JPH0661032A - Water base magnetic fluid composition - Google Patents

Water base magnetic fluid composition

Info

Publication number
JPH0661032A
JPH0661032A JP21436792A JP21436792A JPH0661032A JP H0661032 A JPH0661032 A JP H0661032A JP 21436792 A JP21436792 A JP 21436792A JP 21436792 A JP21436792 A JP 21436792A JP H0661032 A JPH0661032 A JP H0661032A
Authority
JP
Japan
Prior art keywords
water
magnetic fluid
fine particles
fluid composition
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21436792A
Other languages
Japanese (ja)
Inventor
Shunichi Yabe
俊一 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP21436792A priority Critical patent/JPH0661032A/en
Publication of JPH0661032A publication Critical patent/JPH0661032A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a water base magnetic fluid composition, which is low in cost and has a stable dispersibility for a long term, by a method wherein a water-soluble polymer is used as a dispersant. CONSTITUTION:A low-cost water-soluble polymer 10 is used as a dispersant for making ferromagnetic material fine particles 1 disperse in water 11 of a dispersion medium. A high dispersibility and a superior dispersion stability are obtained by the synergistic effect of the strong static repulsion action of the polymer 10 and a steric hindrance action.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性体微粒子を分散
媒である水中に分散剤を介して安定に分散させてなる水
ベース磁性流体組成物に関し、特に分散剤に水溶性ポリ
マーを用いて安価でしかも長期間にわたり非常に安定し
た分散性が得られるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-based magnetic fluid composition in which ferromagnetic fine particles are stably dispersed in water as a dispersion medium through a dispersant, and in particular, a water-soluble polymer is used as the dispersant. It is inexpensive, and can obtain extremely stable dispersibility over a long period of time.

【0002】[0002]

【従来の技術】従来の水を分散媒とした磁性流体として
は、例えば特公昭54−40069号公報及び本出願人
による特開平2−23602号公報に記載されたものが
ある。前者のものは、図2に模式的に示すように、湿式
法により得た強磁性体微粒子1の表面に、水相でまず不
飽和脂肪酸あるいはその塩類を主成分とする界面活性剤
(第1の界面活性剤)2の単分子吸着層を形成させた
後、さらに二層目に、陰イオン型あるいは非イオン型界
面活性剤(第2の界面活性剤)3を配向吸着させて、強
磁性体微粒子1を水中に安定に分散させることにより、
水ベースの磁性流体を得るものである。
2. Description of the Related Art Conventional magnetic fluids containing water as a dispersion medium include, for example, those described in Japanese Patent Publication No. 54-40069 and Japanese Patent Application Laid-Open No. 2-23602. The former one is, as schematically shown in FIG. 2, on the surface of the ferromagnetic fine particles 1 obtained by the wet method, first, in a water phase, a surfactant containing an unsaturated fatty acid or a salt thereof as a main component (first After forming a monomolecular adsorption layer of 2), anionic or nonionic surfactant (2nd surfactant) 3 is orientated and adsorbed on the second layer to obtain ferromagnetic properties. By stably dispersing the body particles 1 in water,
A water-based magnetic fluid is obtained.

【0003】これに対して後者は、図3に示すように、
分散剤として塩タイプの親水基4と少なくとも1個の加
水分解性基とを有するカップリング剤5を用い、その加
水分解性基の反応生成物6を介して強磁性体微粒子1の
表面に化学結合させ、分散媒である水側に配向した塩タ
イプの親水基4によって強磁性体微粒子1を水中に安定
に分散せしめて水ベース磁性流体を得るものである。
On the other hand, the latter, as shown in FIG.
A coupling agent 5 having a salt type hydrophilic group 4 and at least one hydrolyzable group is used as a dispersant, and the surface of the ferromagnetic fine particles 1 is chemically bonded through a reaction product 6 of the hydrolyzable group. The ferromagnetic fine particles 1 are bound to each other and stably dispersed in water by the salt-type hydrophilic groups 4 oriented to the water side which is a dispersion medium to obtain a water-based magnetic fluid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の水を分散媒とした磁性流体には、以下のような種々
の問題点があった。すなわち、特公昭54−40069
号公報に提示のものについては、 第2の界面活性剤の吸着は、吸着力が非常に弱い物
理吸着であり、(第1の界面活性剤との親油基同士の相
互作用によるファンデルワールス力に基づく)簡単に脱
着してしまい易く、長期間にわたって強磁性体微粒子の
安定した分散を保つことが困難である。 温度変化により第2の界面活性剤の水への溶解度が
変化するため、第2の界面活性剤のうちバルク中に存在
する過剰の分と二層目に吸着する分との平衡が温度に大
きく依存する。すなわち、温度の変化により第2の界面
活性剤が脱着してしまい、強磁性体微粒子の分散安定性
が悪くなる可能性がある。 過剰に水中に存在する第2の界面活性剤によって磁
性流体自体が簡単に泡立つので、取扱いが困難である。 少量の油や極性溶媒が磁性流体に混入することで、
二層目に吸着している界面活性剤、さらには一層目に吸
着している界面活性剤の脱着が起こる。その結果、分散
している強磁性体微粒子が沈澱してしまったり、磁性流
体自体が乳化してしまったりする可能性がある。
However, the above-mentioned conventional magnetic fluid using water as a dispersion medium has various problems as described below. That is, Japanese Examined Patent Publication No. 54-40069
Regarding the one disclosed in the publication, the adsorption of the second surfactant is a physical adsorption having a very weak adsorptive force, and the (Van der Waals by the interaction of the lipophilic groups with the first surfactant is described. It is easy to be desorbed (based on force), and it is difficult to maintain stable dispersion of the ferromagnetic fine particles for a long period of time. Since the solubility of the second surfactant in water changes due to the temperature change, the equilibrium between the excess amount of the second surfactant present in the bulk and the adsorbed amount in the second layer is large in temperature. Dependent. That is, the second surfactant may be desorbed due to the change in temperature, and the dispersion stability of the ferromagnetic fine particles may be deteriorated. It is difficult to handle because the magnetic fluid itself easily foams due to the second surfactant that is excessively present in water. By mixing a small amount of oil or polar solvent into the magnetic fluid,
Desorption of the surfactant adsorbed on the second layer and further the surfactant adsorbed on the first layer occurs. As a result, the dispersed ferromagnetic fine particles may be precipitated or the magnetic fluid itself may be emulsified.

【0005】一方、特開平2−23602号公報に提示
のものについては、上記特公昭54−40069号公報
に提示のものの〜の問題点に着目してこれを改善し
たものであるが、なお次の点が未解決であった。 (a)分散剤であるカップリング剤の加水分解性基(ア
ルコキシ基)が、強磁性流体微粒子表面とカップリング
反応をする際にアルコールが副生成物として生成するの
で、それを除去する必要がある。 (b)カップリング剤の分子量が比較的小さいので(M
W1000未満)、水中に強磁性体微粒子自体を浮遊さ
せて凝集を防ぐ立体的保護作用があまり大きくない。し
たがって長期的な分散安定性が十分でない。 (c)塩タイプの親水基を有するカップリング剤は特殊
な薬品で非常に高価であり、磁性流体の分散剤としては
経済性の点で問題がある。
On the other hand, the one disclosed in Japanese Patent Application Laid-Open No. 2-23602 is improved by focusing on the problems (1) to (3) disclosed in the above Japanese Patent Publication No. 54-40069. Was unresolved. (A) Alcohol is produced as a by-product when the hydrolyzable group (alkoxy group) of the coupling agent, which is a dispersant, undergoes a coupling reaction with the surface of the ferrofluid fine particles, and it is necessary to remove it. is there. (B) Since the molecular weight of the coupling agent is relatively small (M
(Less than W1000), the three-dimensional protective action of suspending the ferromagnetic fine particles themselves in water to prevent aggregation is not so great. Therefore, long-term dispersion stability is not sufficient. (C) The coupling agent having a salt type hydrophilic group is a special chemical and is very expensive, and there is a problem in terms of economy as a magnetic fluid dispersant.

【0006】そこで本発明は、このような従来の問題点
に着目してなされたものであり、分散剤としてその分子
構造の鎖長中に多数の塩タイプの親水基を有する水溶性
ポリマーを用い、強磁性体微粒子に対して少量の添加量
であっても、その電荷の反発、水への溶媒和、立体的保
護作用のそれぞれの強い働きで高い凝集防止作用を発揮
し、水中に長期間にわたって強磁性体微粒子を安定に分
散せしめることを可能として上記従来の問題点を解決す
ることを目的としている。
Therefore, the present invention has been made in view of such conventional problems, and uses a water-soluble polymer having a large number of salt-type hydrophilic groups in the chain length of its molecular structure as a dispersant. Even with a small amount added to ferromagnetic fine particles, the strong repulsion of the charge, solvation to water, and strong steric protection each exert a high anti-aggregation effect, and it can be used in water for a long time. The object is to solve the above-mentioned conventional problems by making it possible to stably disperse the ferromagnetic fine particles.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明の水ベース磁性流体組成物は、水を分散媒とし、強
磁性体微粒子を分散質とする水ベース磁性流体組成物に
おいて、分散剤として水溶性ポリマーを用いたことを特
徴とする。
The water-based magnetic fluid composition of the present invention that achieves the above object is dispersed in a water-based magnetic fluid composition containing water as a dispersion medium and ferromagnetic fine particles as a dispersoid. A water-soluble polymer is used as an agent.

【0008】[0008]

【作用】分散剤である水溶性ポリマーは、その巨大な分
子構造中に多数のアニオン性の親水基が存在している。
図1は、水溶性ポリマー分子10が多数のアニオン性の
親水基11を有して強磁性体微粒子1の粒子表面に付着
した状態を模式的に表している。このような多数のアニ
オン性の親水基11を有するため、静電気的反発作用
が大きく、また分散媒である水との溶媒和作用が大き
い。且つ鎖長が非常に長いことから大きな立体障害作
用を有する。これらの三作用に基づいて、水ベース磁性
流体組成物の粒子間の凝集を効果的に抑制し、長期間に
わたり強磁性体微粒子を水中に安定に分散させることが
できる。
The water-soluble polymer as a dispersant has a large number of anionic hydrophilic groups in its huge molecular structure.
FIG. 1 schematically shows a state in which a water-soluble polymer molecule 10 has a large number of anionic hydrophilic groups 11 and is attached to the particle surface of ferromagnetic fine particles 1. Because of having such a large number of anionic hydrophilic groups 11, the electrostatic repulsion action is large and the solvation action with water as a dispersion medium is large. Moreover, since the chain length is very long, it has a large steric hindrance action. Based on these three actions, aggregation between particles of the water-based magnetic fluid composition can be effectively suppressed, and the ferromagnetic fine particles can be stably dispersed in water for a long period of time.

【0009】以下、本発明の水ベース磁性流体組成物を
詳細に説明する。水溶性ポリマーは水に容易に溶ける高
分子で、天然及び合成高分子がある。天然高分子として
は、タンパク質,多糖であるデンプンなどがあり、合成
高分子としてはポリビニルアルコール,ポリエチレンオ
キシド,ポリアクリルアミド,ポリビニルピロリドン,
ポリアクリル酸,ポリアクリル酸ナトリウムなどがあ
る。これらはいずれも主鎖または側鎖に、水と水素結合
をつくり易い構造(例えばペプチド結合,エチレンオキ
サイド)や親水基(例えば、−COOH,−COON
a,−CONH2,−SO3 H,−SO3 Na等)を有す
る。本発明の水溶性ポリマーとしては、強磁性体微粒子
を水中に安定して分散させるために、その分子構造がポ
リアクリル酸ナトリウムに近いものが特に適している。
すなわち、非常に長い主鎖中に(部分的に側鎖を有して
いても良い)、電離基(水中で対イオンが解離する塩タ
イプの親水基)が多数存在するタイプのものが好適であ
る。また、その主鎖としては、ポリイソプレン,ポリブ
テン,ポリイソブチレン,ポリブタジエンなど比較的弾
性に富むものが好ましい。
The water-based magnetic fluid composition of the present invention will be described in detail below. Water-soluble polymers are macromolecules that are readily soluble in water, including natural and synthetic macromolecules. Natural polymers include proteins and starches that are polysaccharides, and synthetic polymers include polyvinyl alcohol, polyethylene oxide, polyacrylamide, polyvinylpyrrolidone,
Examples include polyacrylic acid and sodium polyacrylate. All of these have a structure that easily forms a hydrogen bond with water (eg, peptide bond, ethylene oxide) or a hydrophilic group (eg, —COOH, —COON) in the main chain or side chain.
having a, -CONH 2, -SO 3 H , a -SO 3 Na, etc.). As the water-soluble polymer of the present invention, those having a molecular structure close to that of sodium polyacrylate are particularly suitable for stably dispersing the ferromagnetic fine particles in water.
That is, a type having a large number of ionizing groups (salt-type hydrophilic groups capable of dissociating counterions in water) in a very long main chain (may have a side chain partially) is preferable. is there. As the main chain, those having relatively high elasticity such as polyisoprene, polybutene, polyisobutylene and polybutadiene are preferable.

【0010】上記水溶性ポリマーの平均分子量は100
0〜100000位が望ましく、好ましくは10000
程度である。また、親水基としては、カルボキシル基,
スルホン酸基及びリン酸エステル基のそれぞれの金属
塩、特にアルカリ金属塩が好ましい。同一鎖長中にそれ
ぞれの親水基がランダムに存在し、その種類は単一もし
くは二種類以上であってもかまわない。その親水基の数
は、分散剤の一分子中に10〜1000個位、好ましく
は100個程度である。
The water-soluble polymer has an average molecular weight of 100.
0 to 100,000 is desirable, preferably 10,000
It is a degree. As the hydrophilic group, a carboxyl group,
Metal salts of sulfonic acid groups and phosphoric acid ester groups, particularly alkali metal salts, are preferred. Each hydrophilic group randomly exists in the same chain length, and the type thereof may be single or two or more types. The number of hydrophilic groups is about 10 to 1000, preferably about 100, in one molecule of the dispersant.

【0011】本発明に用いる水溶性ポリマーの具体例と
しては、ポリイソプレンスルホン酸ナトリウム,ポリイ
ソプレンカルボン酸ナトリウムなどが挙げられる。続い
て、本発明の強磁性体微粒子について説明する。強磁性
体微粒子としては、周知の湿式法によりコロイド状水懸
濁液(スラリー)として得られるものを用いてよい。こ
こに湿式法とは、第1鉄イオンと第2鉄イオンを1:2
の割合で含む酸性溶液にアルカリを加え、pH9程度以
上とし、適宜な温度下で熟成することによりマグネタイ
トコロイドを得るものである。また、水もしくは有機溶
媒中でマグネタイト粉末をボールミル粉砕するいわゆる
湿式粉砕法で得られたものでもよい。さらに、その他、
乾式法で得られたものであってもよい。
Specific examples of the water-soluble polymer used in the present invention include sodium polyisoprenesulfonate and sodium polyisoprenecarboxylate. Next, the ferromagnetic fine particles of the present invention will be described. As the ferromagnetic fine particles, those obtained as a colloidal aqueous suspension (slurry) by a well-known wet method may be used. Here, the wet method means that ferrous ions and ferric ions are 1: 2.
A magnetite colloid is obtained by adding an alkali to an acidic solution containing the above to adjust the pH to about 9 or more and aging at an appropriate temperature. Further, it may be one obtained by a so-called wet pulverization method in which magnetite powder is pulverized by a ball mill in water or an organic solvent. In addition,
It may be obtained by a dry method.

【0012】また、マグネタイト以外にマンガンフェラ
イト,ニッケルフェライト,コバルトフェライトもしく
はこれらと亜鉛の複合フェライトやバリウムフェライト
などの強磁性体金属酸化物微粒子や、鉄,コバルト等の
強磁性の金属微粒子を用いることもできる。強磁性体微
粒子の含有量は、従来一般的に用いられている体積比で
1〜20%の範囲は勿論のこと、溶媒として水を用いた
中間媒体を経由して製造することにより、更に高濃度に
調整することも可能になる。
In addition to magnetite, use is made of ferromagnetic metal oxide fine particles such as manganese ferrite, nickel ferrite, cobalt ferrite, composite ferrite of these and zinc, barium ferrite, or ferromagnetic metal fine particles such as iron or cobalt. You can also The content of the ferromagnetic fine particles is, of course, in the range of 1 to 20% by volume ratio which is generally used in the past, and is further increased by producing via an intermediate medium using water as a solvent. It is also possible to adjust the concentration.

【0013】本発明の水ベース磁性流体組成物の製造法
としては、水を溶媒とした湿式粉砕法を用いることがで
き、粉砕手段としてはボールミル,循環式超音波ホモジ
ナイザー,ナノマイザーなどが効率がよい。粉砕後、必
要に応じて遠心分離によって粒径の大きい粒子や分散安
定性の低い粒子を除去することもできる。また、濃縮な
どによって適当な濃度に調整することもできる。
As a method for producing the water-based magnetic fluid composition of the present invention, a wet grinding method using water as a solvent can be used, and as a grinding means, a ball mill, a circulating ultrasonic homogenizer, a nanomizer or the like is efficient. . After crushing, if necessary, particles having a large particle size or particles having low dispersion stability can be removed by centrifugation. It is also possible to adjust to an appropriate concentration by concentration or the like.

【0014】次に、本発明の実施例を説明する。Next, examples of the present invention will be described.

【0015】[0015]

【実施例1】まず、硫酸第1鉄と硫酸第2鉄とを、それ
ぞれ0.3molづつ含む水溶液1lに、6NのNaO
aqをpH11以上になるまで加えた後、その溶液を6
0℃で30分間熟成して、マグネタイトコロイドのスラ
リー液を得た。ついで、室温下で水洗して、このスラリ
ー中の電界質を除去する。以上は、湿式法によりマグネ
タイトコロイドを製造する工程である。このようにして
得たマグネタイトコロイド液を遠心分離してマグネタイ
トだけを回収したものを80℃で3時間減圧乾燥した。
Example 1 First, 6N NaO was added to 1 l of an aqueous solution containing ferric sulfate and ferric sulfate in an amount of 0.3 mol each.
After adding H aq until pH becomes 11 or more, add 6 parts of the solution.
The mixture was aged at 0 ° C. for 30 minutes to obtain a magnetite colloid slurry solution. Then, the electrolyte is removed from the slurry by washing with water at room temperature. The above is the process of producing magnetite colloid by the wet method. The magnetite colloidal solution thus obtained was centrifuged to recover only magnetite, which was dried under reduced pressure at 80 ° C. for 3 hours.

【0016】この乾燥したマグネタイト微粒子15.0g
に、分散剤として、水溶性ポリマーのダイナフローP103
〔日本合成ゴム(株)製、平均分子量10000 、親水基−
COONa:−SO3 Na=4:1、固形分40.8%、そ
の他は水〕5.5 g及び水26.3gを加え、ボールミルを用
いて4時間粉砕及び分散操作を行った。このようにし
て、表面が上記水溶性ポリマーで被服されたマグネタイ
ト微粒子が水に安定に分散した分散液が得られた。
15.0 g of the dried magnetite particles
As a dispersant, a water-soluble polymer Dynaflow P103
[Nippon Synthetic Rubber Co., Ltd., average molecular weight 10,000, hydrophilic group-
COONa: -SO 3 Na = 4: 1, solid content 40.8 percent, other water] 5.5 g and water 26.3g were added thereto to carry out a 4-hour milling and dispersing operation by using a ball mill. Thus, a dispersion liquid was obtained in which the magnetite fine particles whose surface was coated with the water-soluble polymer were stably dispersed in water.

【0017】この分散液を遠心分離機にかけて、800
0Gの遠心力下で30分間処理し、マグネタイト分散粒
子のうち比較的粒径の大きい分散性の悪い粒子を沈降せ
しめて除去した。この遠心分離操作によって得られた上
澄み液は極めて安定な磁性流体であった。
This dispersion was centrifuged to give 800
The particles were treated for 30 minutes under a centrifugal force of 0 G, and among the particles dispersed in magnetite, particles having a relatively large particle size and poor dispersibility were sedimented and removed. The supernatant obtained by this centrifugation operation was an extremely stable magnetic fluid.

【0018】[0018]

【実施例2】上記実施例1と同様にして湿式法によりマ
グネタイトコロイドのスラリーを製造し、室温下で水洗
してこのスラー中の電解質を除去する。このマグネタイ
ト微粒子50gを含有するスラリー500 mlに、分散剤と
して水溶性ポリマーのダイナフローK106〔日本合成ゴム
(株)製、主成分ポリイソプレンスルホン酸ナトリウ
ム、平均分子量40000 、親水基−SO3 Na、固形分40
%、その他は水〕20gを加え、循環式超音波ホモジナイ
ザーに移して2時間粉砕及び分散処理を行った。このよ
うにして、表面が上記水溶性ポリマーで被覆されたマグ
ネタイト微粒子が水に安定に分散した分散液が得られ
た。
[Example 2] A slurry of magnetite colloid was produced by a wet method in the same manner as in Example 1 above, and washed with water at room temperature to remove the electrolyte in this slur. In 500 ml of a slurry containing 50 g of the magnetite fine particles, a water-soluble polymer Dynaflow K106 [manufactured by Japan Synthetic Rubber Co., Ltd., sodium polyisoprenesulfonate as a main component, average molecular weight 40,000, hydrophilic group-SO 3 Na, Solid content 40
%, Water for others, 20 g was added, and the mixture was transferred to a circulating ultrasonic homogenizer and pulverized and dispersed for 2 hours. Thus, a dispersion liquid was obtained in which the magnetite fine particles whose surface was coated with the water-soluble polymer were stably dispersed in water.

【0019】この分散液を遠心分離機にかけて8000
Gの遠心力下で30分間処理し、マグネタイト分散粒子
のうち比較的粒径の大きい、分散性の悪い粒子を沈降せ
しめて除去した。この遠心分離操作によって得られた上
澄み液は極めて安定な磁性流体であった。
The dispersion is centrifuged at 8000
It was treated for 30 minutes under the centrifugal force of G, and among the magnetite dispersed particles, particles having a relatively large particle diameter and poor dispersibility were sedimented and removed. The supernatant obtained by this centrifugation operation was an extremely stable magnetic fluid.

【0020】[0020]

【発明の効果】本発明によれば、強磁性微粒子を水ベー
スの分散媒中に安定に分散させる分散剤として、安価で
しかも静電気的反発作用及び水との溶媒和作用が大き
く、且つ鎖長が長くて立体障害作用が大きい水溶性ポリ
マーを用いたため、長期間にわたり水中において強磁性
体微粒子の高い分散安定性が確保でき、更に分散剤の添
加量が少なくて良く、安価で採算性の高い水ベース磁性
流体組成物を提供できるという効果が得られる。
According to the present invention, as a dispersant for stably dispersing ferromagnetic fine particles in a water-based dispersion medium, it is inexpensive, has a large electrostatic repulsion action and a solvation action with water, and has a long chain length. Since it uses a water-soluble polymer that has a long and large steric hindrance effect, high dispersion stability of ferromagnetic fine particles can be secured in water for a long period of time, and the addition amount of a dispersant is small, which is inexpensive and highly profitable. The effect that a water-based magnetic fluid composition can be provided is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水ベース磁性流体組成物の概念図であ
る。
FIG. 1 is a conceptual diagram of a water-based magnetic fluid composition of the present invention.

【図2】従来の水ベース磁性流体組成物の概念図であ
る。
FIG. 2 is a conceptual diagram of a conventional water-based magnetic fluid composition.

【図3】従来の他の水ベース磁性流体組成物の概念図で
ある。
FIG. 3 is a conceptual diagram of another conventional water-based magnetic fluid composition.

【符号の説明】[Explanation of symbols]

1 強磁性体微粒子 10 水溶性ポリマー 1 Ferromagnetic Fine Particles 10 Water-Soluble Polymer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水を分散媒とし、強磁性体微粒子を分散
質とする水ベース磁性流体組成物において、分散剤とし
て水溶性ポリマーを用いたことを特徴とする水ベース磁
性流体組成物。
1. A water-based magnetic fluid composition comprising water as a dispersion medium and ferromagnetic fine particles as a dispersoid, wherein a water-soluble polymer is used as a dispersant.
JP21436792A 1992-08-11 1992-08-11 Water base magnetic fluid composition Pending JPH0661032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21436792A JPH0661032A (en) 1992-08-11 1992-08-11 Water base magnetic fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21436792A JPH0661032A (en) 1992-08-11 1992-08-11 Water base magnetic fluid composition

Publications (1)

Publication Number Publication Date
JPH0661032A true JPH0661032A (en) 1994-03-04

Family

ID=16654617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21436792A Pending JPH0661032A (en) 1992-08-11 1992-08-11 Water base magnetic fluid composition

Country Status (1)

Country Link
JP (1) JPH0661032A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131528A1 (en) * 2007-04-25 2008-11-06 Universite Laval Magnetically deformable ferrofluids and mirrors
JP2011241194A (en) * 2010-05-20 2011-12-01 Cota Co Ltd Hair growth promoter
JP2017521856A (en) * 2014-05-20 2017-08-03 ポリテクニコ ディ ミラノPolitecnico Di Milano Amphiphilic magnetic nanoparticles and aggregates to remove hydrocarbons and metal ions and their synthesis
CN108352235A (en) * 2015-08-28 2018-07-31 湖南博海新材料股份有限公司 Nanometer magneto-rheological fluid and its Preparation equipment and method
JP2018133488A (en) * 2017-02-16 2018-08-23 学校法人同志社 Liquid magnet and liquid magnet manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008131528A1 (en) * 2007-04-25 2008-11-06 Universite Laval Magnetically deformable ferrofluids and mirrors
US8444280B2 (en) 2007-04-25 2013-05-21 Universite Laval Magnetically deformable ferrofluids and mirrors
JP2011241194A (en) * 2010-05-20 2011-12-01 Cota Co Ltd Hair growth promoter
JP2017521856A (en) * 2014-05-20 2017-08-03 ポリテクニコ ディ ミラノPolitecnico Di Milano Amphiphilic magnetic nanoparticles and aggregates to remove hydrocarbons and metal ions and their synthesis
CN108352235A (en) * 2015-08-28 2018-07-31 湖南博海新材料股份有限公司 Nanometer magneto-rheological fluid and its Preparation equipment and method
JP2018532279A (en) * 2015-08-28 2018-11-01 湖南博海新材料股▲ふん▼有限公司Hunan Bohai New Materials Co.,Ltd Nanomagnetic rheological fluid and manufacturing equipment and method thereof
JP2018133488A (en) * 2017-02-16 2018-08-23 学校法人同志社 Liquid magnet and liquid magnet manufacturing method

Similar Documents

Publication Publication Date Title
CN105271430B8 (en) A kind of preparation method of the ultra-dispersed ferroso-ferric oxide of modification
JPH0727813B2 (en) Magnetic fluid composition
JPS63122107A (en) Conductive magnetic fluid composition
JPH0661032A (en) Water base magnetic fluid composition
US4438156A (en) Mono-particle magnetic dispersion in organic polymers for magnetic recording
JPS58174495A (en) Preparation of magnetic fluid
JP3862768B2 (en) Method for producing mixed ultrafine particles from PFPE microemulsion
CN111063502B (en) Magnetic fluid with adjustable stability and preparation and recovery method thereof
JPH0642414B2 (en) Conductive magnetic fluid composition and method for producing the same
Kim et al. Viscosity of magnetorheological fluids using iron–silicon nanoparticles
KR20080088154A (en) Magnetism nano particle coated silica and method for manufacturing thereof
JPS63175401A (en) Low temperature magnetic fluid
JPH07330337A (en) Dispersion of electro-conductive fine powder and its production
JPH07324015A (en) Make-up cosmetic material
JPH01315103A (en) Manufacture of magnetic fluid composition
JPH0476484B2 (en)
JPS6320367A (en) Red composite pigment
JPH0223602A (en) Water base magnetic fluid composition and manufacture thereof
JPS63131502A (en) Fluorinated magnetic fluid composition
JPS63124402A (en) Fluorine-based magnetic fluid composition and manufacture thereof
JPS58180596A (en) Preparation of magnetic fluid containing synthetic oil as dispersion medium
JPS63280403A (en) Conductive magnetic fluid compositing and manufacture thereof
JPH0620822A (en) Magnetic dialant suspension
JP2623500B2 (en) Manufacturing method of magnetic fluid
US5082581A (en) Aqueous magnetic fluid composition and process for producing thereof