JPH01313800A - Oxidation decomposition processing method for radioactive ion exchange resin - Google Patents

Oxidation decomposition processing method for radioactive ion exchange resin

Info

Publication number
JPH01313800A
JPH01313800A JP14537688A JP14537688A JPH01313800A JP H01313800 A JPH01313800 A JP H01313800A JP 14537688 A JP14537688 A JP 14537688A JP 14537688 A JP14537688 A JP 14537688A JP H01313800 A JPH01313800 A JP H01313800A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
resin
hydrogen peroxide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14537688A
Other languages
Japanese (ja)
Inventor
Nobuyuki Motoyama
信行 本山
Takayuki Morioka
崇行 森岡
Hiroshi Hoshikawa
星川 寛
Tsuyoshi Ishikawa
石川 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14537688A priority Critical patent/JPH01313800A/en
Publication of JPH01313800A publication Critical patent/JPH01313800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PURPOSE:To obtain a high decomposition rate by executing an oxidation decomposition processing by adding oxalate at the time of decomposing a mixed ion exchange resin of weak acidic and weak basic ion exchange resins by using hydrogen peroxide, and iron ion and copper ion as oxidizer, and catalyst, respectively. CONSTITUTION:A water solution containing an iron ion and a copper ion is led into a reaction tank 1 from a catalyst supply port 6, and hydrogen peroxide water is supplied into the reaction tank 1 from a supply port 4. Also, the water solution of oxalate is supplied. In this state, when a single or mixed resin of a weak acidic radioactive ion exchange resin and a weak basic radioactive ion exchange resin is brought to oxidation decomposition by using hydrogen peroxide, and an iron ion and a copper ion as an oxidizer, and a catalyst, respectively, it is executed under the coexistence of an oxalic acid ion. In such a way, from the hydrogen peroxide and the catalyst, an OH radical is generated, oxalate reacts with the generated OH radical and the generation of an organic radical is quickened, the resin is attacked and the structure of the resin is broken down, and a high decomposition rate can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力施設から発生する使用済みイオン交換樹
脂(廃棄樹脂)を過酸化水素を酸化剤とし触媒を用いて
酸化分解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for oxidatively decomposing used ion exchange resin (waste resin) generated from nuclear facilities using hydrogen peroxide as an oxidizing agent and a catalyst.

〔従来の技術〕[Conventional technology]

原子力発電所から生ずる様々な固体廃棄物の中に、復水
浄化系濾過、復水浄化系脱塩基など液体系の浄化処理に
使用された後に廃棄されるイオン交換樹脂がある。これ
ら廃棄樹脂はスペース、設備、環境などの点から減容化
処理を行う必要がある。この減容化処理方法には燃焼法
、熱分解法。
Among the various solid wastes generated from nuclear power plants, there is ion exchange resin that is discarded after being used in liquid purification processes such as condensate purification system filtration and condensate purification system debasing. These waste resins must be subjected to volume reduction treatment from the viewpoint of space, equipment, environment, etc. This volume reduction treatment method includes combustion method and thermal decomposition method.

酸化分解法などが知られているが、それぞれ一長一短が
あり、現状ではこれらの方法に決定的な優劣はつけ難い
Oxidative decomposition methods are known, but each has advantages and disadvantages, and at present it is difficult to determine whether these methods are superior or inferior.

そのほか廃棄樹脂を減容化処理するには過酸化水素(l
Itoz)と触媒を用いて、廃棄樹脂を分解する方法も
ある。ここでは以下この方法について述べる0例えば鉄
を触媒として過酸化水素により100℃程度の温度で分
解する方法があるが、さらにその後銅触媒、鉄と銅の混
合触媒などを用いて過酸化水素により陽イオン交換樹脂
または陰イオン交換樹脂、もしくはこれらの混合樹脂を
効率よく分解する方法の検討がなされてきた。
In addition, to reduce the volume of waste resin, hydrogen peroxide (l
There is also a method of decomposing waste resin using a catalyst. This method will be described below. For example, there is a method of decomposing iron at a temperature of about 100°C with hydrogen peroxide using iron as a catalyst. Studies have been conducted on methods for efficiently decomposing ion exchange resins, anion exchange resins, or mixed resins thereof.

第1図はこの方法を説明するために実験室規模の連続式
分解処理装置の要部を示した外観図であるが、バッチ式
の分解処理装置を用いることもできる。以下第1図を参
照して装置と処理方法について述べる。第1図において
反応槽lの下部は大部分ウォーターバス2の中に入って
おり、上部はフランジによって円!3を取りつけ、この
円蓋3に過酸化水素供給口4.樹脂供給口5.触媒供給
口6を備え、また冷却管7が接続され、冷却水は矢印の
ように冷却水人口8から入り、冷却水出口9から放流し
、冷却管7の上端はガス排出口10を存する。ウォータ
ーバス2の下部にマグネチックスクーラー11を設けで
ある。
Although FIG. 1 is an external view showing the main parts of a laboratory scale continuous decomposition treatment apparatus for explaining this method, a batch type decomposition treatment apparatus may also be used. The apparatus and processing method will be described below with reference to FIG. In Fig. 1, most of the lower part of the reaction tank 1 is inside the water bath 2, and the upper part is rounded by a flange! 3, and connect the hydrogen peroxide supply port 4 to this dome 3. Resin supply port 5. A catalyst supply port 6 is provided, and a cooling pipe 7 is connected thereto. Cooling water enters from a cooling water port 8 as shown by the arrow and is discharged from a cooling water outlet 9. The upper end of the cooling pipe 7 has a gas discharge port 10. A magnetic cooler 11 is provided at the bottom of the water bath 2.

この装置を用いてイオン交換樹脂を分解処理するのは次
のように行う0例えばイオン性物質である第一硫酸鉄(
FeSO*)と硫酸銅(CuSOa)などの水溶液を図
示してない貯留槽から配管により触媒供給口6から反応
槽1内に導入し、混合樹脂を水中に分散、懸濁させて図
示してない貯留槽から配管により樹脂供給口5から反応
槽l内に投入する。
The decomposition treatment of ion exchange resin using this equipment is as follows.For example, the ionic substance ferrous sulfate (
An aqueous solution of FeSO*) and copper sulfate (CuSOa) is introduced into the reaction tank 1 from the catalyst supply port 6 via piping from a storage tank (not shown), and the mixed resin is dispersed and suspended in water. The resin is introduced from the storage tank into the reaction tank l through the resin supply port 5 via piping.

同様に過酸化水素水はその供給口4から一定量で連続的
に反応槽1内に供給するが、過酸化水素濃度については
とくに制限する必要はなく通常の30%または60%の
ものを使用することができ、また第1図の装置における
反応液の容量は10〜50d/g乾燥樹脂程度が適当で
ある0反応液はマグネチックスターラ−11を用いて攪
拌し、温度をウォーターバス2により一定に保つ0反応
温度は常温から100℃までの範囲で分解可能であるが
高分解率を得るためには90℃以上とするのがよい、な
お高濃度の触媒溶液は過酸化水素水で稀釈され濃度がほ
ぼ一定に保持される。触媒濃度はこのようにある程度一
定に保持する方法と、はじめに濃度を設定し、以後は濃
度の11節をしないという方法のどちらも用いることが
できる0以上のようにして反応槽1内で反応液に分解反
応を起こさせ、このとき分解により生じた炭酸ガスは冷
却管7のガス排出口10から排出される。
Similarly, a fixed amount of hydrogen peroxide solution is continuously supplied into the reaction tank 1 from the supply port 4, but there is no need to particularly limit the hydrogen peroxide concentration, and a concentration of 30% or 60% of the usual hydrogen peroxide concentration is used. In addition, the capacity of the reaction liquid in the apparatus shown in Fig. 1 is suitably about 10 to 50 d/g of dry resin.The reaction liquid is stirred using a magnetic stirrer 11, and the temperature is controlled by a water bath 2. Decomposition is possible at a constant 0 reaction temperature in the range from room temperature to 100°C, but in order to obtain a high decomposition rate, it is better to keep it at 90°C or higher.The highly concentrated catalyst solution should be diluted with hydrogen peroxide solution. The concentration is kept almost constant. Either the method of keeping the catalyst concentration constant to some extent as described above, or the method of setting the concentration at the beginning and then not changing the concentration can be used. A decomposition reaction occurs, and carbon dioxide gas produced by the decomposition is discharged from the gas outlet 10 of the cooling pipe 7.

分解終了後は反応槽1内に残っている廃液を取り出す、
この廃液は強酸性であるから苛性ソーダ(Mail)な
どのアルカリで中和し、乾燥して固形化する。
After completion of decomposition, remove the waste liquid remaining in reaction tank 1.
Since this waste liquid is strongly acidic, it is neutralized with an alkali such as caustic soda (Mail), and then dried and solidified.

このように鉄と銅を触媒とし過酸化水素を酸化剤として
混合樹脂を分解処理する方法は高い分解効率を得ること
ができるが、その値は既にほぼ限界に達したものとみら
れ、現在では分解効率に関する点より廃棄樹脂処理の本
来の目的である減容化の方が注目されるようになってき
た。所が現状はスルホン基<Sa+)ををする強酸性陽
イオン交換樹脂が廃棄樹脂として発生するので上述の方
法によって高分解率を得ることができても、この重いス
ルホン基が残るために重量減少率を大きくすることすな
わち減容化に対する障害となってくる。
This method of decomposing a mixed resin using iron and copper as catalysts and hydrogen peroxide as an oxidizing agent can achieve high decomposition efficiency, but it appears that this value has already reached its limit, and currently decomposition Volume reduction, which is the original purpose of waste resin processing, is attracting more attention than efficiency. However, at present, strongly acidic cation exchange resins containing sulfone groups (<Sa+) are generated as waste resin, so even if a high decomposition rate can be obtained by the above method, the weight decreases because these heavy sulfone groups remain. Increasing the ratio, that is, becoming an obstacle to volume reduction.

そこで現在は強酸強塩基性の混合樹脂に代わって、スル
ホン基をもたない弱酸性陽イオン交換樹脂および弱塩基
性イオン交換樹脂を使用しようとする傾向もみられる。
Therefore, there is currently a tendency to use weakly acidic cation exchange resins and weakly basic ion exchange resins that do not have sulfonic groups in place of strong acid and strong base mixed resins.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、弱酸性イオン交換樹脂および弱塩基性イ
オン交換樹脂を分解する場合には強酸強塩基性の混合樹
脂に比べて分解が橿めて困難であるという問題が生ずる
However, when decomposing weakly acidic ion exchange resins and weakly basic ion exchange resins, a problem arises in that it is much more difficult to decompose compared to mixed resins of strong acids and strong bases.

したがって本発明の目的は弱酸性陽イオン交換樹脂と弱
塩基性陰イオン交換樹脂を用いたときに生ずるこれらの
混合廃棄樹脂を鉄イオンおよび銅イオンを触媒とし過酸
化水素を酸化剤として分解するに当たって高い分解率の
得られる処理方法を提供することにある。
Therefore, the object of the present invention is to decompose mixed waste resins produced when weakly acidic cation exchange resins and weakly basic anion exchange resins are used, using iron ions and copper ions as catalysts and hydrogen peroxide as an oxidizing agent. The object of the present invention is to provide a treatment method that provides a high decomposition rate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は弱酸性の放射性イオン交換樹脂と弱塩基性の放
射性イオン交換樹脂の単独または混合樹脂を過酸化水素
を酸化剤とし鉄イオンと銅イオンを触媒として酸化分解
するに当たりしゅう酸イオンの共存下で行う分解処理方
法である。
In the present invention, a weakly acidic radioactive ion exchange resin and a weakly basic radioactive ion exchange resin, alone or in combination, are oxidized and decomposed using hydrogen peroxide as an oxidizing agent and iron ions and copper ions as a catalyst in the coexistence of oxalate ions. This is a decomposition treatment method performed in

〔作用〕[Effect]

本発明の方法は弱酸性1弱塩基性の混合イオン交換樹脂
を過酸化水素を酸化剤とし、鉄イオンと銅イオンを触媒
として分解する際にしゅう酸、し喰う酸ナトリウムまた
はしゅう酸カルシウムなどのしゅう酸塩を添加して酸化
分解処理を行うものであり、過酸化水素と触媒からOH
ラジカルが生じ、これとしゅう酸塩が反応して有機ラジ
カルの生成を促進し、樹脂を攻撃して樹脂の構造を破壊
することにより高分解率を得ることができる。
The method of the present invention uses hydrogen peroxide as an oxidizing agent and iron ions and copper ions as catalysts to decompose a mixed ion exchange resin of weakly acidic and slightly basic properties. Oxalate is added to perform oxidative decomposition treatment, and OH is removed from hydrogen peroxide and a catalyst.
A high decomposition rate can be obtained by generating radicals, which react with oxalate to promote the generation of organic radicals, which attack the resin and destroy its structure.

〔実施例〕〔Example〕

本発明の方法に用いた弱酸性弱塩基性のイオン交換樹脂
を分解処理する装置とその処理手順については第1図で
説明したのと基本的に同じであり、本発明ではしゅう酸
塩の水溶液を反応槽1に追加投入して樹脂を酸化分解す
ることのみが異なるだけであるから装置と処理手順の説
明は省略する。
The apparatus for decomposing a weakly acidic and weakly basic ion exchange resin used in the method of the present invention and its treatment procedure are basically the same as those explained in FIG. Since the only difference is that the resin is additionally charged into the reaction tank 1 and the resin is oxidized and decomposed, a description of the apparatus and processing procedure will be omitted.

ここでは弱酸性陽イオン交Fl!m脂について分解処理
を行い得られた結果を第1表に示した。しゅう酸塩とし
てはし喰う酸ナトリウムを用いたがそのほかしゅう酸や
し喰う酸カルシウムなどを用いることができ、樹脂につ
いても弱酸性陽イオン交換樹脂と弱塩基陰イオン交換樹
脂の混合樹脂の場合も同様の結果を得ることができる。
Here is a weakly acidic cation exchange Fl! Table 1 shows the results obtained by decomposing M fat. Although sodium oxalate was used as the oxalate, other substances such as oxalic acid and calcium oxalate can also be used.As for the resin, a mixed resin of a weakly acidic cation exchange resin and a weakly basic anion exchange resin can also be used. Similar results can be obtained.

なお第1表には比較のためにしゅう酸ナトリウムを添加
せずに分解処理したときの結果も併記しである。
For comparison, Table 1 also shows the results of decomposition treatment without adding sodium oxalate.

第1表 第1表におけるHzOz/resin比は乾爆樹脂1g
に対して添加した過酸化水素量(g)の比率を表すもの
である。第1表かられかるようにしゆう酸塩を添加して
ないときは分解率は5%であるのに対し、しゅう酸塩を
添加した本発明では70%の高分解率が得られる。
Table 1 The HzOz/resin ratio in Table 1 is 1g of dry blast resin.
It represents the ratio of the amount (g) of hydrogen peroxide added to As shown in Table 1, when no oxalate is added, the decomposition rate is 5%, whereas in the present invention with the addition of oxalate, a high decomposition rate of 70% is obtained.

〔発明の効果〕〔Effect of the invention〕

過酸化水素を酸化剤とし鉄と銅の組み合わせ触媒を用い
て放射性イオン交換樹脂の廃棄樹脂を分解処理する方法
は有効であるが、原樹脂として弱酸性陽イオン交換#M
脂または弱塩基性陰イオン交換樹脂を用いたときは、こ
れらの廃棄樹脂はこの方法では分解が困難であったのに
対し、本発明では分解反応に際してしゅう酸塩を添加し
反応液に共存させているために、弱酸性陽イオン交換樹
脂と弱塩基性陰イオン交換樹脂の単独または混合樹脂に
おいても酸化分解にしゅう酸イオンが寄与し、高分解率
を達成することができる。
The method of decomposing radioactive ion exchange resin waste using hydrogen peroxide as an oxidizing agent and a combination catalyst of iron and copper is effective, but weakly acidic cation exchange #M as the base resin is effective.
When fatty or weakly basic anion exchange resins were used, it was difficult to decompose these waste resins using this method, but in the present invention, oxalate is added during the decomposition reaction and allowed to coexist in the reaction solution. Therefore, oxalate ions contribute to oxidative decomposition even in the case of a weakly acidic cation exchange resin and a weakly basic anion exchange resin alone or in a mixture thereof, and a high decomposition rate can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオン交換樹脂を酸化分解する装置を説明する
ための要部外観図である。 1:反応槽、2:ウォーターバス、3:円蓋、4:過酸
化水素供給口、5:樹脂供給口、6;触媒供給口、7:
冷却管、10:ガス排出口、ll:マグネチックスター
ラー。 第1図
FIG. 1 is an external view of the main parts for explaining an apparatus for oxidatively decomposing an ion exchange resin. 1: reaction tank, 2: water bath, 3: dome, 4: hydrogen peroxide supply port, 5: resin supply port, 6: catalyst supply port, 7:
Cooling pipe, 10: Gas outlet, ll: Magnetic stirrer. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)放射性イオン交換樹脂を分散懸濁した水、酸化剤の
過酸化水素水、触媒となる鉄イオンをもつイオン性物質
の水溶液、同じく銅イオンをもつイオン性物質の水溶液
を反応槽に投入し、所定の温度で前記放射性イオン交換
樹脂を酸化分解処理するに当たり、前記放射性イオン交
換樹脂として弱酸性陽イオン交換樹脂およびまたは弱塩
基性陰イオン交換樹脂を用いるとともにしゅう酸または
しゅう酸塩の水溶液を前記反応槽に投入して行うことを
特徴とする放射性イオン交換樹脂の酸化分解処理方法。
1) Water in which radioactive ion exchange resin is dispersed and suspended, hydrogen peroxide water as an oxidizing agent, an aqueous solution of an ionic substance containing iron ions as a catalyst, and an aqueous solution of an ionic substance also containing copper ions are poured into a reaction tank. In oxidizing and decomposing the radioactive ion exchange resin at a predetermined temperature, a weakly acidic cation exchange resin and/or a weakly basic anion exchange resin is used as the radioactive ion exchange resin, and an aqueous solution of oxalic acid or oxalate is used. A method for oxidative decomposition treatment of a radioactive ion exchange resin, which is carried out by charging the resin into the reaction tank.
JP14537688A 1988-06-13 1988-06-13 Oxidation decomposition processing method for radioactive ion exchange resin Pending JPH01313800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14537688A JPH01313800A (en) 1988-06-13 1988-06-13 Oxidation decomposition processing method for radioactive ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14537688A JPH01313800A (en) 1988-06-13 1988-06-13 Oxidation decomposition processing method for radioactive ion exchange resin

Publications (1)

Publication Number Publication Date
JPH01313800A true JPH01313800A (en) 1989-12-19

Family

ID=15383802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14537688A Pending JPH01313800A (en) 1988-06-13 1988-06-13 Oxidation decomposition processing method for radioactive ion exchange resin

Country Status (1)

Country Link
JP (1) JPH01313800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181256A (en) * 2003-12-24 2005-07-07 Inst Nuclear Energy Research Rocaec Method for treating waste ion exchange resin
KR102005680B1 (en) * 2018-07-11 2019-07-31 주식회사 엘림글로벌 Methods for Treatment of Spent Radio- active Ion-Exchange Resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181256A (en) * 2003-12-24 2005-07-07 Inst Nuclear Energy Research Rocaec Method for treating waste ion exchange resin
KR102005680B1 (en) * 2018-07-11 2019-07-31 주식회사 엘림글로벌 Methods for Treatment of Spent Radio- active Ion-Exchange Resin

Similar Documents

Publication Publication Date Title
US4624792A (en) Method for treating radioactive organic wastes
GB630286A (en) Manufacture of peroxides
CN108191039A (en) A kind of efficient compound Fenton reagent and preparation method thereof
JP3657747B2 (en) Decomposition method of ion exchange resin
CN106745324A (en) PAFS, preparation method and applications
JPH01313800A (en) Oxidation decomposition processing method for radioactive ion exchange resin
JPS5531437A (en) Removal of arsenic and silicic acid present in industrial waste water
JPH01313799A (en) Oxidation decomposition processing method for radioactive ion exchange resin
CN103762006A (en) Volume reduction method for cation exchange resin
JPS61157539A (en) Decomposition treatment of ion exchange resin
JPS627489A (en) Method for treating waste water of protein foam fire extinguishing solution
JPH0123192B2 (en)
JPS63145995A (en) Method of treating phosphoric acid aqueous solution
US12033766B2 (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
JPS5534136A (en) Treatment method of organic waste water
JPH04283700A (en) Reducing method of volume of low-level concentrated liquid waste
CA3106515C (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
JPS62176592A (en) Apparatus for treating waste liquid containing sodium hypochlorite
JPS5644091A (en) Treating method of hydrazine content waste fluid
JP2575878B2 (en) Chemical cleaning waste liquid treatment method
JPS5531439A (en) Treatment of incinerated ash containing chromium
JP2000301171A (en) Method for treating wastewater containing hydrazine
JPS5787900A (en) Treatment of purification plant sludge
JPS61157540A (en) Decomposition treatment of ion exchange resin
JPH0452916B2 (en)