 with a spring pressure, it gives the cylindrical piezoelectric element 118 elongation in the z direction. When the vibrator 108 is pressed against the driving plate 109 with a strong force, on the contrary, when the cylindrical piezoelectric element 118 is contracted in the z direction, the force with which the vibrator 108 presses the driving plate 109 is weakened.
[0020]
By utilizing the difference in the frictional force between the vibrator 108 and the driving plate 109 at this time, the moving table 111 can be driven in a desired direction. That is, when the cylindrical piezoelectric element 118 is extended in the z-direction and simultaneously displaced in the x- and y-axis directions in synchronism with it, the moving table 111 is moved in the direction by the frictional force between the vibrator 108 and the driving plate 109. Is displaced. On the other hand, when the cylindrical piezoelectric element 118 is contracted in the z-direction and, at the same time, the displacement in the x- and y-axis directions is returned to the original, the frictional force is weak. Slip occurs during the movement, and the moving table 111 does not return to the original position. As a result, the moving table 111 can be moved in the xy direction by a fixed distance in one cycle of expansion and contraction of the cylindrical piezoelectric element 118. The moving distance in one cycle can be changed by the amount of deformation of the cylindrical piezoelectric element 118 in the xy directions, and also changes by the magnitude of expansion and contraction in the z direction.
[0021]
When the spring force between the cylindrical piezoelectric element 118 and the base 112 is adjusted so that the cylindrical piezoelectric element 118 contracts in the z direction, the vibrator 108 may be separated from the driving plate 109.
[0022]
The x-drive circuit 102, the y-drive circuit 103, and the z-drive circuit 104 output drive signals to the x-drive electrode 105, the y-drive electrode 106, and the z-drive electrode 107, respectively, in accordance with the instructed control amounts. The vibrator 108 is rapidly vibrated in an elliptical shape in a plane perpendicular to the xy plane. For example, the voltage waveform of FIG. 5 is the positive side of each axis of the x drive electrode 105 and the y drive electrode 106, the voltage waveform of FIG. 6 is the negative side of each axis of the x drive electrode 105 and the y drive electrode 106, and the voltage of FIG. By applying the waveform to the z drive electrode 107, the moving table 111 moves in a direction rotated by π / 4 rad from the positive direction of the x axis to the positive direction of the y axis in the drawing.
[0023]
By changing the voltage amplitude of the x drive electrode 105, the y drive electrode 106, and the z drive electrode 107, it is possible to adjust the moving distance caused by one vibration. Further, by changing the amplitude of the voltage applied to the x-shear piezoelectric element 301 and the y-shear piezoelectric element 302, it is possible to move in a direction other than π / 4 rad. The moving direction is the direction of the vector sum of the deformation by the x-shear piezoelectric element 301 and the deformation by the y-shear piezoelectric element 302.
[0024]
In addition to the operation described above, the present invention can also operate in a finer area. First, a DC voltage of about +20 V is applied to the z drive electrode 107, and the vibrator 108 is pressed strongly against the drive plate 109. The moving table 111 is moved by applying an arbitrary voltage to the x drive electrode 105 and the y drive electrode 106 while maintaining the contact state between the vibrator 108 and the drive plate 109 in this manner. In this operation, the movement region is limited to the deformation range of the cylindrical piezoelectric element 118, but the position resolution is very high.
[0025]
Deformation in the x and y directions in synchronism with the above deformation in the z direction, the movement of the moving body is referred to as coarse movement of the stage, and the deformation in the z direction is fixed and the movement is performed in the x and y directions. The movement of the body can be regarded as the fine movement of the stage, and the stage movement can be controlled by combining the two.
[0026]
(Example 2)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to FIG.
[0027]
First, a device configuration of a positioning stage to which the present invention is applied will be described. A moving table 111 is arranged on a base 112 constituting an xy plane in FIG. A so-called air slide configuration is provided in which a non-contact state is maintained between the two by air pressure, and the moving table 111 has a rotational degree of freedom in the xy plane in addition to the xy2 axis directions.
[0028]
The x-shear piezoelectric element 301, the y-shear piezoelectric element 302, and the z-shear piezoelectric element 303 have electrodes on both upper and lower surfaces, and are driven by applying a drive voltage to the upper electrode and the lower electrode. Each element is polarized so as to be displaced in the negative direction of each axis when the lower surface has a positive potential with respect to the upper surface, and the driving elements a304 to d307 configured by laminating these three layers are: The position of each upper surface is fixed to the base 112. The vibrator 108 fixed to the lower surface of each drive element is pressed against four drive plates 109 fixed to the moving table 111 with a preload, and moves the table via the plates. The position control circuit 101 sends the control amount at each time to the x drive circuit 102, the y drive circuit 103, and the z drive circuit 104.
[0029]
The x drive circuit 102, the y drive circuit 103, and the z drive circuit 104 apply drive signals to the lower surface electrodes of the x-shear piezoelectric element 301, the y-shear piezoelectric element 302, and the z-expansion piezoelectric element 303, respectively, in accordance with the instructed control amounts. The vibrator 108 is output at a high speed in an elliptical shape in a plane perpendicular to the xy plane in the figure. For example, by applying the voltage waveform of FIG. 5 to the lower electrodes of the x-shear piezoelectric element 301 and the y-shear piezoelectric element 302 of all the driving elements and the voltage waveform of FIG. It moves in a direction rotated by π / 4 rad from the positive direction of the x axis to the positive direction of the y axis in the figure.
[0030]
By changing the voltage amplitude, the moving distance caused by one vibration can be adjusted. By changing the amplitude of the voltage applied to the x-shear piezoelectric element 301 and the y-shear piezoelectric element 302, movement in a direction other than π / 4 rad is possible. The moving direction is the direction of the vector sum of the movement by the x-shear piezoelectric element 301 and the movement by the y-shear piezoelectric element 302.
[0031]
Also, the voltage waveform of FIG. 5 is the lower surface electrode of each of the y-shear piezoelectric element 302 of the drive element a304, the x-shear piezoelectric element 301 of the drive element d307, and the voltage waveform of FIG. By applying the lower surface electrode of each of the y-shear piezoelectric elements 302 of c306 and the voltage waveform of FIG. 7 to the lower surface electrodes of all the z-expansion piezoelectric elements 303, the moving table 111 moves from the positive x-axis direction to the positive y-axis direction in the figure. Rotate.
[0032]
By changing the voltage amplitude or frequency, the rotation speed can be adjusted. In addition, in order to rotate the rotation center from the center of gravity of the four drive elements a304-a307, the amount of movement by each drive element is proportional to the distance from the rotation center to the drive element, and the amount of movement by each drive element is set. May be set to a direction perpendicular to the direction connecting the rotation center and the driving element.
[0033]
In addition to the operation described above, the present invention can also operate in a finer area. First, a DC voltage of about +20 V is applied to the lower surface electrode of all z-stretching piezoelectric elements 303, and each vibrator 108 is pressed strongly by the driving plate 109. In this way, while maintaining the state of contact between the vibrator 108 and the driving plate 109, an arbitrary voltage is applied to an arbitrary x-shear piezoelectric element 301 and an arbitrary y-shear piezoelectric element 302, whereby the moving table 111 is minutely moved and rotated. In this operation, the movement and rotation regions are limited within the deformation range of each drive element, but the position and angular resolution are very high.
[0034]
【The invention's effect】
As described above, the tip of the element that can be deformed in three axial directions is brought into contact with a moving body having a degree of freedom in two plane directions, and the tip is made to perform an elliptical motion in an arbitrary plane perpendicular to the plane. A compact mechanism for moving the moving body in an arbitrary direction within the plane and suppressing the asymmetry of the two-axis direction dynamic characteristics can be configured. In addition, by deforming the element in the two-axis direction of the plane while maintaining the static friction state between the tip and the moving body, highly accurate movement in the minute area in the plane becomes possible. Further, a plurality of the elements are arranged, and a moving body having a degree of freedom also in a rotational direction in the plane in addition to the two axial directions of the plane is caused to perform the same operation for each of the elements, so that the same In addition to the movement, the rotation operation in the plane can be performed.
[0035]
The features and embodiments of the present invention will be exemplified below.
1. The tip of the element that can be deformed in the three-axis direction is in contact with the moving body having a degree of freedom in the plane two-axis direction, and the moving body is moved in the plane two-axis direction by the frictional force between the element and the moving body. Actuator.
2. 2. The actuator according to 1 above, wherein the moving body is moved in a direction of the deformation by the deformation of the element in a biaxial direction on a plane.
3. The actuator according to claim 1, wherein the magnitude of the frictional force is changed by deformation of the element in an axial direction perpendicular to two planar axes.
4. 3. The actuator according to 2 above, wherein the moving body is moved by deformation in a plane biaxial direction synchronized with deformation in an axial direction perpendicular to the plane biaxial axis of the element.
5. 3. The actuator according to 2 above, wherein the mobile body is moved beyond a deformation range of the element by repeating deformation in a plane two-axis direction synchronized with deformation in an axial direction perpendicular to the plane two axes of the element.
6. 2. The actuator according to the above item 1, wherein the element is deformed in a plane biaxial direction while the deformation in an axial direction perpendicular to the plane two axes of the element is kept constant, and the moving body is moved.
7. An actuator that moves the moving body by combining the movement described in 5 above and the movement described in 6 above.
8. 7. An actuator having the same structure and also having the functions of the actuators described in 5 and 6 above.
9. 9. A moving body having a degree of freedom in a plane two-axis direction and the actuator according to any one of 1 to 8, wherein an object on the moving body is moved in the plane two-axis direction. Stage to do.
10. 7. A moving body having degrees of freedom in two axial directions of a plane and a rotation direction in the plane, and a plurality of actuators according to any one of the above 1 to 6, wherein an object on the moving body is moved to the plane 2 A stage which is moved in an axial direction and a rotation direction in the plane.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a device configuration according to a first embodiment of the present invention; FIG. 2 is a diagram illustrating an example of a device configuration according to a conventional technique; FIG. 3 is a device configuration according to a second embodiment of the present invention; FIG. 4 is a diagram for explaining the operation in the first embodiment of the present invention. FIG. 5 is a diagram for explaining the operation in the first and second embodiments of the present invention. FIG. 7 is a diagram for explaining the operation in the first and second embodiments. FIG. 7 is a diagram for explaining the operation in the first and second embodiments of the present invention.
101 position control circuit 102 x drive circuit 103 y drive circuit 104 z drive circuit 105 x drive electrode 106 y drive electrode 107 z drive electrode 108 vibrator 109 drive plate 110 guide 111 moving table 112 base 113 x displacement sensor 114 y displacement sensor 115 x displacement mirror 116 y displacement mirror 117 vibrator trajectory 118 cylindrical piezoelectric element 201 actuator 301 x shear piezoelectric element 302 y shear piezoelectric element 303 z telescopic piezoelectric element 304 drive element 1
305 drive element 2
306 drive element 3
307 drive element 4

Claims (1)

3軸方向に変形可能な素子の先端が平面2軸方向に自由度を持つ移動体に接しており、前記素子と前記移動体との摩擦力により前記移動体を平面2軸方向に移動させることを特徴とするアクチュエータ。The tip of an element that can be deformed in three axial directions is in contact with a moving body having a degree of freedom in two plane directions, and the moving body is moved in two axial directions by friction between the element and the moving body. An actuator characterized by the above.
JP2002304558A 2002-10-18 2002-10-18 Actuator Withdrawn JP2004140946A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002304558A JP2004140946A (en) 2002-10-18 2002-10-18 Actuator
PCT/JP2003/013298 WO2004036727A2 (en) 2002-10-18 2003-10-17 Piezoelectric driving apparatus
AU2003272100A AU2003272100A1 (en) 2002-10-18 2003-10-17 Piezoelectric driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304558A JP2004140946A (en) 2002-10-18 2002-10-18 Actuator

Publications (1)

Publication Number Publication Date
JP2004140946A true JP2004140946A (en) 2004-05-13

Family

ID=32105121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304558A Withdrawn JP2004140946A (en) 2002-10-18 2002-10-18 Actuator

Country Status (3)

Country Link
JP (1) JP2004140946A (en)
AU (1) AU2003272100A1 (en)
WO (1) WO2004036727A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301454A (en) * 2005-04-22 2006-11-02 Canon Inc Optical apparatus
JP2010230442A (en) * 2009-03-26 2010-10-14 Japan Research Institute Ltd System for detecting direction of external force
EP2493065A2 (en) 2011-02-28 2012-08-29 NGK Insulators, Ltd. Piezoelectric actuator and piezoelectric actuator array

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425882A (en) * 2005-04-29 2006-11-08 Univ Northumbria Newcastle Positioning apparatus
CN106026763B (en) * 2016-05-17 2017-05-17 西安交通大学 Piezoelectric ceramic drive three-freedom-degree angle adjusting device and method
FR3068751B1 (en) * 2017-07-06 2019-08-02 Universite Pierre Et Marie Curie TRANSMISSION MECHANISM WITH VARIABLE TRANSLATION RATIO
CN111338037A (en) * 2020-04-10 2020-06-26 季华实验室 Optical fiber coupling adjusting device and adjusting method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424609A1 (en) * 1989-09-28 1991-05-02 Rockwell International Corporation Piezoelectric actuator
JPH06204107A (en) * 1992-12-25 1994-07-22 Canon Inc Positioning stage apparatus
DE19715226A1 (en) * 1997-04-11 1998-10-15 Univ Schiller Jena Precision micro=positioning method using piezoelectric setting elements
WO1999059192A1 (en) * 1998-05-14 1999-11-18 Massachusetts Institute Of Technology Omni-directional high precision friction drive positioning stage
DE19859024A1 (en) * 1998-12-21 2000-06-29 Bosch Gmbh Robert Drive device has pressure element different from driven part arranged on side of piezo-element facing driven part to bias piezo-element, pressure element on other side, and clamp element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301454A (en) * 2005-04-22 2006-11-02 Canon Inc Optical apparatus
JP4649263B2 (en) * 2005-04-22 2011-03-09 キヤノン株式会社 Optical equipment
JP2010230442A (en) * 2009-03-26 2010-10-14 Japan Research Institute Ltd System for detecting direction of external force
EP2493065A2 (en) 2011-02-28 2012-08-29 NGK Insulators, Ltd. Piezoelectric actuator and piezoelectric actuator array
US8791623B2 (en) 2011-02-28 2014-07-29 Ngk Insulators, Ltd. Piezoelectric actuator and piezoelectric actuator array

Also Published As

Publication number Publication date
WO2004036727A2 (en) 2004-04-29
AU2003272100A1 (en) 2004-05-04
WO2004036727A3 (en) 2004-10-28
AU2003272100A8 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
Deng et al. Development of a planar piezoelectric actuator using bending–bending hybrid transducers
Breguet et al. Stick and slip actuators: design, control, performances and applications
US5089740A (en) Displacement generating apparatus
EP1577961B1 (en) Acceleration and deceleration method using a piezoelectric motor
US7061158B2 (en) High resolution piezoelectric motor
JPH06246231A (en) Micro actuator
Zhou et al. Development of a Δ-type mobile robot driven by three standing-wave-type piezoelectric ultrasonic motors
Deng et al. Design, modeling, and experimental evaluation of a compact piezoelectric XY platform for large travel range
JP2004140946A (en) Actuator
CN107907992A (en) The fast steering mirror actuation mechanism and start method of direct stress electromagnetic drive
JP2001116867A (en) Xy stage
JP4672828B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
US11711033B2 (en) Piezoelectric motor with bending travelling wave
Kortschack et al. Driving principles of mobile microrobots for micro-and nanohandling
JPS61159349A (en) Minute distance moving device
JPS62159088A (en) Moving stage device
WO2010114488A1 (en) Active manipulator
JP3909719B2 (en) Feeding device and operation control method thereof
JP2002272149A (en) Feeder and rotor
JPH0837784A (en) Moving device and control method of moving device
JPH0151303B2 (en)
JP2004254390A (en) Piezoelectric actuator
JP4332333B2 (en) Actuator and drive device
JPH10118874A (en) Minute interval driving mechanism
Zhang et al. Large-stroke piezo-actuated planar motor for nanopositioning applications

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110