JPH0123192B2 - - Google Patents

Info

Publication number
JPH0123192B2
JPH0123192B2 JP56132150A JP13215081A JPH0123192B2 JP H0123192 B2 JPH0123192 B2 JP H0123192B2 JP 56132150 A JP56132150 A JP 56132150A JP 13215081 A JP13215081 A JP 13215081A JP H0123192 B2 JPH0123192 B2 JP H0123192B2
Authority
JP
Japan
Prior art keywords
waste liquid
acid digestion
ozone
activated carbon
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56132150A
Other languages
Japanese (ja)
Other versions
JPS5834080A (en
Inventor
Yosuke Kondo
Shuji Murakami
Katsuyuki Ootsuka
Yoshinori Ogata
Koyo Murakami
Teruhiko Hirabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP13215081A priority Critical patent/JPS5834080A/en
Publication of JPS5834080A publication Critical patent/JPS5834080A/en
Publication of JPH0123192B2 publication Critical patent/JPH0123192B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は酸消化廃液を効果的に浄化する処理
方法に関する。 現在、化石燃料の代替として原子力エネルギー
が重要視され、各地で原子力発電所やプルトニウ
ム燃料製造施設等され稼動していることは周知で
ある。 これら施設において、放射能で汚染したイオン
交換樹脂、塩化ビニルネオプレンゴム等の有機物
を含んだ廃棄物(以下放射性廃棄物という)が発
生している。 これら廃棄物の一部は減容を目的として各種の
方法で処理されているが、大部分は厳重な管理下
で貯蔵されているのが現状である。これら放射性
廃棄物の貯蔵量は年々増加しておりそのためこの
廃棄物の主として減容化を目的とした処理プロセ
スの開発、工業化が、原子力工業発展の上で最も
重要な課題となつている。 更に、近年の廃棄物の種類の多様化に伴い焼却
処理に不適合の廃棄物が増加しており、埋立処理
を推奨する傾向もある。新たな埋立地の確保、お
よびその延命策が困難な状況である現在、埋立処
理する前処理として、かかる難燃物または不燃物
の減容化が放射性廃棄物と同様に重要な課題とな
つている。 このような状況のもとで、廃棄物の減容化にお
いて採用している手段の一つとして、強酸溶中に
廃棄物を投入して有機物を分解、酸化するもので
ある、酸消化プロセスによる廃棄物の処理方法が
開発され、小規摸ながら実用化されつつあること
も周知である。 酸消化プロセスは、廃棄物の減容において、プ
ロセス運転条件の制御が容易で、かつ、焼却減容
法と異なつて、放射性廃棄物の処理の際、耐火物
中にウランやプルトニウム等が浸透していくこと
もなく、高濃度の水溶液のかたちで回収できると
いう利点を有している。しかし、排水規制を受け
る有機物含有廃水(以下酸消化廃液という)を副
生する欠点を有しており、そのためこの酸消化廃
液は自然流域に放流する前に何度かの浄化が必要
となる。 酸消化廃液は塩酸、硫酸などの鉱酸またはそれ
らの塩類の含有率が10%前後あり、かつ多種類の
有機化合物が数百ppmないし数千ppm(全有機炭
素として)含まれているのが特徴である。酸消化
廃液を浄化する方法として、電解酸化法、次亜塩
素酸ソーダ処理法、オゾン酸化法、過酸化水素酸
化法、紫外線照射処理法、活性炭吸着法などが既
に提案されている。 電化酸化法は電解質(通常食塩)の存在下で処
理すべき廃液中に半波直流あるいは直流の電流を
通じることにより、陽極において生成する酸素に
よる有機物の酸化、コルベ反応によるカルボン酸
の炭化水素への転化、電解浮上、陽極において生
成するハロゲンにより分解、酸化により廃液を浄
化するものであるが、酸消化工程からの実際の廃
液を用いて浄化効果を調査した結果、上記の生成
酸素による酸化およびハロゲンによる分解酸化の
反応速度は極めて遅く、短時間におけるTOC(全
有機炭素)換算の低減率は数%であるため、この
電解酸化法は、実用上実際の酸消化廃液の浄化に
は適用が不可能であることが判明した。 発明者らは次亜塩酸ソーダ法についても実際の
酸消化廃液を用いて浄化効率に対する処理温度、
次亜塩素酸ソーダ添加量、PH値等の影響について
検討し、その結果、処理時のPH値を弱アルカリ側
に保持することにより浄化効率を向上し得るが、
この効果を利用しても処理時間が数時間程度では
浄化効率はせいぜい20%程度あり、これでは排水
規制に抵触しない処理水を得ることは極めて困難
であることが明らかとなつた。 また、発明者らはオゾン酸化による酸消化廃液
の処理についても反応工学的な研究を実施し、当
該酸消化廃液へのこの処理の適用の可能性を調査
した。その結果上記2種の処理法に比較して、浄
化効率は著るしく高く、TOC低減率で80%以上
に達することが実験室的に確認された。しかしこ
の処理の前後に活性炭吸着装置を付設しても多少
の浄化効率が上昇するものの充分に良好な水質の
処理水を得ることはできなかつた。 さらに、発明者らは過酸化水素酸化法による浄
化効果に関しオゾン酸化と同様に調査研究した
が、触媒(例えば銅イオン)の存在下で250℃の
高温で処理し、さらに過酸化水素酸化処理の前後
で活性炭吸着あるいはオゾン酸化しても充分な浄
化効率を得ることができず、TOC低減率はせい
ぜい90%程度であり、従つて得られた処理水質は
排水規制値をはるかに越えたものであつた。 紫外線照射処理法は光酸化処理法とも云われ、
通常紫外線を照射しながら廃水中のCOD物質を
次亜塩酸ソーダにより酸化して廃水の浄化をはか
るものである。この処理法は前述の次亜塩素酸ソ
ーダ法と比較して浄化効率が増大するという特徴
は認められるが、単位時間当りのCOD低減率な
いしTOC低減率が著しく小さく、従つて酸消化
廃液を排水規制に抵触しない水質まで向上させる
には数十時間という長い処理時間が必要となりま
た処理設備が過大となつて経済的見地より好まし
いものではない。 上記のごとく、発明者らは上記従来法について
種々調査研究しこれらがかかえている問題点を明
らかにした。 この発明の目的は、上記従来法の問題点を解消
し、これらの方法とは異つた短時間に効率よく酸
消化廃液を処理することが可能な新規な酸消化廃
液の処理方法を提供するにある。 またこの発明の方法の要旨とするところは、酸
消化廃液をまづ強酸性、好ましくはPH値2以下の
酸性側、において活性炭処理して可及的に浄化
し、ついで活性炭処理済の該廃液をアルカリ金属
水酸化物等を用いてPH値を8−11、好ましくは9
−11に維持しつつオゾンおよび過酸化水素により
70℃ないし100℃の温度において処理し、該廃液
中に含まれるCOD成分およびTOC成分を酸化低
減する酸消化廃液の処理方法である。 つぎにこの発明を詳細に説明する。 前に述べたごとく、酸消化廃液には異種の有機
化合物が含有されており、これが浄化に関する理
論的な研究および検討を困難にしている。このよ
うな多数の異種有機化合物を含有する廃水および
廃液の浄化には活性炭吸着法の適用が有効と考え
られるが、これまでに報告されている知見では最
高の浄化効率を得ることができる最適吸着条件が
不明であつた。そこで発明者らは十種類以上の多
数の市販の活性炭を用いて酸消化廃液の浄化法に
ついて実験学的に研究した。その結果、処理温度
10℃ないし60℃においては事実上浄化効率に対す
る温度の影響は認められなかつた。一方吸着時の
PH値の浄化効率に対する影響が認められた。即
ち、PH値2以下の強酸性では浄化効率に対するPH
値の影響の変動は実質的には認められなかつた
が、PH値が2を越えるとPH値の上昇と共に浄化効
率の低下が認められ、特に、中性付近からアルカ
リ性側においては酸消化廃液中の溶解性有機物の
活性炭への吸着はほとんど起らなかつた。また活
性炭の種類、即ち、石炭系、椰子殻系、石油系な
どの原料素材の相違および細孔径分布等が浄化効
率に影響することが判明した。一般に石炭系が良
好な浄化効率を示し、その中でも細孔径分布曲線
の最大値が約4000Åのもので平均細孔径が約20Å
のものが特に良好であつた。 つぎに、活性炭処理済の酸消化廃液のアルカリ
存在下におけるオゾンおよび過酸化水素の同時処
理効果について説明する。 前述のごとく、酸消化廃液のオゾン酸化処理の
前後で活性炭処理してもある程度の廃液浄化は期
待できるが、排水規制を満足する処理水は得られ
ない。そこで発明者らは酸消化廃液の酸化処理、
特に過酸化水素酸化、オゾン酸化および過酸化水
素とオゾンとの同時併用酸化について比較試験を
実施した。その結果、過酸化水素とオゾンとで活
性炭処理済の酸消化廃液を同時処理すると、オゾ
ンおよび過酸性水素による遂次処理あるいは過酸
化水素およびオゾンの遂次処理と比較して浄化効
率が著しく向上することが判明した。即ち強酸性
側において活性炭処理した酸消化廃液をか性ソー
ダ、炭酸ソーダまたはこれらの混合物によりPH値
を8−11に保持しつつ過酸化水素とオゾンとで同
時処理すると浄化効率が良好となる。またその浄
化効率は処理温度の上昇と共に向上し、特に70%
以上では浄化効率は著るしく良好となるが、100
%以上では昇温による浄化効率の向上はほとんど
認められなかつた。 またPH値および触媒効果(例えば銅イオン)の
浄化効率への影響についても調査した。酸性から
中性においてはPH値が低い程浄化効率が悪く、PH
値が8以上において安定した浄化効率が得られ
た。PH値が11を越える強アルカリ性においてもPH
値が8ないし11の場合と事実上同程度の浄化効率
であつた。従つて、PH値を特に11を越える強アル
カリ性にする必要はない。また触媒効果はアルカ
リ性側においては無視しうる程度であり、一方酸
性側において多少認められる程度であることが認
められた。 つぎに使用するアルカリの種類について説明す
る。消石灰、アンモニアなどの無機塩基およびメ
チルアミンなどの有機塩基のアルカリ剤としての
適用はつぎの理由により困難である。即ち、アン
モニアおよび有機アミンはオゾン−過酸化水素の
同時処理の際これらの酸化剤を多量消費しその上
アルカリそれ自身が放散され、さらに別種の化合
物を生成して酸消化廃液の浄化に好ましくなく、
一方消石灰は酸消化廃液の酸化過程で生成する二
酸化炭素と反応しPH値を低下させて浄化効率を低
下させる方向に作用し、その上水に不溶性の炭酸
カルシウムが副生するなどプロセス運転上好まし
くないからである。これに対し、か性ソーダ、か
性カリ、炭酸ソーダなどのアルカリ金属系のアル
カリは酸化剤を消費することなくまた溶解度が大
きくさらに不揮発生であるので本発明に使用する
アルカリとして最適である。 ここで、オゾンと過酸化水素とによる同時処理
に対する活性炭吸着の意義について説明する。発
明者らは酸消化廃液を活性炭処理せずに直接オゾ
ンと過酸化水素とで同時処理することについて
種々研究し、さらにオゾンと過酸化水素処理済の
酸消化廃液の活性炭処理について実験的研究を実
施した。その結果、酸消化廃液を直接オゾンと過
酸化水素とで同時処理して最も良好な浄化効率を
与える条件を見出した。しかし、その場合活性炭
処理済の酸消化廃液の同時処理の場合に比較して
PH値の保持条件はほぼ同様であるが、処理温度は
やや高温側に移行し、また長時間処理しても
COD、TOCの除去率は90%であつた。また先に
活性炭処理することなくオゾンと過酸化水素とに
よる直接同時処理後の酸消化廃液を活性炭吸着処
理をしても浄化効率の向上はなく好ましい結果は
得られなかつた。これは酸消化廃液にはオゾンと
過酸化水素との同時処理のみでは酸化分解できな
い有機物が含有されており、その有機物が同時処
理の過程で活性炭では吸着困難な化合物に転化さ
れていることを意味する。換言すれば、酸消化工
程からの酸消化廃液を処理するに当り、該消化廃
液をまず強酸性で活性炭処理することがオゾンと
過酸化水素との同時処理に対し補完的な役割を演
じている。 つぎに、この発明における酸消化廃液浄化に必
要なオゾンおよび過酸化水素の使用量について説
明する。前述のごとく酸消化廃液は多種類の有機
化合物を含有しかつ化学式の不明なものもあるの
で化学量論式のもとに必要なオゾンおよび過酸化
水素の使用量を算出することは事実上不可能であ
る。そこでその使用量は処理すべき酸消化廃液の
TOD(全酸素要求量)値に基づいて求められる。
発明者らは、酸消化廃液のオゾンと過酸化水素と
による同時酸化について反応工学的研究を行なつ
た結果、酸消化廃液中に含まれる塩類がオゾンの
自己分解、即ち、オゾンと有機物との反応に影
し、さらに過酸化水素は酸化剤として作用すると
共にオゾンの自己分解を抑制しかつオゾンの有機
物に対する反応性を高めるという1種の触媒的作
用を有していることを明らかにした。オゾンおよ
び過酸化水素の必要量は酸消化廃液中の共存塩類
の種類および濃度により多少変動するが、活性炭
処理済の酸消化廃液のTOD値の4倍当量以上
(酸素原子として)のオゾンとこのTOD値と当量
以上の過酸化水素とであり、この量が供給されれ
ば塩類の濃度および種類の影響を受けることなく
活性炭処理済の酸消化廃液の効率的な浄化が可能
である。ここでオゾンおよび過酸化水素の量は多
いほど効果的であるが、上記より余り多くしても
浄化効果はそれ程上昇せず不経済である。 つぎに、この発明について図面を参照しつつさ
らに詳細に説明する。 図において、酸消化廃液1はそのPH値が2以下
であることを確認後矢印のように活性炭吸着塔2
に装入される。もしこの酸消化廃液のPH値が2を
越えている場合には、PH調整槽12において硫酸
または塩酸3を導入して酸消化廃液のPH値が2以
下になるように調整した後酸消化廃液は活性炭吸
着塔2に装入される。活性炭吸着塔2において、
酸消化廃液中の有機物のうちオゾンと過酸化水素
処理で酸化困難な有機物の選択的除去および他の
有機物の可及的な除去が行なわれた後、活性炭処
理済の酸消化廃液は酸化処理槽4に導入され、か
性ソーダなどのアルカリ5を装入して酸消化廃液
は酸化処理槽4内でPH値が8−11になるように調
整されかつ熱源6により加熱されて70℃ないし
100℃に保持される。このような処理条件を確認
後、オゾン発生機7からのオゾン15と過酸化水
素8とを同時に酸化処理槽4に装入して内部のPH
調整された活性炭処理済の酸消化廃液と接触させ
る。これら工程においてPH調整槽12および酸化
処理槽4内で酸消化廃液は必要に応じて撹拌機2
1,22により撹拌されて、そのPH調整および酸
化効果が助長される。70℃以上の温度で1時間な
いし11/2時間にわたつて酸化処理槽4内で酸消
化廃液中の有機物は水と二酸化炭素とに分解され
る。酸化処理槽4内のオゾンおよび過酸化水素に
よる同時処理において、活性炭処理済の酸消化廃
液をアルカリでPH調整後酸化処理槽4に装入して
オゾンおよび過酸化水素で同時処理することも可
能であるが、酸化処理過程で二酸化炭素が生成さ
れPH調整に使用したアルカリに1部吸収されてPH
値を低下させ最適PH条件からはずれることがある
ので注意を要する。 酸化処理槽4で処理された酸消化廃液は冷却器
9において冷却後、必要に応じて別のPH調整槽1
3において硫酸などの酸3′で中和された後、清
浄な処理水10として系外へ送出される。酸化処
理槽4からのガスはガス冷却器11にて冷却後大
気へ放出される。 この発明に使用される酸化処理槽4は特別な形
式のものは必要とせず、汎用のジヤケツト付処理
槽または内熱式処理槽、その他の処理槽で充分で
あり、浄化効率の点から撹拌機22が付設されて
いるかまたは混合効果の期待できる処理槽が好ま
しい。 以上の説明のごとく、この発明によれば酸消化
工程からの酸消化廃液の短時間で完全な浄化が可
能となつた。この事は従来法では極めて困難であ
つた事である。 つぎに、この発明の実施例を説明する。この発
明はその特許請求の範囲を越えない限りこれら実
施例に限定されるものではない。 実施例 PH値が0.01、温度18℃の酸消化廃液
(TOC1670mg/、TOD8900mg/、COD(Mn)
650mg/)を図面により説明した方式と同様な
方式で回分式処理を実施し次表の結果を得た。
The present invention relates to a treatment method for effectively purifying acid digestion waste liquid. It is well known that nuclear energy is currently regarded as an important alternative to fossil fuels, and nuclear power plants and plutonium fuel manufacturing facilities are in operation in various places. These facilities generate radioactively contaminated ion exchange resin, vinyl chloride neoprene rubber, and other organic waste (hereinafter referred to as radioactive waste). Although some of these wastes are treated by various methods to reduce their volume, the majority of them are currently stored under strict control. The amount of radioactive waste stored is increasing year by year, and therefore, the development and industrialization of treatment processes primarily aimed at reducing the volume of this waste has become the most important issue in the development of the nuclear industry. Furthermore, with the diversification of waste types in recent years, the amount of waste that is not suitable for incineration is increasing, and there is a tendency to recommend landfilling. Currently, it is difficult to secure new landfill sites and to prolong the life of such materials, so reducing the volume of such flame-retardant or non-combustible materials as pre-treatment for landfill disposal has become as important as radioactive waste. There is. Under these circumstances, one of the methods adopted to reduce the volume of waste is the acid digestion process, in which the waste is placed in a strong acid solution to decompose and oxidize the organic matter. It is also well known that waste treatment methods have been developed and are being put into practical use, albeit on a small scale. The acid digestion process allows easy control of process operating conditions for waste volume reduction, and unlike the incineration volume reduction method, it does not allow uranium, plutonium, etc. to penetrate into refractories during the treatment of radioactive waste. It has the advantage that it can be recovered in the form of a highly concentrated aqueous solution without having to run. However, it has the disadvantage of producing organic matter-containing wastewater (hereinafter referred to as acid digestion wastewater), which is subject to drainage regulations, and therefore this acid digestion wastewater needs to be purified several times before being discharged into a natural watershed. Acid digestion waste liquid contains around 10% of mineral acids such as hydrochloric acid and sulfuric acid, or their salts, and contains hundreds to thousands of ppm (as total organic carbon) of various organic compounds. It is a characteristic. As methods for purifying acid digestion waste liquid, electrolytic oxidation, sodium hypochlorite treatment, ozone oxidation, hydrogen peroxide oxidation, ultraviolet irradiation, activated carbon adsorption, and the like have already been proposed. The electrification oxidation method involves passing a half-wave direct current or direct current through the waste liquid to be treated in the presence of an electrolyte (usually common salt) to oxidize organic matter with oxygen generated at the anode and convert carboxylic acid into hydrocarbons through the Kolbe reaction. This method purifies the waste liquid by conversion, electrolytic levitation, decomposition and oxidation by halogen generated at the anode, but as a result of investigating the purification effect using actual waste liquid from the acid digestion process, we found that the oxidation and oxidation by the above-mentioned generated oxygen The reaction rate of decomposition and oxidation by halogen is extremely slow, and the reduction rate in terms of TOC (total organic carbon) in a short period of time is only a few percent, so this electrolytic oxidation method cannot be practically applied to the purification of actual acid digestion waste fluid. It turned out to be impossible. The inventors also used actual acid digestion waste liquid for the sodium hypochlorite method to determine the treatment temperature and the purification efficiency.
We investigated the effects of the amount of sodium hypochlorite added, the PH value, etc., and found that purification efficiency could be improved by keeping the PH value during treatment on the weakly alkaline side.
Even if this effect is utilized, the purification efficiency is only about 20% at most if the treatment time is only a few hours, and it has become clear that it is extremely difficult to obtain treated water that does not violate wastewater regulations. The inventors also conducted reaction engineering research on the treatment of acid digestion waste liquid by ozone oxidation, and investigated the possibility of applying this treatment to the acid digestion waste liquid. As a result, it was confirmed in the laboratory that the purification efficiency was significantly higher than that of the above two treatment methods, reaching a TOC reduction rate of over 80%. However, even if an activated carbon adsorption device is attached before and after this treatment, although the purification efficiency increases to some extent, treated water of sufficiently good quality cannot be obtained. Furthermore, the inventors investigated and researched the purification effect of hydrogen peroxide oxidation in the same way as ozone oxidation, but they treated it at a high temperature of 250°C in the presence of a catalyst (e.g. copper ions), and further performed hydrogen peroxide oxidation. Even with activated carbon adsorption or ozone oxidation before and after the treatment, sufficient purification efficiency cannot be obtained, and the TOC reduction rate is only about 90% at most, and the resulting treated water quality far exceeds the wastewater regulation value. It was hot. The ultraviolet irradiation treatment method is also called the photooxidation treatment method.
This method aims to purify wastewater by oxidizing COD substances in the wastewater with sodium hypochlorite while irradiating it with normal ultraviolet rays. Although this treatment method has the characteristic of increasing purification efficiency compared to the above-mentioned sodium hypochlorite method, the COD reduction rate or TOC reduction rate per unit time is extremely low, and therefore the acid digestion waste liquid is not drained. In order to improve the water quality to a level that does not violate regulations, a long treatment time of several tens of hours is required, and the treatment equipment becomes excessively large, which is not desirable from an economic standpoint. As mentioned above, the inventors conducted various investigations and research on the above-mentioned conventional methods and clarified the problems faced by these methods. The purpose of this invention is to solve the problems of the above-mentioned conventional methods and to provide a new method for treating acid digestion waste liquid that can efficiently treat acid digestion waste liquid in a short time unlike those methods. be. The gist of the method of the present invention is that the acid digestion waste liquid is first purified as much as possible by treating it with activated carbon in a strongly acidic environment, preferably on the acidic side with a pH value of 2 or less, and then the activated carbon-treated waste liquid is purified as much as possible. using an alkali metal hydroxide etc. to reduce the pH value to 8-11, preferably 9.
-11 by ozone and hydrogen peroxide.
This is a method for treating acid digestion wastewater, in which the wastewater is treated at a temperature of 70°C to 100°C to oxidize and reduce COD and TOC components contained in the wastewater. Next, this invention will be explained in detail. As mentioned above, acid digestion waste fluid contains different types of organic compounds, which makes theoretical research and consideration regarding purification difficult. The application of activated carbon adsorption method is considered to be effective for purifying wastewater and waste liquids containing a large number of different organic compounds, but the knowledge reported so far suggests that the optimal adsorption method that can obtain the highest purification efficiency is The conditions were unclear. Therefore, the inventors conducted experimental research on a method for purifying acid digestion waste fluid using more than ten types of commercially available activated carbon. As a result, the processing temperature
Virtually no effect of temperature on purification efficiency was observed between 10°C and 60°C. On the other hand, during adsorption
The influence of PH value on purification efficiency was observed. In other words, in strong acidity with a PH value of 2 or less, the PH value for purification efficiency is
Although there was virtually no change in the effect of the pH value, when the pH value exceeded 2, a decrease in purification efficiency was observed as the pH value increased, and in particular, from around neutral to alkaline, the cleaning efficiency in the acid digestion waste liquid decreased. Almost no adsorption of soluble organic matter onto activated carbon occurred. It has also been found that the type of activated carbon, that is, the difference in the raw material such as coal-based, coconut shell-based, petroleum-based, etc., and the pore size distribution, etc., affect the purification efficiency. Coal-based coals generally show good purification efficiency, and among them, the maximum value of the pore size distribution curve is about 4000 Å, and the average pore size is about 20 Å.
The results were particularly good. Next, the effect of simultaneous treatment of ozone and hydrogen peroxide in the presence of an alkali on activated carbon-treated acid digestion waste fluid will be explained. As mentioned above, even if the acid digestion waste liquid is treated with activated carbon before and after the ozone oxidation treatment, a certain degree of waste liquid purification can be expected, but treated water that satisfies wastewater regulations cannot be obtained. Therefore, the inventors carried out oxidation treatment of acid digestion waste liquid,
In particular, comparative tests were conducted on hydrogen peroxide oxidation, ozone oxidation, and simultaneous oxidation of hydrogen peroxide and ozone. As a result, when activated carbon-treated acid digestion waste liquid is treated simultaneously with hydrogen peroxide and ozone, the purification efficiency is significantly improved compared to sequential treatment with ozone and peracid hydrogen or sequential treatment with hydrogen peroxide and ozone. It turned out to be. That is, if the acid digestion waste liquid treated with activated carbon on the strongly acidic side is simultaneously treated with hydrogen peroxide and ozone while maintaining the pH value at 8-11 with caustic soda, soda carbonate, or a mixture thereof, the purification efficiency will be improved. In addition, its purification efficiency improves as the processing temperature increases, especially by 70%.
Above 100%, the purification efficiency becomes significantly better.
% or higher, almost no improvement in purification efficiency was observed due to temperature rise. We also investigated the effects of PH value and catalytic effects (e.g. copper ions) on purification efficiency. From acidity to neutrality, the lower the PH value, the worse the purification efficiency;
Stable purification efficiency was obtained when the value was 8 or higher. Even in strongly alkaline conditions with a PH value exceeding 11, the PH
The purification efficiency was virtually the same as when the value was 8 to 11. Therefore, it is not necessary to make the PH value particularly strong alkalinity exceeding 11. It was also found that the catalytic effect was negligible on the alkaline side, while it was only slightly noticeable on the acidic side. Next, the type of alkali used will be explained. It is difficult to apply inorganic bases such as slaked lime and ammonia and organic bases such as methylamine as alkaline agents for the following reasons. That is, ammonia and organic amines consume a large amount of these oxidizing agents during the ozone-hydrogen peroxide simultaneous treatment, and in addition, the alkali itself is liberated, and furthermore, other types of compounds are produced, making them unfavorable for purification of acid digestion waste fluid. ,
On the other hand, slaked lime reacts with carbon dioxide generated during the oxidation process of acid digestion waste liquid, lowers the pH value and reduces purification efficiency, and produces calcium carbonate, which is insoluble in clean water, as a by-product, which is not desirable for process operation. That's because there isn't. On the other hand, alkali metal alkalis such as caustic soda, caustic potash, and soda carbonate do not consume the oxidizing agent, have high solubility, and are non-volatile, so they are most suitable as alkalis for use in the present invention. Here, the significance of activated carbon adsorption for simultaneous treatment with ozone and hydrogen peroxide will be explained. The inventors conducted various studies on the simultaneous treatment of acid digestion waste fluid with ozone and hydrogen peroxide without treating it with activated carbon, and further conducted experimental research on activated carbon treatment of acid digestion waste fluid that had been treated with ozone and hydrogen peroxide. carried out. As a result, we found conditions that provide the best purification efficiency by directly treating the acid digestion waste liquid with ozone and hydrogen peroxide. However, in that case, compared to the case of simultaneous treatment of acid digestion waste liquid treated with activated carbon,
The PH value retention conditions are almost the same, but the treatment temperature is slightly higher, and even after long treatment,
The removal rate of COD and TOC was 90%. Further, even if the acid digestion waste liquid after direct simultaneous treatment with ozone and hydrogen peroxide was subjected to activated carbon adsorption treatment without first being treated with activated carbon, the purification efficiency was not improved and favorable results were not obtained. This means that the acid digestion waste liquid contains organic substances that cannot be oxidized and decomposed by simultaneous treatment with ozone and hydrogen peroxide, and that these organic substances are converted into compounds that are difficult to adsorb with activated carbon during the simultaneous treatment process. do. In other words, when treating the acid digestion waste liquid from the acid digestion process, first treating the digestion waste liquid with strong acidity and activated carbon plays a complementary role to the simultaneous treatment with ozone and hydrogen peroxide. . Next, the amounts of ozone and hydrogen peroxide required for purification of acid digestion waste liquid in the present invention will be explained. As mentioned above, acid digestion waste liquid contains many types of organic compounds, some of which have unknown chemical formulas, so it is virtually impossible to calculate the amounts of ozone and hydrogen peroxide required based on the stoichiometric formula. It is possible. Therefore, the amount used should be determined based on the amount of acid digestion waste liquid to be treated.
Calculated based on TOD (total oxygen demand) value.
The inventors conducted reaction engineering research on the simultaneous oxidation of acid digestion waste liquid with ozone and hydrogen peroxide, and found that salts contained in acid digestion waste liquid cause the self-decomposition of ozone, that is, the combination of ozone and organic matter. In addition to influencing the reaction, it was revealed that hydrogen peroxide acts as an oxidizing agent, suppresses the self-decomposition of ozone, and has a type of catalytic action that increases the reactivity of ozone toward organic substances. Although the required amounts of ozone and hydrogen peroxide vary somewhat depending on the type and concentration of coexisting salts in the acid digestion waste, ozone and The amount of hydrogen peroxide is equal to or more than the TOD value, and if this amount is supplied, it is possible to efficiently purify the activated carbon-treated acid digestion waste liquid without being affected by the concentration and type of salts. Here, the larger the amount of ozone and hydrogen peroxide, the more effective it is, but if the amount is too large, the purification effect will not increase that much and it will be uneconomical. Next, the present invention will be explained in more detail with reference to the drawings. In the figure, after confirming that the acid digestion waste liquid 1 has a pH value of 2 or less, it is transferred to the activated carbon adsorption tower as shown by the arrow.
is loaded into the If the PH value of this acid digestion waste liquid exceeds 2, sulfuric acid or hydrochloric acid 3 is introduced in the PH adjustment tank 12 to adjust the PH value of the acid digestion waste liquid to 2 or less. is charged into the activated carbon adsorption tower 2. In the activated carbon adsorption tower 2,
After the organic matter in the acid digestion waste liquid is selectively removed by ozone and hydrogen peroxide treatment and other organic matters are removed as much as possible, the acid digestion waste liquid that has been treated with activated carbon is transferred to an oxidation treatment tank. 4 and charged with an alkali 5 such as caustic soda, the acid digestion waste liquid is adjusted to have a pH value of 8-11 in the oxidation treatment tank 4 and heated by a heat source 6 to 70°C or more.
Maintained at 100℃. After confirming these treatment conditions, ozone 15 from the ozone generator 7 and hydrogen peroxide 8 are simultaneously charged into the oxidation treatment tank 4 to adjust the internal pH.
Contact with adjusted activated carbon treated acid digestion waste liquid. In these processes, the acid digestion waste liquid in the PH adjustment tank 12 and the oxidation treatment tank 4 is mixed with a stirrer 2 as needed.
1,22 to promote its PH adjustment and oxidation effect. The organic matter in the acid digestion waste liquid is decomposed into water and carbon dioxide in the oxidation treatment tank 4 at a temperature of 70° C. or higher for 1 to 11/2 hours. In the simultaneous treatment with ozone and hydrogen peroxide in the oxidation treatment tank 4, it is also possible to charge the activated carbon-treated acid digestion waste liquid into the oxidation treatment tank 4 after adjusting the pH with alkali and treat it with ozone and hydrogen peroxide simultaneously. However, carbon dioxide is generated during the oxidation process and is partially absorbed by the alkali used to adjust the pH.
Care must be taken as this may lower the value and deviate from the optimum PH conditions. The acid digestion waste liquid treated in the oxidation treatment tank 4 is cooled in the cooler 9, and then transferred to another PH adjustment tank 1 as necessary.
After being neutralized with an acid 3' such as sulfuric acid in step 3, it is sent out of the system as clean treated water 10. The gas from the oxidation treatment tank 4 is cooled by a gas cooler 11 and then released into the atmosphere. The oxidation treatment tank 4 used in this invention does not require a special type, and a general-purpose jacketed treatment tank, internal heating type treatment tank, or other treatment tank is sufficient. It is preferable to use a treatment tank that is equipped with 22 or can be expected to have a mixing effect. As explained above, according to the present invention, it has become possible to completely purify the acid digestion waste liquid from the acid digestion process in a short time. This has been extremely difficult with conventional methods. Next, embodiments of the invention will be described. This invention is not limited to these embodiments unless it goes beyond the scope of the claims. Example Acid digestion waste liquid with a pH value of 0.01 and a temperature of 18℃ (TOC 1670mg/, TOD 8900mg/, COD (Mn)
650mg/) was subjected to batch treatment in the same manner as explained in the drawings, and the results shown in the following table were obtained.

【表】 この際活性炭処理済の酸消化廃液は次のもので
ある。 TOC915mg/、TOD4900mg/、COD(Mn)
530mg/ また、この酸消化廃液のPH調整には20重量%の
か性ソーダ水溶液を使用した。加熱は電熱により
行ない、オゾンは空気14を原料としてオゾン発生
機で製造し、過酸化水素は市販の35%水溶液を使
用し、それぞれ活性炭処理済の酸消化廃液の
TOD値(4900mg/)の4倍当量(酸素原子と
して)を使用した。 これ以外に活性炭処理済の酸消化廃液について
PH値9の条件でオゾンのみで3時間処理して
COD80mg/の処理水を得た。 以上の実施例により明らかなように、この発明
によれば酸消化廃液を従来法に比較して短時間で
しかも排水規制値COD(Mn)10mg/以下を充
分満足する処理水を得ることが可能となつた。こ
の事は公害防止上極めて有用である。
[Table] The acid digestion waste liquid treated with activated carbon is as follows. TOC915mg/, TOD4900mg/, COD (Mn)
530mg/A 20% by weight aqueous caustic soda solution was used to adjust the pH of this acid digestion waste liquid. Heating is done by electric heating, ozone is produced using an ozone generator using air 14 as raw material, and hydrogen peroxide is produced using a commercially available 35% aqueous solution.
Four equivalents (as oxygen atoms) of the TOD value (4900 mg/) were used. In addition to this, regarding acid digestion waste liquid treated with activated carbon.
Treated with ozone alone for 3 hours under the condition of PH value 9.
Treated water with a COD of 80 mg/was obtained. As is clear from the above examples, according to the present invention, it is possible to obtain treated water from acid digestion wastewater that satisfies the wastewater regulation value COD (Mn) of 10 mg/or less in a shorter time than with conventional methods. It became. This is extremely useful for pollution prevention.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の方法の工程説明図である。 1:酸消化廃液、2:活性炭吸着塔、3,
3′:酸、4:酸化処理槽、5:アルカリ、6:
熱源、7:オゾン発生機、8:過酸化水素、9:
冷却器、10:処理水、11:ガス冷却器、1
2,13:PH調整槽、14:空気、15:オゾ
ン、21,22:撹拌機。
The figure is a process explanatory diagram of the method of this invention. 1: Acid digestion waste liquid, 2: Activated carbon adsorption tower, 3,
3': acid, 4: oxidation treatment tank, 5: alkali, 6:
Heat source, 7: Ozone generator, 8: Hydrogen peroxide, 9:
Cooler, 10: Treated water, 11: Gas cooler, 1
2, 13: PH adjustment tank, 14: Air, 15: Ozone, 21, 22: Stirrer.

Claims (1)

【特許請求の範囲】 1 有機物を含む廃棄物を酸消化する工程から発
生する酸消化廃液を処理する方法において、PH値
2以下の強酸性のもとで該酸消化廃液を活性炭処
理して浄化し、次いでこの活性炭処理済の酸消化
廃液をアルカリ存在のもとでPH値8乃至11の範囲
および70℃乃至100℃の温度範囲内においてオゾ
ンおよび過酸化水素で同時処理することを特徴と
する酸消化廃液の処理方法。 2 アルカリとしてアルカリ金属の水酸化物、炭
酸塩または該水酸化物と該炭酸塩との混合物を用
いて活性炭処理済の該酸消化廃液をPH値8乃至11
に維持する特許請求の範囲第1項記載の酸消化廃
液の処理方法。
[Claims] 1. A method for treating acid-digested waste fluid generated from the process of acid-digesting waste containing organic matter, which purifies the acid-digestion waste fluid by treating it with activated carbon under strong acidity with a pH value of 2 or less. Then, this activated carbon-treated acid digestion waste liquid is simultaneously treated with ozone and hydrogen peroxide in the presence of an alkali at a pH value of 8 to 11 and a temperature range of 70°C to 100°C. A method for treating acid digestion waste liquid. 2. Using an alkali metal hydroxide, carbonate, or a mixture of the hydroxide and carbonate as the alkali, the activated carbon-treated acid digestion waste liquid is adjusted to a pH value of 8 to 11.
A method for treating acid digestion waste liquid according to claim 1, which maintains the following.
JP13215081A 1981-08-25 1981-08-25 Treatment of acid-digested waste liquid Granted JPS5834080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13215081A JPS5834080A (en) 1981-08-25 1981-08-25 Treatment of acid-digested waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13215081A JPS5834080A (en) 1981-08-25 1981-08-25 Treatment of acid-digested waste liquid

Publications (2)

Publication Number Publication Date
JPS5834080A JPS5834080A (en) 1983-02-28
JPH0123192B2 true JPH0123192B2 (en) 1989-05-01

Family

ID=15074522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13215081A Granted JPS5834080A (en) 1981-08-25 1981-08-25 Treatment of acid-digested waste liquid

Country Status (1)

Country Link
JP (1) JPS5834080A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624792A (en) * 1983-12-12 1986-11-25 Jgc Corporation Method for treating radioactive organic wastes
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
US5190669A (en) * 1991-03-08 1993-03-02 Fmc Corporation Purification of waste streams
JP2000301175A (en) * 1999-04-23 2000-10-31 T & A Engineering:Kk Method and apparatus for mineralizing agricultural chemical waste solution
JP4465696B2 (en) * 1999-12-21 2010-05-19 栗田工業株式会社 Method and apparatus for decomposing organic substances in water
US7931816B2 (en) 2004-12-29 2011-04-26 Acos Llc Method, apparatus and systems for treating contaminants in a waste fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147191A (en) * 1979-05-07 1980-11-15 Mitsubishi Electric Corp Treatment process for waste water
JPS5761996A (en) * 1980-05-16 1982-04-14 Doryokuro Kakunenryo Stable operation method of acid digesting pot made from tantalum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147191A (en) * 1979-05-07 1980-11-15 Mitsubishi Electric Corp Treatment process for waste water
JPS5761996A (en) * 1980-05-16 1982-04-14 Doryokuro Kakunenryo Stable operation method of acid digesting pot made from tantalum

Also Published As

Publication number Publication date
JPS5834080A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
EP2559667B1 (en) Method and system for the treatment of wastewater containing persistent substances
Logemann et al. Water treatment with a fixed bed catalytic ozonation process
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
RU2117639C1 (en) Method of purification of sewage
WO2009024014A1 (en) Method for removing ammonia from coking waste water
CN103288236B (en) Treatment method for salt-containing wastewater
TW202214529A (en) Method and system for simultaneously treating wastewater containing high concentration ammonia nitrogen and organic composition mainly by introducing organic ammonia nitrogen wastewater into the reaction tank to carry out reaction without subjecting to acid-base agent adjustment or the addition and homogenization of other additives
JPH0480758B2 (en)
CN101172729A (en) Physciochemical treatment technique for remained aqueous ammonia of coke-oven plant
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
US6207059B1 (en) Process for treating wastewater
RU2480423C1 (en) Combined method of treating waste water containing organic contaminants
JP4747382B1 (en) Flue gas purification treatment method
JP5637797B2 (en) Method and apparatus for treating wastewater containing persistent materials
JP5637796B2 (en) Method and apparatus for treating wastewater containing persistent materials
JPH0123192B2 (en)
KR102175423B1 (en) Wastewater treatment method and treatment device
JPH07100466A (en) Method for treating waste water
Tanaka et al. Chemical oxidation of organic matter in secondary-treated municipal wastewater by using methods involving ozone, ultraviolet radiation and TiO2 catalyst
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPS63175689A (en) Treatment method for drain containing amine compound
RU2481273C1 (en) Method of treating household waste water containing organic contaminants
JPS6219916B2 (en)
KR20210099549A (en) Ion exchange resin conditioning methods and apparatus for performing such methods
JPS6218230B2 (en)