JPH01315103A - Manufacture of magnetic fluid composition - Google Patents

Manufacture of magnetic fluid composition

Info

Publication number
JPH01315103A
JPH01315103A JP63147334A JP14733488A JPH01315103A JP H01315103 A JPH01315103 A JP H01315103A JP 63147334 A JP63147334 A JP 63147334A JP 14733488 A JP14733488 A JP 14733488A JP H01315103 A JPH01315103 A JP H01315103A
Authority
JP
Japan
Prior art keywords
surfactant
fine particles
added
particles
active agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63147334A
Other languages
Japanese (ja)
Inventor
Atsushi Yokouchi
敦 横内
Shunichi Yabe
俊一 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP63147334A priority Critical patent/JPH01315103A/en
Publication of JPH01315103A publication Critical patent/JPH01315103A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To facilitate controlling the diameter of fine particles of a ferromagnetic substance and to improve their dispersion properties independently by a method wherein an amount to be added of a surface-active agent in a first adsorption process is set to be less than 100% of a covering rate on the surface of the fine particle of the ferromagnetic substance and a surface-active agent in a second adsorption process is added in an aqueous phase. CONSTITUTION:A first ionic surface-active agent whose dispersion property is lower than that of a second surface-active agent is used intentionally; alternatively, when the first ionic surface-active agent whose dispersion property is equal to that of the second surface-active agent is used, an amount to be added is reduced and a covering rate is lowered. In addition, when the second ionic surface-active agent is used in an aqueous phase, the ionic surface-active agent is not adsorbed simply physically to the surface of a fine particle of a ferromagnetic substance in a part which has not been covered with the first surface-active agent; polar radicals of both agents can be bonded firmly and irreversibly. By this setup, a control operation of the fine particle of the ferromagnetic substance can be executed easily and independently of an enhancement of the dispersion property.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分散媒中に分散剤を介して強磁性体微粒子を
安定に分散させてなるcd磁性流体組成物製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a CD magnetic fluid composition in which fine ferromagnetic particles are stably dispersed in a dispersion medium via a dispersant.

〔従来の技術〕[Conventional technology]

磁性流体は、マグネタイト フェライト、鉄。 The magnetic fluid is magnetite, ferrite, and iron.

コバルトなどの強磁性体微粒子が液体中に分散する極め
て安定したコロイド溶液であり、強磁性体微粒子濃度が
高い程その液体自体が見掛け一ヒ強い磁性を示すという
特性を有する。従って液体でありながら磁石等によりそ
の挙動を自在に拘束できるから、ダンピング剤とか磁気
ディスク等のシール機構におけるシーリング剤その他、
応用分野は多岐にわたっている。
It is an extremely stable colloidal solution in which fine ferromagnetic particles such as cobalt are dispersed in a liquid, and has the characteristic that the higher the concentration of fine ferromagnetic particles, the stronger the apparent magnetism of the liquid itself. Therefore, even though it is a liquid, its behavior can be freely restrained by magnets, etc., so it can be used as a damping agent, a sealing agent in the sealing mechanism of magnetic disks, etc.
Application fields are wide-ranging.

磁性流体の分散媒としては種々の液体を用い得るが、一
般に油類を分散媒とする場合、強磁性体微粒子自体はそ
の表面が親水性のため、界面活性剤等の分散剤を用いて
親油性表面に改質することが必要となる。
Various liquids can be used as a dispersion medium for magnetic fluids, but when oil is generally used as a dispersion medium, the surface of the ferromagnetic particles themselves is hydrophilic, so a dispersant such as a surfactant is used to make the particles hydrophilic. It is necessary to modify the oily surface.

表面性状が親油性に改質された強磁性体微粒子の油性分
散媒中での分散性は、次のものに影8を受ける。
The dispersibility of ferromagnetic fine particles whose surface properties have been modified to be lipophilic in an oil-based dispersion medium is affected by the following factors.

■ 強磁性体微粒子の粒子径(特に最大粒子径)。■Particle size of ferromagnetic fine particles (especially maximum particle size).

■ 強磁性体微粒子に吸着された分散剤が有する分散力
■ Dispersion power possessed by the dispersant adsorbed on the ferromagnetic fine particles.

■ 分散媒中の強磁性体微粒子の粒子間距離、すなわち
粒子濃度。
■ Interparticle distance of ferromagnetic fine particles in the dispersion medium, that is, particle concentration.

そこで、強磁性体微粒子の粒子径を制御し、又分散剤の
分散力を向上させることで、より安定な分散性を持つ磁
性流体を得ることができ、必然的に強磁性体微粒子濃度
を高めることが可能になるはずである。
Therefore, by controlling the particle size of the ferromagnetic particles and improving the dispersion force of the dispersant, it is possible to obtain a magnetic fluid with more stable dispersibility, which naturally increases the concentration of the ferromagnetic particles. It should be possible.

ところで、従来、分散力の高い分散剤を用いて所望の非
水性溶媒中へ強磁性体微粒子を安定に分散させたものと
して、次のような種々の磁性流体組成物が提案されてい
る。
By the way, the following various magnetic fluid compositions have been proposed in which ferromagnetic fine particles are stably dispersed in a desired non-aqueous solvent using a dispersing agent with high dispersion power.

脂肪族炭化水素油、脂環式炭化水素油を分散媒(キャリ
ア)とし、炭化水素系に可溶な界面活性剤を分散剤とし
た磁性流体組成物(米国特許3゜700.595)。パ
ーフルオロ系油をキャリアとし、パーフルオロポリエー
テルを疎水基とする界面活性剤を分散剤とした磁性流体
組成物(米国特許3,784.471)。長鎖アルコー
ルのリン酸エステルを分散剤とした磁性流体組成物(米
国特許4,430.23.9)。ポリフェニルエーテル
をキャリアとした組成物(米国特許4,315.827
)。シリコン油をキャリアとし、シリコン油に可溶な部
分と粒子表面と化学結合する部分とからなる界面活性剤
を分散剤とした磁性流体組成物(米国特許4,356.
098)。
A magnetic fluid composition using an aliphatic hydrocarbon oil or an alicyclic hydrocarbon oil as a dispersion medium (carrier) and a hydrocarbon-soluble surfactant as a dispersant (US Pat. No. 3,700,595). A magnetic fluid composition in which a perfluorinated oil is used as a carrier and a surfactant having a perfluoropolyether as a hydrophobic group is used as a dispersant (US Pat. No. 3,784.471). Magnetic fluid compositions using phosphate esters of long chain alcohols as dispersants (U.S. Pat. No. 4,430.23.9). Compositions with polyphenyl ether as carrier (U.S. Pat. No. 4,315,827)
). A magnetic fluid composition in which silicone oil is used as a carrier and a surfactant consisting of a part soluble in silicone oil and a part chemically bonded to the particle surface is used as a dispersant (US Pat. No. 4,356).
098).

上記各磁性流体組成物は、いずれも製造工程で、強磁性
体微粒子表面を完全に被覆し得るに十分な量の界面活性
剤を1回で添加するものである。
In each of the above-mentioned magnetic fluid compositions, a sufficient amount of surfactant to completely coat the surface of the ferromagnetic fine particles is added at one time during the manufacturing process.

一般に、磁性流体組成物における強磁性体微粒子の粒度
分布と分散剤の分散力とは相関性が大ぎく、分散力の大
きい界面活性剤を使用する程、分散可能な最大粒子径も
増大する。しかし大きな粒子は、微粒子と同等に長期的
に安定して分散し続けることは困難である。すなわち、
単に分散力の大きい界面活性剤を用いても、得られた磁
性流体組成物は必ずしも長期的に安定した分散性が保証
されるとは躍らない。
Generally, there is a strong correlation between the particle size distribution of ferromagnetic fine particles in a magnetic fluid composition and the dispersing power of a dispersant, and the larger the dispersing power of a surfactant used, the larger the maximum dispersible particle size. However, it is difficult for large particles to continue to be dispersed as stably over a long period of time as fine particles. That is,
Simply using a surfactant with a large dispersion power does not necessarily guarantee long-term stable dispersibility of the resulting magnetic fluid composition.

そこで本出願人は先に、イオン性界面活性剤を2回添加
するものとし、その1回目の添加で強磁性体微粒子表面
に界面活性剤の単分子層を形成した後、分散性の悪い大
きな粒子を分離し、その後  。
Therefore, the applicant first added an ionic surfactant twice, and after the first addition formed a monomolecular layer of the surfactant on the surface of the ferromagnetic fine particles, a large Separate the particles and then.

更に2回目の界面活性剤を添加する磁性流体組成物の製
造方法を提案した(特開昭59−105093号公報)
Furthermore, we proposed a method for producing a magnetic fluid composition in which a second surfactant is added (Japanese Patent Application Laid-open No. 105093/1983).
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の界面活性剤を2回添加する方法に
あっては、第1回目のイオン性界面活性剤の添加量を、
全ての強磁性体微粒子表面を重分  □子層で完全に被
覆し得る1i(100%)とし、且つ第2回目のイオン
性界面活性剤の添加を非極性の有機溶媒中で行っている
However, in the conventional method of adding surfactant twice, the amount of ionic surfactant added in the first time is
The surface of all the ferromagnetic fine particles was set to 1i (100%) so that the surface of all the ferromagnetic particles could be completely covered with the polymeric particle layer, and the second addition of the ionic surfactant was carried out in a non-polar organic solvent.

そのため、次のような問題があった。As a result, the following problems occurred.

■ 非極性の有機溶媒中では、イオン性界面活性  ・
剤の強磁性体微粒子への吸着にあたり、静電気力  1
の関与はあまりない、すなわち、強磁性体微粒子  1
の表面は、親油基を外に向けた第1の界面活性剤で被覆
され親油性に改質されている。そこで第2の界面活性剤
は、その親油基を第1の界面活性剤層の親油基側に向け
、親水性の極性基を外に向けて配向し、2層吸着する。
■ In non-polar organic solvents, ionic surface activity ・
When adsorbing the agent to the ferromagnetic fine particles, electrostatic force 1
In other words, ferromagnetic fine particles 1
The surface of the surfactant is modified to be lipophilic by being coated with a first surfactant with the lipophilic groups facing outward. Therefore, the second surfactant is oriented with its lipophilic groups toward the lipophilic group side of the first surfactant layer and its hydrophilic polar groups toward the outside, thereby adsorbing two layers.

この吸着はvan der Waals力に基づく可逆
的な物理吸着であり、吸着力は弱い、特に粒子濃度が濃
厚な系では分散性改善の長期的な効果は望み得ない。
This adsorption is a reversible physical adsorption based on van der Waals force, and the adsorption force is weak. Especially in a system where the particle concentration is high, a long-term effect of improving dispersibility cannot be expected.

■ 第2の界面活性剤はこのように親水性の極性基を外
に向けて配向するため、その添加量の増加に伴い非極性
の有機溶媒中での分散性は劣化する方向にある。したが
ってその添加量を極く少量に制約せざるを得ず、大きな
分散効果は期待できない。
(2) Since the second surfactant orients its hydrophilic polar groups outward in this way, the dispersibility in a non-polar organic solvent tends to deteriorate as the amount added increases. Therefore, the amount added must be limited to an extremely small amount, and a large dispersion effect cannot be expected.

■ 第2の界面活性剤の添加量を少しでも増加させるた
めには、その親水基部が分散系に及ぼす影響の小さいも
のを選択する必要がある。このため、使用される界面活
性剤そのものが限定される。
(2) In order to increase the amount of the second surfactant added, it is necessary to select a surfactant whose hydrophilic group has a small effect on the dispersion system. For this reason, the surfactant itself to be used is limited.

■ 長期的に安定した分散系を得るには、系中の強磁性
体微粒子のうち比較的大径の粒子を除去して分散粒子の
大きさを制御する必要がある。上記従来の場合の粒子径
の制御は、もっばら遠心分離機のような物理的な手段の
みで行うか、もしくは界面活性剤を添加する以前の強磁
性体微粒子合成工程における条件の調整で行っていた。
(2) In order to obtain a long-term stable dispersion system, it is necessary to control the size of the dispersed particles by removing relatively large diameter particles from among the ferromagnetic fine particles in the system. In the conventional case described above, particle size is controlled only by physical means such as a centrifuge, or by adjusting conditions in the ferromagnetic particle synthesis process before adding a surfactant. Ta.

しかし、遠心力のみで平均粒子径や粒度分布を極めて小
さな範囲内に抑えるには、超高速回転が要求されるから
、莫大な設備費が必要となる。
However, in order to keep the average particle size and particle size distribution within an extremely small range using only centrifugal force, ultra-high speed rotation is required, which requires enormous equipment costs.

一方、強磁性体微粒子合成工程で平均粒子径や粒度分布
の調整を再現性良く行う条件設定は非常に困難である。
On the other hand, it is extremely difficult to set conditions for adjusting the average particle size and particle size distribution with good reproducibility in the ferromagnetic fine particle synthesis process.

以上、要するに、従来の界面活性剤の2回添加法では、
強磁性体微粒子の粒子径の制御と分散性の向上とを独立
に行うことは困難であった。
In summary, in the conventional two-time addition method of surfactant,
It has been difficult to independently control the particle size and improve the dispersibility of ferromagnetic fine particles.

本発明は、このような従来の問題点に着目してなされた
もので、その目的とするところは、第1の界面活性剤に
よる強磁性体微粒子の分散性を抑制して、得られる磁性
流体組成物中の分散粒子の最大粒径を可及的に小さく制
御するとともに、更に第2の界面活性剤を水相で添加す
るようにして、イオン性界面活性剤を強固に強磁性体微
粒子面に吸着させることにより、極めて安定性の高い磁
性流体組成物が得られる磁性流体組成物の製造方法を提
供することにある。
The present invention has been made by focusing on such conventional problems, and its purpose is to suppress the dispersibility of ferromagnetic fine particles by the first surfactant, thereby improving the magnetic fluid obtained. In addition to controlling the maximum particle size of the dispersed particles in the composition as small as possible, a second surfactant is added in the aqueous phase to firmly bind the ionic surfactant to the surface of the ferromagnetic fine particles. It is an object of the present invention to provide a method for producing a magnetic fluid composition, in which a highly stable magnetic fluid composition can be obtained by adsorption to a magnetic fluid composition.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、強磁性体微粒子に不飽和量の第1のイオン性
界面活性剤と低沸点有機溶媒とを加えて粒子表面を前記
界面活性剤で不完全に被覆した分散系を得た後、比較的
粒径の大きな強磁性体微粒子を系外に除去する粒子径制
御工程と、前記分散系から低沸点有機溶媒を除去して親
油性強41i性体微粒子を得る工程と、 該親油性強磁性体微粒子に水と第2のイオン性界面活性
剤とを加えて、少なくとも前記第1のイオン性界面活性
剤で被覆されていない個所の強C’zI性体微粒子面に
水和で第2のイオン性界面活性剤を吸着せしめ、その第
1及び第2の界面活性剤で被バlされた強磁性体微粒子
を分散媒中に分散させる工程とを包含する。
In the present invention, after adding an unsaturated amount of a first ionic surfactant and a low-boiling point organic solvent to ferromagnetic fine particles to obtain a dispersion system in which the particle surface is incompletely covered with the surfactant, a particle size control step of removing relatively large ferromagnetic particles from the system; a step of removing a low boiling point organic solvent from the dispersion system to obtain highly lipophilic 41i particles; Water and a second ionic surfactant are added to the magnetic particles to form a second ionic surfactant by hydration on the surface of the strong C'zI particles, at least in areas not covered with the first ionic surfactant. ferromagnetic fine particles coated with the first and second surfactants are dispersed in a dispersion medium.

〔作用〕[Effect]

第1のイオン性界面活性剤は、意図的に第2の界面活性
剤より分散性の低いものを用いるか、又は第2の界面活
性剤と同等の分散性を有するものを用いる場合は添加量
を少なくして被覆率を低くする。強磁性体微粒子面は不
完全に被覆されるに過ぎない。これにより強磁性体微粒
子の分散性を抑制した状態下で、分散粒子径の調整を行
う。したがって強磁性体微粒子のうちの比較的粒径の大
きなものは、従来のように界面活性剤で完全に被覆され
て化学的な分散力で強力に保護されるということはなく
、不安定である。この不安定な大径の強磁性体微粒子を
、低粘度の低沸点有機溶媒系から除去するには、それほ
ど強力な手段は必要とせず、例えば8000程度の一般
的な大きさの遠心力で十分である。かくして、長期間に
わたり良好な分散性を維持できる粒径の小さい微粒子の
みが、容易に選別されて残る。例えば、8000Gの遠
心力で沈降させた粒子について、さらに6000Gで遠
心分離して上澄み液を得ることで、粒子径分布がより単
分散に近い系を得ることも可能になる。
The first ionic surfactant is intentionally used with a lower dispersibility than the second surfactant, or if the first ionic surfactant is used with the same dispersibility as the second surfactant, the amount added Reduce the coverage rate. The surfaces of the ferromagnetic particles are only incompletely covered. Thereby, the dispersed particle diameter is adjusted while the dispersibility of the ferromagnetic fine particles is suppressed. Therefore, ferromagnetic fine particles with a relatively large particle size are not completely covered with surfactant and strongly protected by chemical dispersion force as in the past, and are unstable. . In order to remove these unstable large-diameter ferromagnetic particles from a low-viscosity, low-boiling point organic solvent system, very strong means are not required; for example, a typical centrifugal force of about 8,000 mm is sufficient. It is. In this way, only fine particles with a small particle size that can maintain good dispersibility over a long period of time are easily selected and remain. For example, by further centrifuging particles that have been precipitated with a centrifugal force of 8000 G to obtain a supernatant liquid, it is also possible to obtain a system in which the particle size distribution is closer to monodisperse.

本発明にあっては、更に、第2のイオン性界面活性剤の
添加を水相で行うことで、第1の界面活性剤で被覆され
ていない部分の強磁性体微粒子表面に対して、第2のイ
オン性界面活性剤が単なる物理吸着ではなく、極性基同
士でたいへん強固に且つ不可逆的に結合(化学吸着又は
化学結合)する。
In the present invention, further, by adding the second ionic surfactant in the aqueous phase, the second ionic surfactant is added to the surface of the ferromagnetic fine particles in the portion not covered with the first surfactant. The ionic surfactant No. 2 is not simply physically adsorbed, but its polar groups bond very strongly and irreversibly (chemical adsorption or chemical bonding).

以下、本発明の磁性流体組成物の製造方法を詳細に説明
する。
Hereinafter, the method for manufacturing the magnetic fluid composition of the present invention will be explained in detail.

本発明の第1吸着工程で使用する第1の界面活性剤は、
基本的には後述する中間媒体に用いる有a溶媒に可溶か
又は相溶性があり、強磁性体微粒子表面と化学吸着又は
化学結合する極性基を有するものである。具体的には、
炭素数8以上の疎水基部分と、例えばスルホン酸類(合
成スルホン酸。
The first surfactant used in the first adsorption step of the present invention is:
Basically, it is soluble or compatible with the aqueous solvent used for the intermediate medium described later, and has a polar group that chemically adsorbs or chemically bonds with the surface of the ferromagnetic fine particles. in particular,
A hydrophobic group having 8 or more carbon atoms and, for example, sulfonic acids (synthetic sulfonic acids).

石油スルホン酸、アルキルナフタレンスルホン酸等)や
、カルボン酸類(アルキルナフタレンカルボン酸、ポリ
オキシエチレンアルキルエーテル酢酸、N−アシルアミ
ノ酸、不飽和脂肪酸、飽和脂肪酸等)やホスホン酸類、
或いは硫酸エステル。
petroleum sulfonic acid, alkylnaphthalene sulfonic acid, etc.), carboxylic acids (alkylnaphthalene carboxylic acid, polyoxyethylene alkyl ether acetic acid, N-acylamino acids, unsaturated fatty acids, saturated fatty acids, etc.), phosphonic acids,
Or sulfuric acid ester.

リン酸エステル、アミン、アルコールなど、またはそれ
らの塩、第4アンモニウム塩などの親水基部分とを有す
る陰イオン性界面活性剤とか、アルコキシシランを有す
るシランカップリング剤などである。これらのうち数種
類を併用してもよい。
Examples include anionic surfactants having a hydrophilic group moiety such as phosphoric acid esters, amines, alcohols, salts thereof, and quaternary ammonium salts, and silane coupling agents having alkoxysilanes. Several of these may be used in combination.

上記第1の界面活性剤の疎水基部分の炭素数は、従来の
磁性流体組成物にあっては、粒子分散性からみて10以
上が適当とされているが、本発明の粒子径制御にあって
は意図的に粒子分散性を低くした状態を利用するため、
分散力の劣る炭素数8程度のものも適用可能である。
The number of carbon atoms in the hydrophobic group of the first surfactant is considered to be 10 or more in view of particle dispersibility in conventional magnetic fluid compositions, but this is not suitable for controlling the particle size of the present invention. In order to utilize a state in which particle dispersibility is intentionally lowered,
A material having a carbon number of about 8, which has poor dispersion power, is also applicable.

これら第1の界面活性剤が添加される第1吸着工程は、
最終的に得られる磁性流体組成物中の強磁性体微粒子の
最大粒子径を制御するものである。
The first adsorption step in which these first surfactants are added is
This is to control the maximum particle size of the ferromagnetic fine particles in the finally obtained magnetic fluid composition.

すなわち、第1の界面活性剤の添加量は、得られる親油
性強磁性体微粒子の収率、及び目標とする最大粒子径と
の兼ね合いを考慮して定める。その範囲は、粒子表面に
対する被覆率(後述)が20%以上100%未満であり
、望ましくは50〜80%の範囲となる間がよい。
That is, the amount of the first surfactant added is determined in consideration of the yield of the obtained lipophilic ferromagnetic fine particles and the target maximum particle diameter. The range is such that the coverage (described later) on the particle surface is 20% or more and less than 100%, preferably 50 to 80%.

粒子表面を100%以上に被覆した場合には、所期の粒
子制御効果が得られない。すなわち本発明の粒子径制御
は、中間媒体中へ強磁性体微粒子を分散させる第1の界
面活性剤の分散能を意図的に低くすることで、比較的大
径の粒子のみを効率良く系から除去して、その結果長期
にわたり安定な磁性流体組成物を得ようとするものであ
る。よって、分lik性の高い第1の界面活性剤を選定
した場合は、分散性の低い第1の界面活性剤を選定した
場合より被覆率を低くする。
If the particle surface is covered with 100% or more, the desired particle control effect cannot be obtained. In other words, the particle size control of the present invention is achieved by intentionally lowering the dispersion ability of the first surfactant that disperses the ferromagnetic fine particles into the intermediate medium, thereby efficiently removing only relatively large-sized particles from the system. removal, resulting in a long-term stable ferrofluid composition. Therefore, when a first surfactant with high dispersibility is selected, the coverage is lower than when a first surfactant with low dispersibility is selected.

具体的には、第1の界面活性剤の分散性と被IW率の組
み合わせを選定する際は、次の数値を目安とすることが
望ましい。すなわち、得られた磁性流体組成物中の強磁
性体微粒子の最大粒子径が、分散剤の被覆率を100%
として得た従来の磁性流体組成物における最大粒子径に
比べて、少なくとも10%は小さくなるようにする。
Specifically, when selecting a combination of the dispersibility and IW coverage of the first surfactant, it is desirable to use the following numerical values as a guide. That is, the maximum particle diameter of the ferromagnetic fine particles in the obtained magnetic fluid composition increases the coverage of the dispersant by 100%.
The maximum particle size is at least 10% smaller than the maximum particle size in a conventional magnetic fluid composition obtained as a ferrofluid composition.

一方、被覆率が20%を割ると上記収率は例えば10%
を下回り、採算上不利となる。
On the other hand, if the coverage is less than 20%, the above yield is, for example, 10%.
This will be disadvantageous in terms of profitability.

本発明の第2吸着工程で使用する第2の界面活性剤は、
その疎水基部分の炭素数が18以上である点を除けば、
第1の界面活性剤と同種のものでよい。
The second surfactant used in the second adsorption step of the present invention is
Except that the number of carbon atoms in the hydrophobic group part is 18 or more,
The same type of surfactant as the first surfactant may be used.

本発明の低沸点有機溶媒は、ベンゼン、トルエン8キシ
レン、ヘキサン、シクロヘキサン、クロロホルム、ジエ
チルエーテル等でアル。
The low-boiling organic solvent of the present invention includes benzene, toluene, 8-xylene, hexane, cyclohexane, chloroform, diethyl ether, and the like.

又、本発明に用いられる強磁性体微粒子の分散媒(キャ
リア)は、低揮発性で低粘度の鉱油やエステル油、アル
キルポリフェニルエーテルのようなエーテル油、或いは
アルキルナフクレン油、ポリαオレフィン油などの炭化
水素系合成油等の有a溶媒が好適であり、磁性流体の用
途に応じて適宜に用いられる。
Further, the dispersion medium (carrier) for the ferromagnetic fine particles used in the present invention may be a low-volatility, low-viscosity mineral oil, ester oil, ether oil such as alkyl polyphenyl ether, alkyl naphcrene oil, or polyα-olefin. A solvent such as a hydrocarbon-based synthetic oil such as oil is suitable, and is used as appropriate depending on the use of the magnetic fluid.

これらは、先に述べた第1及び第2の界面活性剤との親
和性が大きいものが好ましい。そこで分散媒と界面活性
剤との組み合わせは、相溶性を考慮することが必要であ
り、また例えば次のような実験結果なども参照して決め
られる。
These preferably have a high affinity with the first and second surfactants described above. Therefore, the combination of a dispersion medium and a surfactant must be determined by considering compatibility and also by referring to, for example, the following experimental results.

「界面活性剤がN−アシルアミノ酸、またはオレイン酸
、またはイソステアリン酸で、分散媒がヘキサンの場合
は濃厚な強磁性体微粒子の分散系が得られた。これに対
し、同じ界面活性剤で、分散媒がポリαオレフィンの場
合は濃厚な強磁性体微粒子の分散系は得られなかった。
"When the surfactant was N-acylamino acid, oleic acid, or isostearic acid and the dispersion medium was hexane, a dense dispersion of ferromagnetic particles was obtained.On the other hand, with the same surfactant, When the dispersion medium was poly-α-olefin, a dense dispersion of ferromagnetic fine particles could not be obtained.

」 本発明の強磁性体微粒子としては、周知の湿式法により
コロイド状水懸濁液(スラリー)として得られるものを
用いてよい。ここに湿式法とは、第1鉄イオンと第2鉄
イオンを1:2の割合で含む酸性溶液にアルカリを加え
pH9程度以上とし、適宜な温度下で熟成することによ
りマグネタイトコロイドを得るものである。また、水も
しくは有機溶媒中でマグネタイト粉末をボールミル粉砕
するいわゆる湿式粉砕法で得られたものでもよい。
As the ferromagnetic fine particles of the present invention, those obtained as a colloidal water suspension (slurry) by a well-known wet method may be used. The wet method here refers to the method of obtaining magnetite colloid by adding alkali to an acidic solution containing ferrous ions and ferric ions in a ratio of 1:2 to make the pH approximately 9 or higher, and aging it at an appropriate temperature. be. Alternatively, it may be obtained by a so-called wet pulverization method in which magnetite powder is pulverized in a ball mill in water or an organic solvent.

更に、その他、乾式法で得られたものであってもよい。Furthermore, other materials obtained by a dry method may also be used.

また、マグネタイト以外にマンガンフェライト。In addition to magnetite, there is also manganese ferrite.

ニッケルフェライトコバルトフェライトもしくはこれら
と亜鉛の複合フェライトやバリウムフェライトなどの強
磁性体微粒子や、鉄、コバルト等の強磁性の金属微粒子
を用いることもできる。
It is also possible to use ferromagnetic fine particles such as nickel ferrite, cobalt ferrite, composite ferrite of these and zinc, barium ferrite, and ferromagnetic metal fine particles such as iron and cobalt.

強磁性体微粒子の含有量は、従来−船釣に用いられてい
る体積比で1〜20%の範囲は勿論のこと、低沸点有機
溶媒を用いた中間媒体を経由して製造することにより、
更に高濃度に調整することも可能になる。
The content of ferromagnetic fine particles is not only within the range of 1 to 20% by volume, which is conventionally used for boat fishing, but also by manufacturing through an intermediate medium using a low boiling point organic solvent.
It also becomes possible to adjust the concentration even higher.

本発明の第1吸着工程は、粒子径が20〜500人であ
る所定量の強磁性体微粒子に、低沸点有機溶媒を加えて
懸濁液とし、その後に第1の界面活性剤を加えて中間媒
体を得てもよく、もしくは第1の界面活性剤と低沸点有
機溶媒との混合液を加えて中間媒体を得てもよい。また
、湿式法で得られる強磁性体微粒子を用いるのであれば
、強磁性体微粒子の水相)懸濁液に所要量の第1の界面
活性剤を加えて被覆層を形成し、いったん洗浄し、乾燥
して疎水性強磁性体微粒子を得た後、低沸点有機溶媒を
加えて中間媒体を得てもよい。
In the first adsorption step of the present invention, a low boiling point organic solvent is added to a predetermined amount of ferromagnetic fine particles having a particle size of 20 to 500 to form a suspension, and then a first surfactant is added. An intermediate medium may be obtained, or a mixture of the first surfactant and a low-boiling organic solvent may be added to obtain an intermediate medium. In addition, if ferromagnetic fine particles obtained by a wet method are used, a coating layer is formed by adding the required amount of the first surfactant to a suspension of ferromagnetic fine particles in an aqueous phase, and then the coating layer is washed. After drying to obtain hydrophobic ferromagnetic fine particles, a low boiling point organic solvent may be added to obtain an intermediate medium.

本発明の第2吸着工程は、第1吸着工程で得られた親油
性及び親水性の両性の表面性状をもつ強磁性体微粒子を
水中に懸垂させて、これに第2の界面活性剤を添加する
。これにより、第2の界面活性剤の親水性基が、直接に
粒子の親水性表面と強固に化学結合して、強磁性体微粒
子表面は全て親油性となる。
In the second adsorption step of the present invention, the ferromagnetic fine particles having lipophilic and hydrophilic amphoteric surface properties obtained in the first adsorption step are suspended in water, and a second surfactant is added thereto. do. As a result, the hydrophilic group of the second surfactant directly forms a strong chemical bond with the hydrophilic surface of the particle, and the entire surface of the ferromagnetic fine particle becomes lipophilic.

その後、この親油性強磁性体微粒子を水と分離し、乾燥
させる。最後に乾燥した親油性強磁性体微粒子に直接、
分散媒を加えて磁性流体組成物を得る。
Thereafter, the lipophilic ferromagnetic fine particles are separated from water and dried. Finally, directly onto the dried lipophilic ferromagnetic particles.
A dispersion medium is added to obtain a magnetic fluid composition.

粒子濃度が特に高い磁性流体組成物としたい場合は、中
間媒体としての低沸点有機溶媒と分散媒を加え、ついで
低沸点有機溶媒を加熱分離して濃縮し、その濃縮したも
のに更に強磁性体微粒子を分散させた低沸点有機溶媒を
加え、その低沸点有機溶媒を加熱分離して濃縮すること
を繰り返せばよい。
If you want to create a magnetic fluid composition with a particularly high particle concentration, add a low-boiling organic solvent and a dispersion medium as an intermediate medium, then heat and concentrate the low-boiling organic solvent, and add a ferromagnetic material to the concentrated product. What is necessary is to repeat adding a low boiling point organic solvent in which the fine particles are dispersed, separating the low boiling point organic solvent by heating, and concentrating it.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

〔実施例1〕 第1吸着工程における、分散剤(第1の界面活性剤)の
添加濃度と強磁性体微粒子に対する被覆率の関係: 分散剤:N−アシルアミノ酸 分散媒:ヘキサン まず湿式法によりマグネタイトスラリーを製造した。す
なわち、硫酸第1鉄と硫酸第2鉄とを各0.3molづ
つ含む水溶液11に、6NのNaOHa qをp H1
1以上になるまで加えた後、その溶液を60″Cで30
分間7p5成してマグネタイトコロイドのスラリーを得
た。
[Example 1] Relationship between the concentration of the dispersant (first surfactant) added and the coverage of the ferromagnetic fine particles in the first adsorption step: Dispersant: N-acyl amino acid Dispersion medium: hexane First, by wet method A magnetite slurry was produced. That is, 6N NaOHaq was added to an aqueous solution 11 containing 0.3 mol each of ferrous sulfate and ferric sulfate at pH 1.
1 or higher, the solution was heated at 60"C for 30
A slurry of magnetite colloid was obtained for 7 minutes.

マグネタイト粒子100重量部を含む上記スラリーに、
3NのHClaqを加えて、そのpHを5.5に調整し
、さらにそのp Hを維持しつつスラリー中のマグネタ
イト粒子100重量部に対し60重量部のN−アシルア
ミノ酸〔日光ケミカルズ社袈、サルコシネー1−LH(
アシル鎖長はCI□が主成分)〕を含む水溶液を加え、
十分に撹拌した後3NのHCl a qを加えてp H
を4に調整し、液温を最終的に70°Cまで上昇させた
。これにより、マグネタイト粒子の表面に第1の界面活
性剤を吸着させた。その後、静置して液中のマグネタイ
ト粒子を凝集沈澱させ、その上澄みを捨てる。
To the above slurry containing 100 parts by weight of magnetite particles,
3N HClaq was added to adjust the pH to 5.5, and while maintaining the pH, 60 parts by weight of N-acyl amino acid [Nikko Chemicals Co., Ltd., Sarcosine] was added to 100 parts by weight of magnetite particles in the slurry. 1-LH(
Add an aqueous solution containing acyl chain length: CI□ is the main component).
After stirring thoroughly, add 3N HCl aq to adjust the pH.
was adjusted to 4, and the liquid temperature was finally raised to 70°C. As a result, the first surfactant was adsorbed onto the surface of the magnetite particles. Thereafter, the solution is allowed to stand still to coagulate and precipitate the magnetite particles in the solution, and the supernatant is discarded.

更に水を加えて撹拌してから再び静置して上澄みを捨て
る。この水洗を数回繰り返して水溶液中の電解質を除去
した後、濾過脱水し、乾燥して粉末状のマグネタイト粒
子とした。
Add more water, stir, let stand again, and discard the supernatant. After repeating this water washing several times to remove the electrolyte in the aqueous solution, it was filtered and dehydrated, and dried to obtain powdered magnetite particles.

次に、このマグネタイト粉末にヘキサンを加えて十分に
振とうすることにより、マグネタイト粒子をヘキサン中
に分散させる。これを遠心分離機にかけて8000Gの
遠心力下で30分間遠心分離し、マグネタイト粒子のう
ちの分散性の悪い粒子を沈降させて除去する。得られた
上澄み液中のマグネタイト粒子は極めて安定に分散して
いることが認められた。
Next, hexane is added to this magnetite powder and shaken thoroughly to disperse the magnetite particles in hexane. This is centrifuged for 30 minutes under a centrifugal force of 8000 G to sediment and remove particles with poor dispersibility among the magnetite particles. It was observed that the magnetite particles in the obtained supernatant liquid were extremely stably dispersed.

なおここで、未吸着或いは不完全吸着の第1の界面活性
剤を除去するため、必要に応じてMeOHを加える。こ
れによりマグネタイト粒子は分散性を失い凝集する。一
方、未吸着或いは不完全吸着の界面活性剤は溶媒中に溶
解したままであるから、凝集した粒子を濾過し、乾燥す
る。その後ヘキサンを加え再分散させる。
Here, in order to remove unadsorbed or incompletely adsorbed first surfactant, MeOH is added as necessary. As a result, the magnetite particles lose their dispersibility and aggregate. On the other hand, since the unadsorbed or incompletely adsorbed surfactant remains dissolved in the solvent, the aggregated particles are filtered and dried. Then add hexane and redisperse.

こうして、不安定な分散粒子を予めほぼ完全に除去した
後、低沸点有機溶媒を加熱により分離して、親油性に改
質された表面と親水性のままの表面とが併存している強
磁性体微粒子が得られた。
In this way, after almost completely removing unstable dispersed particles in advance, the low-boiling organic solvent is separated by heating, and a ferromagnetic structure is created in which a surface modified to be lipophilic and a surface that remains hydrophilic coexist. body microparticles were obtained.

以上の第1吸着工程において、マグネタイト粒子に対す
る第1の界面活性剤としてのN−アシルアミノ酸の添加
濃度と被覆率との関係を検討した結果を説明する。
The results of examining the relationship between the concentration of N-acyl amino acid added as the first surfactant to the magnetite particles and the coverage in the above first adsorption step will be explained.

上記工程で、スラリー中のマグネタイト粒子重量に対す
るN−アシルアミノ酸の添加濃度を種々変えて、添加濃
度(重量部)の異なるヘキサン分散マグネクイトコロイ
ド液を得た。
In the above process, the concentration of N-acylamino acid added to the weight of magnetite particles in the slurry was varied to obtain hexane-dispersed magnetite colloidal solutions having different concentrations (parts by weight).

これらのマグネタイトコロイド液をロータリーエバポレ
ータに移し、90°Cに保ってヘキサンを蒸発除去して
得られた親油性のマグネタイド粒子を秤鼠した。
These magnetite colloidal liquids were transferred to a rotary evaporator and kept at 90°C to evaporate hexane, and the resulting lipophilic magnetide particles were weighed.

その結果得られた、N−アシルアミノ酸の各添加濃度に
おけるマグネタイト粒子の収率(!IJI油性のマグネ
タイト粒子の重量/スラリー中のマグネタイト粒子重量
)が、表1に示される。但し、N−アシルアミノ酸の添
加濃度60重量部の時の収率を100%としである。
The resulting yields of magnetite particles (!weight of IJI oil-based magnetite particles/weight of magnetite particles in slurry) at each addition concentration of N-acyl amino acid are shown in Table 1. However, the yield is 100% when the concentration of N-acyl amino acid added is 60 parts by weight.

表1より、N−アシルアミノ酸を分散剤とした場合、添
加濃度60重量部のとき単分子吸着が完了したことにな
る。すなわち、この濃度でのマグネタイト粒子の被覆率
が100%である。第1図は上記の添加濃度と収率と被
覆率との関係を表したものである。
From Table 1, when N-acyl amino acid is used as a dispersant, monomolecular adsorption is completed when the added concentration is 60 parts by weight. That is, the coverage of magnetite particles at this concentration is 100%. FIG. 1 shows the relationship between the above-mentioned additive concentration, yield, and coverage.

〔実施例2〕 第2吸着工程における、分散剤(第2の界面活性剤)の
添加を水相で行うことの効果:実施例1と同様の工程で
、ヘキサンを分散媒とし、第1の界面活性剤としてN−
アシルアミノ酸を被覆率50%となるように吸着させた
マグネタイトコロイドを得た。
[Example 2] Effect of adding the dispersant (second surfactant) in the aqueous phase in the second adsorption step: In the same process as in Example 1, using hexane as the dispersion medium, the first N- as a surfactant
A magnetite colloid was obtained in which acyl amino acids were adsorbed to a coverage of 50%.

このコロイド溶ン夜をロータリーエバポレータに移し、
90°Cに保ってヘキサンを蒸発除去し、親油性のマグ
ネタイト微粒子を得た。(以上、第1吸着工程)。
Transfer this colloid melt to a rotary evaporator,
Hexane was removed by evaporation at 90°C to obtain lipophilic magnetite fine particles. (The above is the first adsorption step).

次いで、上記親油性のマグネタイト微粒子100重量部
に2000重四部0純水を加え、超音波を照射しつつ0
.INのNa0Haqを添加し゛てpHl0に調整し、
マグネタイト微粒子を分子fI1.させた。その後、分
散液を撹拌しつつ20重量部のエイコシルナフタレンス
ルホン酸を含む第2の界面活性剤の水溶液を加えるとと
もに、3NのHCfaqでp H4に調整した後、液温
度を60°Cまで加熱した。これにより、マグネタイト
粒子の表面に第2の界面活性剤であるエイコシルナフタ
レンスルホン酸の吸着が完了する。その後、水洗し°ζ
水溶液中の電解質を除去した後、濾過脱水し、真空乾燥
した。
Next, 2000 parts by weight of pure water was added to 100 parts by weight of the above lipophilic magnetite fine particles, and the mixture was heated while being irradiated with ultrasonic waves.
.. Add IN Na0Haq to adjust pH to 0,
Magnetite fine particles are combined with molecules fI1. I let it happen. Then, while stirring the dispersion, add a second surfactant aqueous solution containing 20 parts by weight of eicosylnaphthalene sulfonic acid, adjust the pH to 4 with 3N HCfaq, and heat the liquid temperature to 60°C. did. This completes the adsorption of the second surfactant, eicosylnaphthalene sulfonic acid, onto the surface of the magnetite particles. Then wash with water °ζ
After removing the electrolyte from the aqueous solution, the solution was filtered and dehydrated, followed by vacuum drying.

乾燥後、ヘキサンを加えて十分に振とうして、マグネタ
イト粒子をヘキサン中に分散させた。必要に応じて、こ
こで遠心分離機にかけ、吸着が完全でない粒子を除去し
てもよい。
After drying, hexane was added and thoroughly shaken to disperse the magnetite particles in hexane. If necessary, it may be centrifuged here to remove particles that are not completely adsorbed.

マグネタイト粒子を分散させたベニトサン中に、120
重量部のエイコシルナフタレンを分散媒としで加え、十
分混合した後ロータリーエバポレータに移し、90℃に
保ってヘキサンを蒸発除去した。こうして得られた磁性
流体組成物は、暗褐色透明であった。
120 in benitosan in which magnetite particles are dispersed.
Part by weight of eicosylnaphthalene was added as a dispersion medium, and after thorough mixing, the mixture was transferred to a rotary evaporator and kept at 90° C. to evaporate hexane. The magnetic fluid composition thus obtained was dark brown and transparent.

ここで比較のために、分散剤(第2の界面活性剤)の添
加を従来通り油相で行った磁性流体組成物を、次のよう
な工程で作成した。
For comparison, a magnetic fluid composition in which a dispersant (second surfactant) was added in the oil phase as before was prepared in the following steps.

〔比較例〕[Comparative example]

上記実施例2と同様の第1吸着工程を経て、親油性のマ
グネタイト微粒子を得た。次いで、上記親油性のマグネ
タイト微粒子100重量部に300重量部のヘキサンを
加えた。これに更に、第2の界面活性剤である20重量
部めエイコシルナフタレンスルホン酸を加えた後、ボー
ルミルで2hr処理することで親油性のマグネタイト微
粒子をヘキサン中に再分散させると共に油中において第
2の界面活性剤を強磁性体微粒子表面に吸着させる操作
を行った。
A first adsorption step similar to that in Example 2 was performed to obtain lipophilic magnetite fine particles. Next, 300 parts by weight of hexane was added to 100 parts by weight of the lipophilic magnetite fine particles. Furthermore, after adding 20 parts by weight of eicosylnaphthalene sulfonic acid, which is a second surfactant, the lipophilic magnetite fine particles are redispersed in hexane by treatment in a ball mill for 2 hours, and the fine particles are dispersed in oil. An operation was performed in which the surfactant No. 2 was adsorbed onto the surface of the ferromagnetic fine particles.

その後、このマグネタイトコロイド液に、分散媒として
120重量部のエイコシルナフタレンを加え十分に混合
した後、ロータリーエバポレークに移し、90°Cに保
ってヘキサンを蒸発除去した。
Thereafter, 120 parts by weight of eicosylnaphthalene was added as a dispersion medium to this magnetite colloidal liquid, and the mixture was thoroughly mixed. The mixture was transferred to a rotary evaporator and kept at 90°C to evaporate hexane.

こうして得られた磁性流体組成物は、赤褐色で濁ってい
た。
The ferrofluid composition thus obtained was reddish-brown in color and cloudy.

以上のようにして得られた上記2種の磁性流体組成物の
分散性についての比較結果が表2に示される。
Table 2 shows the comparative results of the dispersibility of the two types of magnetic fluid compositions obtained as described above.

表2 〔実施例3] 本発明の工程による種々の磁性流体組成物の調整: 実施例1.実施例2と同様に調整して得られた種々の磁
性流体組成物が表3に示される。
Table 2 Example 3 Preparation of various magnetic fluid compositions according to the process of the present invention: Example 1. Various ferrofluid compositions prepared similarly to Example 2 are shown in Table 3.

なお、強磁性体微粒子としては、マグネタイI・の他M
 n −Z nフェライトも同様に調整できた。
In addition, as the ferromagnetic fine particles, magnetite I and other M
n-Zn ferrite could also be adjusted in the same way.

表中の分11シ媒(キャリア)は略号で示されている。The carriers in the table are indicated by abbreviations.

OLニオレフイン、AP:アルキルポリフェニルエーテ
ル、AN:アルキルナフタレン、FE:バーフルオロポ
リエーテル。
OL niolefin, AP: alkyl polyphenyl ether, AN: alkyl naphthalene, FE: barfluoropolyether.

〔実施例4〕 本発明の製造法により得られた磁性流体組成物中の強磁
性体微粒子の粒子径と、第1の界面活性剤のみを用いる
(第2の界面活性剤を使用しない)従来法により得られ
た磁性流体組成物中の粒子径との比較: ■ 従来法による磁性流体組成物 分1111剤二合成スルホン酸 添加量:被覆率100% 分散媒:ポリαオレフィン 添加量:80重量部 まず実施例1と同様の操作で、合成スルボン酸を分散剤
とし、ヘキサンを分散媒とするマグネタイトコロイドを
得た。これに分散媒としてポリαオレフィンを加え、ヘ
キサンを蒸発除去して磁性流体組成物を製造した。
[Example 4] Particle diameter of ferromagnetic fine particles in the magnetic fluid composition obtained by the production method of the present invention and conventional method using only the first surfactant (without using the second surfactant) Comparison with the particle size in the magnetic fluid composition obtained by the conventional method: ■ Magnetic fluid composition by conventional method Amount of 1111 agent bisynthetic sulfonic acid added: Coverage rate 100% Dispersion medium: Added amount of poly α olefin: 80 weight First, in the same manner as in Example 1, a magnetite colloid was obtained using synthetic sulfonic acid as a dispersant and hexane as a dispersion medium. Polyα-olefin was added as a dispersion medium, and hexane was removed by evaporation to produce a magnetic fluid composition.

その磁性流体組成物中のマグネタイト粒子の透過型電子
顕微vl(TEM)像が第2図に示される。
A transmission electron microscopy (TEM) image of magnetite particles in the magnetic fluid composition is shown in FIG.

■ 本発明の製造法による磁性流体組成物分散剤:第1
の界面活性剤としてN−アシルアミノ酸 添加■:被覆率率0% 第2の界面活性剤として合成スルホン 酸 添加量:30重量部 分散媒:ポリαオレフィン 添加量二80重量部 実施例2と同様の操作で、第1の界面活性剤がN−アシ
ルアミノ酸、第2の界面活性剤が合成スルホン酸、分散
媒がポリαオレフィンである磁性流体組成物を製造した
■ Magnetic fluid composition dispersant according to the production method of the present invention: 1st
Addition of N-acyl amino acid as a surfactant ■: Coverage rate 0% Addition amount of synthetic sulfonic acid as second surfactant: 30 parts by weight Dispersion: Addition amount of poly α-olefin 2 80 parts by weight Same as Example 2 By the above procedure, a magnetic fluid composition was produced in which the first surfactant was an N-acylamino acid, the second surfactant was a synthetic sulfonic acid, and the dispersion medium was a polyα-olefin.

その磁性流体組成物中のマグネタイト粒子の透過型電子
顕微鏡(TEM)像が第3図に示される。
A transmission electron microscopy (TEM) image of magnetite particles in the magnetic fluid composition is shown in FIG.

第2図と第3図とから、本発明の製造方法で調製された
磁性流体組成物中のマグネタイト粒子は、従来の製造方
法で調製された磁性流体組成物中のマグネタイト粒子に
比べて、より単分散系に近づいている。又、粒子径も小
さいことが一目瞭然であり、粒子径制御の効果が明白に
示されているといえる。
From FIG. 2 and FIG. 3, it can be seen that the magnetite particles in the magnetic fluid composition prepared by the manufacturing method of the present invention are more concentrated than the magnetite particles in the magnetic fluid composition prepared by the conventional manufacturing method. approaching a monodisperse system. It is also obvious that the particle size is small, and it can be said that the effect of particle size control is clearly demonstrated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、第1吸着工程に
おける界面活性剤の添加量を強磁性体微粒子表面の被覆
率100%未満とし、且つ第2吸着工程における界面活
性剤の添加を水相で行うものとした。そのため、強磁性
体微粒子の粒子径の制御と分!1Jl性の向上とを独立
に行うことが容易となり、長期的な安定性を損なう比較
的大径の粒子を含まず、且つ界面活性剤が強固に吸着さ
れた極めて安定性の高い磁性流体組成物が、従来の製造
設備のままで得られるという効果がある。
As explained above, according to the present invention, the amount of surfactant added in the first adsorption step is less than 100% coverage of the surface of the ferromagnetic particles, and the amount of surfactant added in the second adsorption step is reduced to less than 100%. It was decided that this would be done in phase. Therefore, it is possible to control the particle size of ferromagnetic particles. An extremely stable magnetic fluid composition that can easily improve 1 Jl property independently, does not contain relatively large particles that impair long-term stability, and has a surfactant firmly adsorbed. However, it has the advantage that it can be obtained using conventional manufacturing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強磁性体微粒子に対する第1の界面活性剤の添
加濃度と被覆率率と親油性強磁性体微粒子の収率との関
係を表す図、第2図は従来の製造方法により得た磁性流
体組成物中の強磁性体微粒子の粒子構造を示す透過型電
子顕微鏡視野図、第3図は本発明の製造方法により得た
磁性流体組成物中の強磁性体微粒子の粒子構造を示す透
過型電子顕微鏡視野図である。
Figure 1 is a diagram showing the relationship between the concentration of the first surfactant added to the ferromagnetic fine particles, the coverage rate, and the yield of lipophilic ferromagnetic fine particles, and Figure 2 is a graph showing the relationship between the concentration of the first surfactant added to the ferromagnetic fine particles, and the yield of lipophilic ferromagnetic fine particles. FIG. 3 is a transmission electron microscope view showing the particle structure of the ferromagnetic fine particles in the magnetic fluid composition. FIG. It is a field diagram of a type electron microscope.

Claims (1)

【特許請求の範囲】[Claims] (1)強磁性体微粒子に不飽和量の第1のイオン性界面
活性剤と低沸点有機溶媒とを加えて粒子表面を前記界面
活性剤で不完全に被覆した分散系を得る第1吸着工程と
、 該分散系から比較的粒径の大きな強磁性体微粒子を分離
した後、前記分散系から低沸点有機溶媒を除去して親油
性強磁性体微粒子を得る工程と、該親油性強磁性体微粒
子に水と第2のイオン性界面活性剤とを加えて、少なく
とも前記第1のイオン性界面活性剤で被覆されていない
個所の強磁性体微粒子面に、水相で第2のイオン性界面
活性剤を吸着せしめる第2吸着工程と、 その第1及び第2の界面活性剤で被覆された強磁性体微
粒子を乾燥した後、分散媒中に分散させる工程とを包含
する磁性流体組成物の製造方法。
(1) A first adsorption step in which an unsaturated amount of a first ionic surfactant and a low-boiling organic solvent are added to ferromagnetic fine particles to obtain a dispersion system in which the particle surface is incompletely covered with the surfactant. a step of separating ferromagnetic fine particles having a relatively large particle size from the dispersion system, and then removing a low boiling point organic solvent from the dispersion system to obtain lipophilic ferromagnetic fine particles; Water and a second ionic surfactant are added to the fine particles, and at least the surface of the ferromagnetic fine particles not covered with the first ionic surfactant is coated with the second ionic interface in the aqueous phase. A magnetic fluid composition comprising a second adsorption step of adsorbing an active agent, and a step of drying the ferromagnetic fine particles coated with the first and second surfactants and then dispersing them in a dispersion medium. Production method.
JP63147334A 1988-06-15 1988-06-15 Manufacture of magnetic fluid composition Pending JPH01315103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147334A JPH01315103A (en) 1988-06-15 1988-06-15 Manufacture of magnetic fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147334A JPH01315103A (en) 1988-06-15 1988-06-15 Manufacture of magnetic fluid composition

Publications (1)

Publication Number Publication Date
JPH01315103A true JPH01315103A (en) 1989-12-20

Family

ID=15427830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147334A Pending JPH01315103A (en) 1988-06-15 1988-06-15 Manufacture of magnetic fluid composition

Country Status (1)

Country Link
JP (1) JPH01315103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036305A1 (en) * 1996-03-26 1997-10-02 Ferrotec Corporation Process for producing a magnetic fluid and composition therefor
JP2003513156A (en) * 1999-10-28 2003-04-08 株式会社フェローテック Improved magnetic fluid composition and manufacturing method
JP2003524293A (en) * 1999-10-15 2003-08-12 株式会社フェローテック Ferrofluid composition with improved chemical stability and method of manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036305A1 (en) * 1996-03-26 1997-10-02 Ferrotec Corporation Process for producing a magnetic fluid and composition therefor
US6056889A (en) * 1996-03-26 2000-05-02 Ferrotec Corporation Process for producing a magnetic fluid and composition therefor
JP2003524293A (en) * 1999-10-15 2003-08-12 株式会社フェローテック Ferrofluid composition with improved chemical stability and method of manufacture
JP4799791B2 (en) * 1999-10-15 2011-10-26 株式会社フェローテック Magnetic fluid composition having improved chemical stability and method of manufacture
JP2003513156A (en) * 1999-10-28 2003-04-08 株式会社フェローテック Improved magnetic fluid composition and manufacturing method
JP4869527B2 (en) * 1999-10-28 2012-02-08 株式会社フェローテック Improved magnetic fluid composition and manufacturing method

Similar Documents

Publication Publication Date Title
US4485024A (en) Process for producing a ferrofluid, and a composition thereof
CA1137296A (en) Magnetic particle dispersions
JPH05205930A (en) Magnetohydrodynamic fluid
CA2805911C (en) Process for obtaining functionalized nanoparticulate magnetic ferrites for easy dispersion and magnetic ferrites obtained through the same
US5085789A (en) Ferrofluid compositions
JPS63122107A (en) Conductive magnetic fluid composition
US4438156A (en) Mono-particle magnetic dispersion in organic polymers for magnetic recording
US6068785A (en) Method for manufacturing oil-based ferrofluid
JPS58174495A (en) Preparation of magnetic fluid
JPH01315103A (en) Manufacture of magnetic fluid composition
US5135672A (en) Electroconductive magnetic fluid composition and process for producing the same
JPH03163805A (en) Super paramagnetic compound material
KR20080088154A (en) Magnetism nano particle coated silica and method for manufacturing thereof
JPS63232402A (en) Conductive magnetic fluid composition and manufacture thereof
JPS63280403A (en) Conductive magnetic fluid compositing and manufacture thereof
JPH0661032A (en) Water base magnetic fluid composition
JPH0491196A (en) Magnetic fluid composition
JPH0226766B2 (en)
JPS58180596A (en) Preparation of magnetic fluid containing synthetic oil as dispersion medium
KR100203025B1 (en) Preparing method of magnetic fluid
JP3021567B2 (en) Manufacturing method of magnetic fluid
JPS5889802A (en) Manufacture of magnetic fluid
KR100203024B1 (en) Method for preparing magnetic fluid
KR100203023B1 (en) Method for preparing magnetic fluid
JP3500943B2 (en) Manufacturing method of magnetic fluid