JPH0673791B2 - Friction feed mechanism - Google Patents
Friction feed mechanismInfo
- Publication number
- JPH0673791B2 JPH0673791B2 JP14664688A JP14664688A JPH0673791B2 JP H0673791 B2 JPH0673791 B2 JP H0673791B2 JP 14664688 A JP14664688 A JP 14664688A JP 14664688 A JP14664688 A JP 14664688A JP H0673791 B2 JPH0673791 B2 JP H0673791B2
- Authority
- JP
- Japan
- Prior art keywords
- drive shaft
- friction
- feed
- friction roller
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/22—Feeding members carrying tools or work
- B23Q5/34—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
- B23Q5/38—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
- B23Q5/40—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Details Of Measuring And Other Instruments (AREA)
- Transmission Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は摩擦ローラを用いた摩擦送り機構に係り、測定
器や工作機械等のテーブルあるいはヘッド送り機構など
に利用できる。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a friction feed mechanism using a friction roller, and can be used in a table or a head feed mechanism of a measuring instrument or machine tool.
従来より、三次元測定器や工作機械等においては、可動
方向ごとに送り機構を設け、ワークを載置するテーブル
や測定子あるいは工具を支持するヘッドの相対位置を調
整している。Conventionally, in a coordinate measuring machine, a machine tool, etc., a feed mechanism is provided in each movable direction to adjust the relative position of a table on which a work is placed, a probe, or a head supporting a tool.
このような送り機構には高精度が要求されるため、ボー
ルねじ等の螺旋係合構造を用いて駆動軸の回転運動を軸
方向の往復運動に変換する方式が多用されている。しか
し、駆動軸に形成するねじ形状を高精度に仕上げる必要
があり、製造コストが高くなるほか、送りピッチが固定
されるという問題がある。このため、粗調整時等の高速
送りとワーク近接時等の精密送りといった相反する要求
を満たすために、駆動軸とモータ等との間に変速機構や
クラッチ機構を設けたり、あるいは高速送り機構に微動
ユニットを付加したりといった構造上の複雑化が避けら
れなかった。Since such a feed mechanism is required to have high accuracy, a method of converting the rotational movement of the drive shaft into a reciprocating movement in the axial direction by using a spiral engagement structure such as a ball screw is often used. However, it is necessary to finish the screw shape formed on the drive shaft with high accuracy, which increases the manufacturing cost and causes the feed pitch to be fixed. Therefore, in order to meet the contradictory requirements such as high-speed feed for rough adjustment and precision feed for approaching a workpiece, etc., a speed change mechanism or clutch mechanism should be installed between the drive shaft and motor, or Structural complications such as the addition of fine movement units were unavoidable.
これに対し、駆動軸に対して所定のリード角で当接され
た摩擦ローラを駆動軸の周面に転動させ、駆動軸の回転
に伴って摩擦ローラに生じる駆動軸方向分力により送り
動作を行う摩擦送り機構が開発されている。このような
摩擦送り機構においては、駆動軸に螺旋状のねじを形成
する必要がなく、製造コストを低減できるとともに、摩
擦ローラのリード角(摩擦ローラの回転軸線と駆動軸の
回転軸線とがなす角度)に応じて送りピッチを任意に設
定あるいは変更可能である。On the other hand, the friction roller, which is in contact with the drive shaft at a predetermined lead angle, rolls on the peripheral surface of the drive shaft and is fed by the component force in the drive shaft direction generated on the friction roller as the drive shaft rotates. A friction feeding mechanism has been developed for performing. In such a friction feed mechanism, it is not necessary to form a spiral screw on the drive shaft, the manufacturing cost can be reduced, and the lead angle of the friction roller (the rotation axis of the friction roller and the rotation axis of the drive shaft is formed). The feed pitch can be arbitrarily set or changed according to the angle.
ところで、前述のような摩擦送り機構においては、稼働
中であっても摩擦ローラのリード角および送りピッチを
無段階に調整可能であり、簡単な操作で高速送りと精密
送りとを切換えることが可能である。By the way, in the above-mentioned friction feed mechanism, the lead angle and feed pitch of the friction roller can be adjusted steplessly even during operation, and it is possible to switch between high-speed feed and precision feed with a simple operation. Is.
しかし、摩擦ローラを可動式とする場合、摩擦ローラを
所望のリード角に正確に設定するために高精度に制御さ
れた角度調整手段が必要となるほか、調整後の摩擦ロー
ラを設定されたリード角に正確に固定する手段が必要と
なり、再び構造が複雑化するという問題があった。However, when the friction roller is made movable, an angle adjusting means controlled with high precision is required in order to accurately set the friction roller to a desired lead angle, and the adjusted friction roller is adjusted to the lead angle. There was a problem that the structure became complicated again because a means for accurately fixing to the corner was required.
本発明の目的は、複数の送りピッチの切換えを正確かつ
簡単に行えるとともに、構造を簡略化できる摩擦送り機
構を提供することにある。An object of the present invention is to provide a friction feed mechanism capable of accurately and easily switching a plurality of feed pitches and simplifying the structure.
本発明は、摩擦送り機構の送り動作が摩擦ローラと駆動
軸の周面との摩擦転動に依存しており、摩擦ローラが僅
かでも駆動軸から離隔すれば当該摩擦ローラによる送り
動作が無効となることに着目してなされたものである。
すなわち、相対移動可能な二部材の一方に回転する駆動
軸を設け、他方の部材には各々前記駆動軸の周面に転動
可能かつ互いに異なるリード角で傾斜配置された複数の
摩擦ローラを設け、これらの摩擦ローラを各々独立した
支持体に支持するとともに、各支持体には圧電素子の変
位により各摩擦ローラを駆動軸の周面に圧接可能な離接
手段を設け、これにより摩擦送り機構を構成したもので
ある。According to the present invention, the feeding operation of the friction feed mechanism depends on the friction rolling between the friction roller and the peripheral surface of the drive shaft, and even if the friction roller is separated from the drive shaft, the feeding operation by the friction roller becomes invalid. It was made paying attention to becoming.
That is, one of the two relatively movable members is provided with a rotating drive shaft, and the other member is provided with a plurality of friction rollers that are rollable around the peripheral surface of the drive shaft and that are inclined and arranged at different lead angles. The friction rollers are supported by independent supports, and each support is provided with a contacting / disconnecting means capable of press-contacting each friction roller with the peripheral surface of the drive shaft by displacement of the piezoelectric element. Is configured.
本発明の圧電素子としては、Pb(Zr-Ti)O3系のセラミ
ックス、あるいは水晶やLiNbO3等の結晶といった圧電性
材料を一対の電極で挟持したものが利用できる。また、
これらの圧電素子を積層して機械的な動作量を拡張して
もよく、あるいは回動アーム等を用いたてこ式の動作量
拡大機構を利用してもよい。As the piezoelectric element of the present invention, a Pb (Zr-Ti) O 3 -based ceramics, or a piezoelectric material such as crystal or crystal such as LiNbO 3 sandwiched between a pair of electrodes can be used. Also,
These piezoelectric elements may be laminated to expand the mechanical movement amount, or a lever type movement amount expanding mechanism using a rotating arm or the like may be used.
また、離接手段は駆動軸に向かって進退自在な支持体の
一部に圧電素子を介装して通電に伴う変位により駆動軸
に向かって支持体を進出させる構造、あるいは揺動自在
な支持体の一端に圧電素子を設けて他端に支持された摩
擦ローラを駆動軸に向かって回動させる構造等が利用で
きる。Further, the separating / connecting means has a structure in which a piezoelectric element is provided in a part of a support body that can move back and forth toward the drive shaft, and the support body advances toward the drive shaft due to displacement caused by energization, or a swingable support. A structure in which a piezoelectric element is provided at one end of a body and a friction roller supported at the other end is rotated toward a drive shaft can be used.
一方、複数の摩擦ローラ、支持体および圧電素子を配置
するにあたっては、これらを駆動軸に沿って配置しても
よく、あるいは駆動軸の所定位置を囲むように周方向に
配列してもよい。On the other hand, when arranging the plurality of friction rollers, the support and the piezoelectric element, these may be arranged along the drive shaft, or may be arranged in the circumferential direction so as to surround a predetermined position of the drive shaft.
また、駆動軸の撓み等を避けたい場合等には、同じリー
ド角を有する一対の摩擦ローラを駆動軸を挟んで対向配
置し、両側から略同じ強さで同時に圧接させてもよく、
あるいは駆動軸の反対側に撓み防止用の案内軸受を対向
配置してもよい。Further, when it is desired to avoid bending of the drive shaft or the like, a pair of friction rollers having the same lead angle may be arranged so as to face each other with the drive shaft interposed therebetween, and pressure may be applied simultaneously from both sides with substantially the same strength.
Alternatively, a guide bearing for preventing bending may be arranged opposite to the opposite side of the drive shaft.
このように構成された本発明においては、各摩擦ローラ
のリード角をそれぞれ所望の送りピッチを与えるように
正確に設定しておき、離接手段により任意の摩擦ローラ
を選択して駆動軸の周面に圧接させることにより、送り
ピッチの切換えを簡単に行い、切換え時にリード角を変
更しないようにして各摩擦ローラの送りピッチを正確に
維持する。また、摩擦ローラを圧接させるために圧電素
子を採用することにより、操作の容易性および構造の簡
略化を実現し、これにより前記目的を達成する。In the present invention thus constituted, the lead angle of each friction roller is accurately set so as to give a desired feed pitch, and any friction roller is selected by the contact / separation means to rotate the circumference of the drive shaft. The feed pitch is easily switched by pressing it against the surface, and the feed pitch of each friction roller is accurately maintained by not changing the lead angle during the switching. Further, by adopting the piezoelectric element for pressing the friction roller, the ease of operation and the simplification of the structure are realized, thereby achieving the above object.
以下、本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図および第2図において、本実施例のテーブル送り
装置は、相対移動する二部材であるベット10およびテー
ブル20を備え、このテーブル20はベッド10の上面に形成
された案内機構2により案内されるとともに、本発明に
基づく摩擦送り機構1により駆動されて往復移動可能で
ある。1 and 2, the table feeding device of this embodiment includes a bed 10 and a table 20, which are two members that move relative to each other, and the table 20 is guided by a guide mechanism 2 formed on the upper surface of the bed 10. At the same time, it can be reciprocated by being driven by the friction feed mechanism 1 according to the present invention.
ベッド10には案内機構2に沿って駆動軸11が設けられて
いる。この駆動軸11は、周面を平滑に形成されていると
ともに、両端近傍をそれぞれベアリング12,13により回
転自在かつ軸方向に移動不可能に支持され、カップリン
グ14を介して接続されたモータ15により回転駆動される
ように構成されている。The bed 10 is provided with a drive shaft 11 along the guide mechanism 2. The drive shaft 11 has a smooth peripheral surface, is supported by bearings 12 and 13 in the vicinity of both ends thereof so as to be rotatable and immovable in the axial direction, and is connected to a motor 15 via a coupling 14. Is configured to be rotationally driven by.
テーブル20は断面略門型に形成され、その上面の裏側に
は駆動軸11の長手方向に沿って2つの支持体21,22が設
けられ、各々は駆動軸11に向かって進退自在に取付けら
れている。これら支持体21,22の先端にはそれぞれ摩擦
ローラ23,24が回転自在に取付けられており、支持体21,
22はそれぞれの摩擦ローラ23,24の回転軸線が駆動軸11
の回転軸線に対してそれぞれリード角A1およびリード角
A2(A2<A1)をなすように傾斜されている。The table 20 is formed in a substantially gate-shaped cross section, and on the back side of the upper surface thereof, two support bodies 21 and 22 are provided along the longitudinal direction of the drive shaft 11, and each of them is attached to the drive shaft 11 so as to be movable back and forth. ing. Friction rollers 23 and 24 are rotatably attached to the tips of the supports 21 and 22, respectively.
22 is the rotation axis of each friction roller 23, 24 is the drive shaft 11
Lead angle A1 and lead angle with respect to the rotation axis of
It is inclined to form A2 (A2 <A1).
これらの支持体21,22とテーブル20との間にはそれぞれ
表裏に電極を有する積層型の圧電素子25,26が介装され
ており、各圧電素子25,26は電極に接続された操作装置2
7から印加される電圧に応じて変位し、支持体21,22およ
び摩擦ローラ23,24を駆動軸11に向けて進退させること
が可能である。ここで、各圧電素子25,26は通常時には
各摩擦ローラ23,24を吊上げて駆動軸11の周面との間に
間隔をおいて保持するが、通電に伴う最大変位時には摩
擦ローラ23,24を駆動軸11の周面に充分な当接圧力で圧
接させるように設定されている。Laminated piezoelectric elements 25 and 26 having electrodes on the front and back are respectively interposed between the supports 21 and 22 and the table 20, and the piezoelectric elements 25 and 26 are operating devices connected to the electrodes. 2
The support 21 and 22 and the friction rollers 23 and 24 can be moved toward and away from the drive shaft 11 by being displaced according to the voltage applied from 7. Here, the respective piezoelectric elements 25, 26 normally hold the friction rollers 23, 24 by holding them at a distance from the peripheral surface of the drive shaft 11, but at the time of maximum displacement due to energization, the friction rollers 23, 24 Is set to be brought into pressure contact with the peripheral surface of the drive shaft 11 with a sufficient contact pressure.
なお、操作装置27は、各圧電素子25,26に電圧を印加す
るにあたって各圧電素子25,26のうち唯一つを選択可能
とされ、複数の摩擦ローラ23,24が同時に駆動軸11に圧
接することを防止されており、これらの圧電素子25,26
および操作装置27により各摩擦ローラ23,24ごとの離接
手段28,29が構成されている。The operating device 27 is capable of selecting only one of the piezoelectric elements 25, 26 when applying a voltage to each of the piezoelectric elements 25, 26, and the plurality of friction rollers 23, 24 are pressed against the drive shaft 11 at the same time. These piezoelectric elements 25,26
Also, the operating device 27 constitutes separating / contacting means 28, 29 for each of the friction rollers 23, 24.
このように構成された本実施例においては、次に示すよ
うな手順により高速送りおよび精密送りを連続的に実行
する。In this embodiment having such a configuration, high-speed feed and precision feed are continuously executed by the following procedure.
まず、テーブル20を目標位置近傍まで移動させるため
に、離接手段28を選択して高速送りを行う。すなわち、
操作装置27により圧電素子25に電圧を印加し、その変位
により支持体21を下降させ、摩擦ローラ23を駆動軸11の
周面に圧接させる。ここで、モータ15により駆動軸11を
回転させると、摩擦ローラ23は駆動軸11の回転に追従し
て周面を転動するとともに、リード角A1に応じた送りピ
ッチP1=πdtan(A1)(dは駆動軸11の直径)で駆動軸
11の軸方向に移動し、ベッド10に対してテーブル20を送
りピッチP1で高速に送る。First, in order to move the table 20 to the vicinity of the target position, the separating / connecting means 28 is selected and high speed feeding is performed. That is,
A voltage is applied to the piezoelectric element 25 by the operating device 27, the displacement of the piezoelectric element 25 lowers the support 21, and the friction roller 23 is pressed against the peripheral surface of the drive shaft 11. Here, when the drive shaft 11 is rotated by the motor 15, the friction roller 23 rolls on the peripheral surface following the rotation of the drive shaft 11, and the feed pitch P1 = πdtan (A1) ( d is the diameter of the drive shaft 11) and is the drive shaft
It moves in the axial direction of 11 and feeds the table 20 to the bed 10 at a feed pitch P1 at high speed.
一方、テーブル20が目標位置近傍まで達したならば、モ
ータ15を停止させて駆動軸11の回転を止め、離接手段28
に代えて離接手段29を選択して精密送り動作を行う。す
なわち、操作装置27からの電圧印加を圧電素子25から圧
電素子26に切換え、摩擦ローラ23を駆動軸11から離隔さ
せるとともに、代わりに支持体22を下降させて摩擦ロー
ラ24を駆動軸11に圧接させる。ここで、モータ15による
駆動軸11の回転を再開させると、摩擦ローラ24はリード
角A2に応じた送りピッチP2=πdtan(A2)(P2<P1)で
駆動軸11の軸方向に移動し、ベッド10に対してテーブル
20を送りピッチP2で精密に送る。On the other hand, when the table 20 reaches near the target position, the motor 15 is stopped to stop the rotation of the drive shaft 11, and the separating / connecting means 28
Instead, the separating / connecting means 29 is selected to perform the precision feeding operation. That is, the voltage application from the operating device 27 is switched from the piezoelectric element 25 to the piezoelectric element 26 to separate the friction roller 23 from the drive shaft 11, and instead the support 22 is lowered to press the friction roller 24 against the drive shaft 11. Let Here, when the rotation of the drive shaft 11 by the motor 15 is restarted, the friction roller 24 moves in the axial direction of the drive shaft 11 at the feed pitch P2 = πdtan (A2) (P2 <P1) according to the lead angle A2, Table against bed 10
Precisely feed 20 at feed pitch P2.
このように構成された本実施例によれば以下に示すよう
な効果を得ることができる。According to the present embodiment configured as described above, the following effects can be obtained.
すなわち、高速送りおよび精密送りに各々専用の摩擦ロ
ーラ23,24を設け、各々のリード角A1,A2を変化させるこ
とにより、駆動軸11の回転数が同じでもテーブル20をベ
ッド10に対して異なる送りピッチP1,P2で送ることがで
きる。That is, by providing dedicated friction rollers 23 and 24 for high-speed feed and precision feed, respectively, and changing the respective lead angles A1 and A2, the table 20 differs from the bed 10 even if the rotation speed of the drive shaft 11 is the same. It can be fed at feed pitches P1 and P2.
このため、送り速度を切り換えるために駆動軸11の回転
速度を変化させる変速機構等は必要なく、変速機構等を
用いていた従来の送り機構に比べて構造の大幅な簡略化
が可能である。Therefore, there is no need for a speed change mechanism or the like for changing the rotation speed of the drive shaft 11 in order to switch the feed speed, and the structure can be greatly simplified as compared with a conventional feed mechanism that uses a speed change mechanism or the like.
また、各摩擦ローラ23,24のリード角A1,A2の選択は任意
であり、高速用の送りピッチP1および精密用の送りピッ
チP2といった設定を自由に行うことができるとともに、
ピッチの加減に限らず、各摩擦ローラ23,24を互いに逆
向きに設定すれば、モータ15の回転方向を一定のままテ
ーブル20送り方向の正逆切換えに利用することもでき
る。Further, the selection of the lead angles A1 and A2 of the friction rollers 23 and 24 is arbitrary, and the feed pitch P1 for high speed and the feed pitch P2 for precision can be freely set,
Not only the pitch can be adjusted, but the friction rollers 23 and 24 can be set in the opposite directions to each other, and the rotation direction of the motor 15 can be fixed and used for the forward / reverse switching of the feed direction of the table 20.
さらに、各摩擦ローラ23,24はそれぞれのリード角A1,A2
を独立して設定でき、変更にあたって他の摩擦ローラの
角度に影響を与えることがないため、設定時および変更
時の調整作業を容易にすることができる。Further, each friction roller 23, 24 has a lead angle A1, A2
Can be set independently, and the angle of other friction rollers is not affected by the change, so that adjustment work at the time of setting and changing can be facilitated.
一方、摩擦送り機構1における各送り速度の選択および
解除は駆動軸11に対する摩擦ローラ23,24の離接により
行われるため、各送り動作の切換えを極めて円滑にでき
る。On the other hand, since selection and cancellation of each feed speed in the friction feed mechanism 1 are performed by separating and contacting the friction rollers 23 and 24 with respect to the drive shaft 11, switching of each feed operation can be made extremely smooth.
また、各摩擦ローラ23,24の離接動作は各々に対応する
圧電素子25,26によって行うとしたため、送り速度の切
換えは操作装置27から通電する圧電素子25,26を選択す
ることにより極めて簡単に行えるとともに、その操作自
体も単純なスイッチングであるため自動化も容易であ
る。Further, since the separating / contacting operation of each friction roller 23, 24 is performed by the corresponding piezoelectric element 25, 26, the switching of the feed speed is extremely simple by selecting the piezoelectric element 25, 26 energized from the operating device 27. In addition, the operation itself is simple switching, so automation is easy.
さらに、各摩擦ローラ23,24を解除しておくために駆動
軸11との間に保持しておく間隔は僅かなものでよいた
め、各支持体21,22の変位はさほど大きくする必要はな
く、積層型の各圧電素子25,26の厚み方向の変位により
充分な切換え動作が可能である。Further, since the distance between the friction rollers 23 and 24 and the drive shaft 11 for releasing the friction rollers 23 and 24 may be small, the displacement of the supports 21 and 22 need not be so large. A sufficient switching operation is possible by the displacement of the laminated piezoelectric elements 25 and 26 in the thickness direction.
また、圧電素子25,26自体の剛性を利用し、各圧電素子2
5,26を支持体21,22とテーブル20との間に介在させて構
造材としての機能を持たせることにより、摩擦ローラ2
3,24を支持する構造をさらに簡略化することができる。In addition, by utilizing the rigidity of the piezoelectric elements 25 and 26 themselves, each piezoelectric element 2
By interposing 5, 26 between the supports 21 and 22 and the table 20 to have a function as a structural material, the friction roller 2
The structure for supporting 3,24 can be further simplified.
なお、本発明は前記実施例に限定されるものではなく、
次に示すような変形をも含むものである。The present invention is not limited to the above embodiment,
It also includes the following modifications.
すなわち、摩擦送り機構1に設ける摩擦ローラの数は2
個に限らず、必要な送り速度の段数等に応じて適宜増減
すればよく、各々に設定するリード角も高速送り用や精
密送り用に限らず、適宜調節すればよい。That is, the number of friction rollers provided in the friction feed mechanism 1 is two.
The number of lead angles is not limited to one, and may be increased / decreased in accordance with the required number of feed speeds. The lead angle set for each is not limited to high speed feed or precision feed, and may be adjusted appropriately.
また、摩擦ローラの配置は前記実施例のように駆動軸11
に沿った配列に限らず、実施にあたって適宜変更してよ
い。Further, the arrangement of the friction roller is the same as that of the drive shaft 11 as in the above embodiment.
The arrangement is not limited to the above, and may be appropriately changed in implementation.
例えば、第3図に示す実施例においては、駆動軸11の両
側に摩擦ローラ23,24を対向配置し、各々が圧電素子25,
26により交互に駆動軸11に圧接するように構成したもの
である。なお、本実施例において、前記第1図の実施例
と同様のものについては同じ符号を附し、簡略化のため
説明を省略する。For example, in the embodiment shown in FIG. 3, friction rollers 23 and 24 are arranged on both sides of the drive shaft 11 so as to face each other, and piezoelectric elements 25 and
The drive shaft 11 is alternately pressure-contacted by 26. In this embodiment, the same parts as those in the embodiment of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted for simplification.
このような配置によれば、テーブル20の上面高さを低く
できるとともに、駆動軸11の軸方向の寸法を短くでき、
テーブル20のコンパクト化が可能である。According to such an arrangement, the height of the upper surface of the table 20 can be reduced and the dimension of the drive shaft 11 in the axial direction can be shortened.
The table 20 can be made compact.
なお、摩擦ローラの配置は対向する2位置に限らず任意
の角度位置であってもよく、あるいは駆動軸の所定位置
のまわりに3個以上の摩擦ローラを周方向に配列しても
よく、多数の摩擦ローラを用いる場合でも駆動軸の軸方
向の寸法を短くできる。The arrangement of the friction rollers is not limited to two positions facing each other, but may be an arbitrary angular position, or three or more friction rollers may be arranged in the circumferential direction around a predetermined position of the drive shaft, and a large number of them may be arranged. Even in the case of using the friction roller, the dimension of the drive shaft in the axial direction can be shortened.
また、軸方向の配列と周方向の配列とを組み合わせても
よく、例えば駆動軸に沿って2個づつの摩擦ローラを周
方向に3列といったような配置を採用することにより、
コンパクト化に加えて設計上の自由度を高めることがで
きる。Further, the arrangement in the axial direction and the arrangement in the circumferential direction may be combined, and for example, by adopting the arrangement in which two friction rollers are arranged along the drive shaft in three rows in the circumferential direction,
In addition to being compact, the degree of freedom in design can be increased.
さらに、第3図の実施例において、駆動軸を挟んで対向
配置された摩擦ローラを複数組配置するとともに、対向
する各対の摩擦ローラのリード角を互いに一致させてお
き、駆動軸の両側から同時に圧接させてもよい。Further, in the embodiment of FIG. 3, a plurality of sets of friction rollers arranged opposite to each other with the drive shaft interposed therebetween are arranged, and lead angles of the friction rollers of each pair opposed to each other are made to coincide with each other, and both sides of the drive shaft are arranged. You may press-contact simultaneously.
このような場合、摩擦ローラの圧接による駆動軸の撓み
等を互いに相殺させることができ、高荷重下での送り動
作等、摩擦ローラの駆動軸に対する圧接力が要求される
場合に有効である。In such a case, the bending of the drive shaft due to the pressure contact of the friction roller can be canceled by each other, and it is effective in the case where a pressure contact force of the friction roller against the drive shaft is required such as a feeding operation under a high load.
一方、支持体の構造は実施にあたって適宜選択すればよ
いが、圧電素子の変位に応じて円滑に動作でき、かつ座
屈や不必要な変形が生じないように適当な強度を持たせ
ることが好ましく、少なくとも摩擦ローラのリード角を
正確に維持できるように構成することが望ましい。On the other hand, the structure of the support may be appropriately selected for implementation, but it is preferable to provide appropriate strength so that it can operate smoothly in accordance with the displacement of the piezoelectric element and that buckling or unnecessary deformation does not occur. It is desirable that at least the lead angle of the friction roller be maintained accurately.
また、支持体は圧電素子を介して取付けられて進退自在
な構造に限らず、一点を回動自在に支持された揺動アー
ム状あるいはてこ式のものであってもよい。Further, the support body is not limited to a structure that is attached via a piezoelectric element and is movable back and forth, and may be a swing arm shape or a lever type structure that is rotatably supported at one point.
例えば、第4図に示す実施例においては、棒状の支持体
31,32の略中間をテーブル20の内側面に回動自在に支持
し、各々の下端には駆動軸11を挟んで対向配置された摩
擦ローラ33,34を等しいリード角で支持するとともに、
各支持体31,32の上端を略柱状に形成されて長手方向に
変位可能な圧電素子35の両端に回動連結し、これらによ
り1組の離接手段30を形成したものである。なお、この
離接手段30は、図示しないが駆動軸11に沿って複数組配
列されており、各組の摩擦ローラ33,34のリード角は互
いに異なる角度に設定されている。また、本実施例のそ
の他の部分において、前記第1図の実施例と同様のもの
については同じ符号を附し、簡略化のため説明を省略す
る。For example, in the embodiment shown in FIG. 4, a rod-shaped support
Around the middle of 31,32 is rotatably supported on the inner side surface of the table 20, and friction rollers 33, 34, which are opposed to each other with the drive shaft 11 interposed therebetween, are supported at equal lower end angles on the lower ends of the tables.
The upper ends of the supports 31, 32 are pivotally connected to both ends of a piezoelectric element 35 which is formed in a substantially columnar shape and is displaceable in the longitudinal direction, and a pair of separating / connecting means 30 is formed by these. Although not shown, a plurality of sets of the separating / connecting means 30 are arranged along the drive shaft 11, and the lead angles of the friction rollers 33, 34 of each set are set to different angles. Further, in other parts of this embodiment, the same parts as those in the embodiment of FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted for simplification.
このような配置によれば、圧電素子35の変位により各支
持体31,32を回動させ、一対の摩擦ローラ33,34で駆動軸
11を挟持することにより駆動軸11に圧接し、各々のリー
ド角に基づく送り動作を行うことができる。また、圧電
素子35で発生される圧接力は両摩擦ローラ33,34に均等
に分配されるため、互いの圧接力に起因する駆動軸11の
撓み等を確実に相殺させることができる。According to such an arrangement, the displacement of the piezoelectric element 35 causes each of the supports 31 and 32 to rotate, and the pair of friction rollers 33 and 34 causes the drive shaft to rotate.
It is possible to press the drive shaft 11 by sandwiching 11 and perform the feeding operation based on each lead angle. Further, since the pressure contact force generated by the piezoelectric element 35 is evenly distributed to both friction rollers 33, 34, it is possible to reliably cancel the bending of the drive shaft 11 and the like due to the pressure contact force of each other.
ところで、摩擦送り機構1の駆動軸11は一定回転数で駆
動されるものに限らず、回転数可変式のモータ15により
回転駆動されるものであってもよく、簡単な構造のまま
一層幅広い送り速度変化を得ることができる。By the way, the drive shaft 11 of the friction feed mechanism 1 is not limited to one driven at a constant rotation speed, but may be one driven to rotate by a motor 15 having a variable rotation speed. The speed change can be obtained.
一例として、前記実施例において、モータ15に4相ハイ
ブリッド型ステップモータを用いた場合について説明す
る。As an example, a case where a four-phase hybrid type step motor is used as the motor 15 in the above embodiment will be described.
このモータ15は、定電流チョッパ駆動時には最高速度20
回転/秒程度の高速回転を行い、定電圧ミニステップ駆
動時には最小分解能10000パルス/回転速度の精密回転
を実現可能である。ここで、摩擦ローラ23,24のリード
角A1,A2の設定を、駆動軸11の一回転あたりの送りピッ
チP1が5mm、送りピッチP2が1mmとなるように調整してお
くとすると、モータ15の高速回転時に摩擦ローラ23,24
を選択することにより最高速度を100mm/secまたは20mm/
secのいずれかに切換え可能であり、モータ15の精密回
転時には最小分解能を0.5μm/パルスまたは0.1μm/パル
スのいずれかを切換え可能となる。従って、モータ15自
体の切換えに加えて摩擦ローラ23,24の選択により、高
速および中速の粗調整動作および中精密送り、高精密送
りの2通りの精密位置合わせ動作が行え、状況に応じた
多様な設定が可能となる。This motor 15 has a maximum speed of 20 when driven by a constant current chopper.
High-speed rotation of about revolutions / second is achieved, and precision rotation with a minimum resolution of 10,000 pulses / revolution speed can be realized during constant voltage mini-step driving. If the lead angles A1 and A2 of the friction rollers 23 and 24 are adjusted so that the feed pitch P1 per rotation of the drive shaft 11 is 5 mm and the feed pitch P2 is 1 mm, the motor 15 Friction rollers 23,24 during high speed rotation of
By selecting, the maximum speed is 100 mm / sec or 20 mm /
It is possible to switch to any of sec and the minimum resolution can be switched to either 0.5 μm / pulse or 0.1 μm / pulse when the motor 15 is rotating precisely. Therefore, by selecting the friction rollers 23 and 24 in addition to switching the motor 15 itself, two types of precision positioning operations, high-speed and medium-speed coarse adjustment operations, medium-precision feeding, and high-precision feeding, can be performed, depending on the situation. Various settings are possible.
また、前記実施例においては、送り速度の切換え毎に駆
動軸11を停止させていたが、摩擦ローラ23,24のいずれ
も駆動軸11に圧接されない状態ではテーブル20の送り動
作も解除されるため、切換え時に駆動軸11を停止させな
くてもよい。この場合、モータ15は常時回転され続ける
ため、一定回転を正確に保持すればよい、回転数制御が
容易であるとともに、回転の再開時等の回転安定待ち時
間が不要となり、送り動作の切換えをスピーディに行う
ことができる。また、各摩擦ローラ23,24は駆動軸11に
摩擦接触するものであるため、一定回転している駆動軸
11と接触する際には適宜スリップして衝撃的な動作を緩
和でき、テーブル20に与えるショックや各構造部分にか
かる無理な力を低く抑えることができる。Further, in the above-described embodiment, the drive shaft 11 is stopped every time the feed speed is switched, but the feed operation of the table 20 is canceled when neither of the friction rollers 23, 24 is pressed against the drive shaft 11. The drive shaft 11 does not have to be stopped at the time of switching. In this case, since the motor 15 is continuously rotated, it is only necessary to accurately maintain a constant rotation, the rotation speed can be easily controlled, and a rotation stabilization wait time such as when restarting the rotation is unnecessary, so that the feeding operation can be switched. It can be done speedily. Further, since the friction rollers 23, 24 are in frictional contact with the drive shaft 11, the drive shafts that are rotating at a constant speed.
When it comes into contact with 11, it is possible to appropriately slip to alleviate the shocking motion, and it is possible to suppress the shock given to the table 20 and the unreasonable force applied to each structural portion to a low level.
さらに、摩擦送り機構1が適用される相対移動する二部
材はベッド10およびテーブル20に限らず、例えば工作機
械のコラムとヘッド等であってもよく、本発明は多様な
送り動作部分に適用できるものである。Further, the two members that move relative to each other to which the frictional feed mechanism 1 is applied are not limited to the bed 10 and the table 20, but may be, for example, a column and a head of a machine tool, and the present invention can be applied to various feeding operation parts. It is a thing.
以上に説明したように、本発明の摩擦送り機構によれ
ば、複数の送りピッチの切換えを正確かつ簡単に行える
とともに、構造を簡略化することができる。As described above, according to the friction feed mechanism of the present invention, it is possible to accurately and easily switch a plurality of feed pitches and to simplify the structure.
第1図は本発明の一実施例を示す側面図、第2図は前記
実施例の上面図、第3図および第4図は本発明のそれぞ
れ異なる実施例を示す断面図である。 1……摩擦送り機構、2……案内機構、10,20……相対
移動する二部材であるベッドおよびテーブル、11……駆
動軸、21,22,31,32……支持体、23,24,33,34……摩擦ロ
ーラ、25,26,35……圧電素子、27……操作装置、28,29,
30……離接手段。FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a top view of the embodiment, and FIGS. 3 and 4 are sectional views showing different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1 ... Friction feed mechanism, 2 ... Guide mechanism, 10, 20 ... Bed and table which are two members that move relative to each other, 11 ... Drive shaft, 21, 22, 31, 32 ... Support, 23, 24 , 33,34 …… Friction roller, 25,26,35 …… Piezoelectric element, 27 …… Operating device, 28,29,
30 ... connection / disconnection means
Claims (1)
動軸を設け、他方の部材には各々前記駆動軸の周面に転
動可能かつ互いに異なるリード角で傾斜配置された複数
の摩擦ローラを設け、これらの摩擦ローラを各々独立し
た支持体に支持するとともに、各支持体には圧電素子の
変位により各摩擦ローラを駆動軸の周面に圧接可能な離
接手段を設けたことを特徴とする摩擦送り機構。1. A rotating drive shaft is provided on one of two relatively movable members, and the other member has a plurality of friction members which are rollable on the peripheral surface of the drive shaft and are inclined with different lead angles. A roller is provided, and each of these friction rollers is supported by an independent support body, and each support body is provided with a contact / separation means capable of press-contacting each friction roller with the peripheral surface of the drive shaft by displacement of the piezoelectric element. Characteristic friction feed mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14664688A JPH0673791B2 (en) | 1988-06-13 | 1988-06-13 | Friction feed mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14664688A JPH0673791B2 (en) | 1988-06-13 | 1988-06-13 | Friction feed mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01316145A JPH01316145A (en) | 1989-12-21 |
JPH0673791B2 true JPH0673791B2 (en) | 1994-09-21 |
Family
ID=15412438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14664688A Expired - Fee Related JPH0673791B2 (en) | 1988-06-13 | 1988-06-13 | Friction feed mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0673791B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7044356B2 (en) | 2003-12-11 | 2006-05-16 | Texas Instruments Incorporated | Roller wire brake for wire bonding machine |
JP2007127146A (en) * | 2005-11-01 | 2007-05-24 | Moritex Corp | Linear feeding mechanism |
JP6168946B2 (en) * | 2013-09-24 | 2017-07-26 | 株式会社ミツトヨ | Feed mechanism, shape measuring machine |
CN111816376B (en) * | 2020-07-14 | 2021-10-19 | 山东望声电子科技有限公司 | Automatic winding device for acetate cloth adhesive tape of automobile wire harness |
-
1988
- 1988-06-13 JP JP14664688A patent/JPH0673791B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01316145A (en) | 1989-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06129510A (en) | Movable body feeder | |
JPH0673791B2 (en) | Friction feed mechanism | |
JP4812488B2 (en) | Super finishing method of roller bearing raceway | |
JP4812489B2 (en) | Super finishing machine for roller bearing races | |
JPH01274943A (en) | Driving device for movable table | |
JP2759276B2 (en) | Hydrostatic bearing | |
JPH01316146A (en) | Friction feed mechanism | |
JP2001328043A (en) | Table positioning device | |
JPH01177938A (en) | Accurate positioning device | |
JP4585339B2 (en) | Roll forming device | |
JP2886610B2 (en) | Friction drive with non-contact support | |
JPH0442132B2 (en) | ||
JPS63300836A (en) | Fine positioning mechanism | |
JPH0570745B2 (en) | ||
JPS63106457A (en) | Screw actuator | |
JPS63131208A (en) | Slight rotation angle positioning device | |
JPS63308263A (en) | Pre-load adjusting device for ball screw | |
JP3975175B2 (en) | Processing equipment | |
JPH059195U (en) | Piezoelectric micro feeder | |
JPH02160441A (en) | Table device | |
JPH0430931A (en) | Movable table | |
JP2001259953A (en) | Drive unit for nc machine tool | |
JPH01302197A (en) | Positioning apparatus | |
JPH04131548A (en) | Friction drive unit | |
JPH02203202A (en) | Lead variable thread feeding mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |