JPH01311001A - Device for preserving organ - Google Patents

Device for preserving organ

Info

Publication number
JPH01311001A
JPH01311001A JP14062488A JP14062488A JPH01311001A JP H01311001 A JPH01311001 A JP H01311001A JP 14062488 A JP14062488 A JP 14062488A JP 14062488 A JP14062488 A JP 14062488A JP H01311001 A JPH01311001 A JP H01311001A
Authority
JP
Japan
Prior art keywords
perfusion
unit
heat exchanger
organ
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14062488A
Other languages
Japanese (ja)
Inventor
Ryoichi Kono
小納 良一
Koichi Tatsumi
巽 康一
Shoichi Gotanda
正一 五反田
Sakae Takehata
栄 竹端
Yasuhiro Ueda
康弘 植田
Tomonao Sakurai
友尚 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP14062488A priority Critical patent/JPH01311001A/en
Publication of JPH01311001A publication Critical patent/JPH01311001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a device consisting of a cold reserving unit and driving unit, the cold reserving unit consisting of a cold reserving container having an organ housing chamber and a control housing part with a heat exchanger and artificial lung without flowing of a perfusate to the artificial lung in moving the cold reserving unit. CONSTITUTION:A device 1 for preserving organs, consisting of a cold reserving unit 3 and a driving unit 2, the cold reserving unit 3 provided with a cold reserving container 7 having an organ housing chamber 10 and a control housing part 9 having a divided heat exchanger 14 and an artificial lung 13 to form a perfusion circuit so that a perfusate may be prevented from flowing into the heat exchanger and artificial lung in moving the cold reserving unit 3. The perfusion circuit containing the artificial lung and the heat exchanger is constituted so as to provide a closed circuit and a means for controlling the inflow of a perfusate into the artificial lung, etc., is simultaneously provided to enable housing and transporting of a perfusion circuit other than the artificial lung and heat exchanger. Thereby, miniaturization of the cold reserving container and improvement in cooling efficiency are attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、人や動物から摘出した心臓、肝臓等の臓器を
他の患者や動物へ移植するに際し、−時的に臓器を潅流
保存するための臓器保存装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for transplanting organs such as hearts and livers extracted from humans or animals to other patients or animals, by temporarily preserving the organs by perfusion. The present invention relates to an organ preservation device.

〔従来の技術〕[Conventional technology]

摘出した臓器を保存するには単純冷却保存法がある。こ
れは、単に容器内で臓器を冷凍或いは冷温状態で保存す
るというものだが、この方法によると保存時間に限界が
ある。
There is a simple cryopreservation method to preserve removed organs. This method simply preserves the organ in a container in a frozen or cold state, but this method has a limit to the preservation time.

このため低温潅流保冷法という方法が用いられている。For this reason, a method called low-temperature perfusion cold storage method is used.

これは潅流液の循環回路を形成して臓器を保存するとい
うものであり、米国特許筒3.632.473号、同第
3,753,865号、同第3,772,153号、同
第3,881,990号、同第4,186,565号な
どに示されている。
This is to preserve organs by forming a perfusion fluid circulation circuit, and is disclosed in U.S. Patent No. 3,632,473, U.S. Pat. No. 3,881,990, No. 4,186,565, etc.

これらの潅流装置を有する臓器保存装置は、保存の途中
で潅流回路の断、接続をする必要がなく、断、接続の際
に生じる臓器への細菌感染の危険性は少ないという利点
がある。
Organ preservation devices having these perfusion devices have the advantage that there is no need to disconnect or connect the perfusion circuit during preservation, and there is little risk of bacterial infection to the organ that occurs during disconnection or connection.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の低温潅流保冷法による場合、装置
の大型化が避けられず重量負担も大きいため、自動車、
飛行機、ヘリコプタ−等で緊急事態に間に合わせるよう
に運搬しようとしても不可能であり、装置の小さい単純
冷却保存法に依存せざるを得なかった。このため前述の
ごと(保存時間に限界があり、輸送距離に限界を生じ必
要な医療行為を為し得ないという問題があった。
However, when using the conventional low-temperature perfusion cooling method, the size of the equipment is unavoidable and the weight burden is large, so
Attempts to transport them by plane, helicopter, etc. in time for emergency situations were impossible, and we had no choice but to rely on simple methods of cooling and preserving the small size of the equipment. For this reason, as mentioned above, there was a problem that the storage time was limited and the transportation distance was limited, making it impossible to perform necessary medical procedures.

このため潅流回路等を有する保冷ユニットを駆動部等を
有する駆動ユニットに着脱自在に装着して、保冷ユニッ
トのみを運搬するようにしたものが提案されているが、
これも保冷ユニットの保冷容器内に全ての>at回路を
収納しようとしているため、保冷容器部が大型化するこ
とは避けられないとともに冷却効率も悪いという問題が
あった。
For this reason, it has been proposed that a cold storage unit having an irrigation circuit etc. is removably attached to a drive unit having a drive section etc. so that only the cold storage unit is transported.
This also has the problem that since all of the >at circuits are housed in the cold container of the cold storage unit, the size of the cold container is unavoidable and the cooling efficiency is also poor.

本発明は、こうした問題点を解決すべく提案されるもの
で、小型で冷却効率の高い運搬に適した潅流型の臓器保
存装置を提供することを目的としたものである。
The present invention was proposed to solve these problems, and an object of the present invention is to provide a perfusion-type organ preservation device that is small in size, has high cooling efficiency, and is suitable for transportation.

[課題を解決するための手段および作用]本発明は、上
記目的を達成するため少なくとも臓器収納室、熱交換器
、人工肺を有しこれらを接続して潅流回路を形成した保
冷ユニットを、駆動ユニットに着脱自在に接続した臓器
保存装置において、保冷ユニットに少なくとも臓器収納
室を収納する保冷容器と、少なくとも熱交換器、人工肺
を収納する制御収納部を仕切って設け、保冷ユニットの
移動時には熱交換器、人工肺へ潅流液が流れない潅流回
路を形成するようにしたものである。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides a method for driving a cold storage unit that has at least an organ storage chamber, a heat exchanger, and an oxygenator and connects these to form a perfusion circuit. In an organ storage device that is detachably connected to the unit, the cold storage unit is provided with a separate cold storage container that stores at least the organ storage chamber, and a control storage section that stores at least the heat exchanger and oxygenator, so that when the cold storage unit is moved, heat is removed. This is designed to form a perfusion circuit in which perfusion fluid does not flow into the exchanger or oxygenator.

このように人工肺、熱交換器を含む潅流回路を閉回路と
なるように構成するとともに、人工肺等に潅流液が流れ
込むのを制御する手段を設け、保冷容器内に人工肺、熱
交換器等以外の潅流回路を収納して運搬可能にしている
ので、保冷容器の小型化、冷却効率の向上を図ることが
できる。
In this way, the perfusion circuit including the oxygenator and heat exchanger is configured to be a closed circuit, and means for controlling the flow of perfusion fluid into the oxygenator, etc. is provided, and the oxygenator and heat exchanger are placed in a cold container. Since perfusion circuits other than the above can be stored and transported, it is possible to downsize the cold storage container and improve cooling efficiency.

〔実施例〕〔Example〕

第1図、第2図は、本発明の第1実施例を示すもので、
臓器保存装置1は、駆動ユニット2と保冷ユニット3か
ら成り、保冷ユニット3は駆動ユニット2に対し着脱自
在である。保冷ユニット3は断熱材6で覆われた保冷容
器7及び潅流状態の計測制御を行う計測制御部8と潅流
回路5の一部と車等のバッテリーから電源をとる補助電
源コード34を介して計測制御部8へ電気を供給する補
助電源ユニット(図示していない)を収納する制御、収
納部9からなる。潅流回路5は、臓器4を収納する臓器
収納室10.潅流液を貯蔵する潅流液貯蔵タンク11、
血栓や潅流液中の比較的大きな組織脱落片を回収するた
めの約100μのメツシュのフィルタ膜を有するフィル
タ12、潅流液の溶存ガス状態を調整する人工肺13、
潅流液の温度を一定に調整するための熱交換器14、潅
流液を循環させるためのバイモルフを用いた潅流ポンプ
15、潅流液中の気泡が臓器へ流れ込むのを防止する泡
取り器16を′潅流チューブA17、・潅流チューブB
18を介して閉回路に接続しである。人工肺13の潅流
液入口側と熱交換器14の潅流液出口側に設けた潅流チ
ューブBの先端に流路切換可能なコネクタ19a、 1
9b(例えば3方活栓)を設けるとともに2つのコネク
タ間は゛潅流チューブC20で接続している。泡取り5
16には、温度センサ21 PHセンサ22、圧力セン
サ23を設けており、これらの出力側は計測制御部8に
接続している。人工肺13には、駆動ユニット2のガス
制御装置24からガスコネクタ31を介して潅流液のP
Hに応じてCO□ガスを供給し、熱交換器14には冷却
液循環装置25から冷却液コネクタ32を介して一定温
度の冷却液を供給するようにしである。
1 and 2 show a first embodiment of the present invention,
The organ preservation device 1 consists of a drive unit 2 and a cold storage unit 3, and the cold storage unit 3 is detachable from the drive unit 2. The cold storage unit 3 performs measurements via a cold storage container 7 covered with a heat insulating material 6, a measurement control unit 8 that measures and controls the perfusion state, a part of the perfusion circuit 5, and an auxiliary power cord 34 that receives power from a battery of a car or the like. It consists of a control and storage section 9 that houses an auxiliary power supply unit (not shown) that supplies electricity to the control section 8 . The perfusion circuit 5 includes an organ storage chamber 10 that stores the organ 4. perfusion liquid storage tank 11 for storing perfusion liquid;
a filter 12 having a mesh filter membrane of approximately 100 μm for collecting blood clots and relatively large tissue debris in the perfusate; an oxygenator 13 for adjusting the state of dissolved gas in the perfusate;
A heat exchanger 14 for adjusting the temperature of the perfusate to a constant level, a perfusion pump 15 using a bimorph for circulating the perfusate, and a bubble remover 16 for preventing air bubbles in the perfusate from flowing into the organ. Irrigation tube A17, Irrigation tube B
It is connected to a closed circuit via 18. A connector 19a, 1 that can switch the flow path is provided at the tip of the perfusion tube B provided on the perfusion liquid inlet side of the oxygenator 13 and the perfusion liquid outlet side of the heat exchanger 14.
9b (for example, a three-way stopcock), and the two connectors are connected by an irrigation tube C20. Foam remover 5
16 is provided with a temperature sensor 21 , a PH sensor 22 , and a pressure sensor 23 , and their output sides are connected to the measurement control section 8 . The oxygenator 13 is supplied with perfusion fluid P from the gas control device 24 of the drive unit 2 via the gas connector 31.
CO□ gas is supplied in accordance with H, and a constant temperature coolant is supplied to the heat exchanger 14 from a coolant circulation device 25 via a coolant connector 32.

駆動ユニット2には、冷却液循環装置25、ガス制御装
置24の外、臓器4の保存条件を入力する条件設定部2
6、該条件設定部26の保存条件が維持されるように冷
却循環装置25、ガス制御装置24をコントロールする
制御部27、保存条件を表示する表示部28、これらの
装置を駆動する電源部29を設けている。制御部27と
保冷ユニット3側の計測制御部8は電気コネクタ33で
接続している。ガス制御部「装置24にはCO□タンク
30を接続しており、必要に応じエアーや02タンクの
接続もできるようになっている。
The drive unit 2 includes a coolant circulation device 25, a gas control device 24, and a condition setting section 2 for inputting storage conditions for the organ 4.
6. A control unit 27 that controls the cooling circulation device 25 and the gas control device 24 so that the storage conditions of the condition setting unit 26 are maintained, a display unit 28 that displays the storage conditions, and a power supply unit 29 that drives these devices. has been established. The control section 27 and the measurement control section 8 on the side of the cold storage unit 3 are connected through an electrical connector 33. Gas control unit ``A CO□ tank 30 is connected to the device 24, and an air or 02 tank can also be connected if necessary.

このように構成しであるので、臓器をレシピエンドの持
つ病院まで運搬する場合は、ドナーから摘出した臓器4
は低温の洗浄液(例えばヘパリン化生理食塩水等)で血
液を完全に洗い流すとともに低温状態にする。これを図
示のように′潅流チュ−プA17に接続し、臓器収納室
10に収納する。この場合、制御収納部9の各機器は駆
動ユニットにより駆動される状態にないので、コネクタ
19a。
With this structure, when transporting organs to a hospital owned by the recipient, the organ 4 extracted from the donor
The blood is completely washed away with a low-temperature washing solution (eg, heparinized saline) and the blood is kept at a low temperature. This is connected to the perfusion tube A17 as shown in the figure and stored in the organ storage chamber 10. In this case, each device in the control storage section 9 is not in a state of being driven by the drive unit, so the connector 19a.

19bを潅流液が人工肺13、熱交換器L4へ流れない
ように流路を設定する。゛潅流回路5は、保冷容器7に
収納するがこの潅流回路5と保冷容器7の隙間には冷却
用の氷(図示していない)を入れておく。そして第2図
に示すような保冷ユニット3の状態で、車等で運搬する
のであるが、運搬の際は、車等に設けである外部電源よ
り電気の供給を受けて潅流ポンプ15を駆動させて潅流
状態とし、レシピエンドの持つ病院まで運搬しこの病院
内に設けである駆動ユニット2に電気コネクタ33、冷
却液コネクタ32、ガスコネクタ31を接続するととも
に′潅流回路5のコネクタ19a、 19bの流路を切
換え、潅流液が人工肺13や熱交換器14に循環するよ
うにする。そして駆動ユニット2の条件設定部26によ
り、臓器4の保存条件を入力して移植までの適正な臓器
保存をするのである。
A flow path is set in 19b so that the perfusate does not flow to the oxygenator 13 and the heat exchanger L4. The perfusion circuit 5 is housed in a cold storage container 7, and cooling ice (not shown) is placed in the gap between the perfusion circuit 5 and the cold storage container 7. The cold storage unit 3 as shown in FIG. 2 is then transported by car or the like. During transport, the perfusion pump 15 is driven by electricity supplied from an external power source installed in the car or the like. It is brought into a perfusion state and transported to the hospital where the recipe end is located, and the electrical connector 33, coolant connector 32, and gas connector 31 are connected to the drive unit 2 installed in the hospital, and the connectors 19a and 19b of the perfusion circuit 5 are connected. The flow path is switched so that the perfusion fluid circulates to the oxygenator 13 and the heat exchanger 14. Then, the condition setting section 26 of the drive unit 2 inputs storage conditions for the organ 4 to appropriately preserve the organ until transplantation.

このようにすることにより、保冷ユニット3を運搬する
際、また目的の病院で駆動ユニット2に保冷ユニット3
を接続して使用する際、潅流回路を断、接続する必要が
ないのでそのためのコネクタが不要であるとともに細菌
の侵入する可能性がほとんどなくなった。このため安全
、確実な臓器保存ができるようになった。
By doing this, when transporting the cold storage unit 3 or at the destination hospital, the cold storage unit 3 can be attached to the drive unit 2.
When connected and used, there is no need to disconnect or connect the perfusion circuit, so there is no need for a connector and there is almost no possibility of bacteria invading. This has made it possible to safely and reliably preserve organs.

更に、運搬時には実質的に機能しない人工肺と熱交換器
に潅流液を流さないようにすると同時に保冷容器中には
これらの機器を収納しないようにしたため、保冷容器中
の構成要素は必要最小限となり保冷容器の小型化、軽量
化を図ることができるとともに、余分な構成要素がない
ため効率的な冷却ができることとなった。
In addition, we made sure that the perfusate did not flow into the oxygenator and heat exchanger, which do not function effectively during transportation, and at the same time, we did not store these devices in the cold container, so the number of components in the cold container was kept to a minimum. This makes it possible to make the cold storage container smaller and lighter, and because there are no extra components, efficient cooling can be achieved.

更に、保冷ユニットと駆動ユニットの接続は全てコネク
タで行われるため、きわめて短時間にかつ簡単にできる
外、保冷ユニット3の運搬中も熱交換器14、人工肺1
3には潅流液を流さないものの保冷容器7内では潅流状
態とすることにより、運慶中の臓器保存も可能な限り適
正状態を保持できることとなった。
Furthermore, since all connections between the cold storage unit and the drive unit are made using connectors, not only can this be done extremely quickly and easily, but also the heat exchanger 14 and oxygenator 1 can be connected while the cold storage unit 3 is being transported.
Although the perfusion fluid is not passed through the tube 3, the perfusion is maintained in the cold container 7, so that the organs can be preserved in an appropriate state as much as possible during the operation.

第3図は、本発明の第2実施例を示すもので、保冷ユニ
ット3のうち補助電源ユニット、補助電源コード34を
設けていない。このため保冷ユニット3の軽量化が図れ
る。しかし運搬中は潅流ポンプ15は停止状態にあり潅
流液は流れなくなるが、この代りに単純冷却保存の状態
で運搬することとなる。
FIG. 3 shows a second embodiment of the present invention, in which an auxiliary power supply unit and an auxiliary power cord 34 are not provided in the cold storage unit 3. Therefore, the weight of the cold storage unit 3 can be reduced. However, during transportation, the perfusion pump 15 is stopped and no perfusion fluid flows; instead, the perfusion pump 15 is transported in a state of simple cooling and storage.

また、この実施例では潅流回路Cに相当する部分を設け
ておらず、潅流液の流路を切り換えるにはコネクタに代
えて潅流の断、接続を行うコック35を介する。運搬中
の単純冷却保存状態から、目的地の病院等に設けである
駆動ユニットへ接続して低温潅流保存状態への移行をき
わめて容易に行えることとなる。
Further, in this embodiment, a portion corresponding to the perfusion circuit C is not provided, and the flow path of the perfusion liquid is switched through a cock 35 that disconnects and connects perfusion instead of a connector. This makes it extremely easy to transition from a simple cooling storage state during transportation to a low-temperature perfusion storage state by connecting to a drive unit installed at a destination hospital, etc.

以上の第1、第2実施例では熱交換器14、冷却液循環
装置25を設けているが、これらの代りに保冷容器7内
に冷却空気を供給するような構成としてもよい。
Although the heat exchanger 14 and the coolant circulation device 25 are provided in the first and second embodiments described above, a structure may be adopted in which cooling air is supplied into the cold storage container 7 instead of these.

第4図は、本発明の第3実施例を示すもので、人工肺の
代りに約0.2μmのメツシュのエアーフィルタ36を
介して空気を注入したり、酸素選択性透過膜を内蔵した
02フイルタ37を介して0□を多く含む空気を潅流液
貯蔵タンク11に注入することにより、潅流液の溶存ガ
ス濃度を調整するようにしたものである。38は、エア
ーフィルタ36.、O□フィルタ37を介して空気を吸
引させるための送気ポンプである。
FIG. 4 shows a third embodiment of the present invention, in which air is injected through an approximately 0.2 μm mesh air filter 36 instead of an oxygenator, and an oxygen-selective permeable membrane is incorporated. By injecting air containing a large amount of 0□ into the perfusate storage tank 11 through the filter 37, the dissolved gas concentration of the perfusate is adjusted. 38 is an air filter 36. , O□ filter 37 to suck air therein.

第5図は、臓器保存装置に関連する他の実施例を示すも
ので運搬用の保冷ユニットの潅流液貯蔵タンクと同様の
タンクを車等の輸送手段に設けた駆動ユニットにも備え
ることにより、保冷ユニットの軽量化を図ったものであ
る。゛潅流液は保冷ユニットのみに設けていると、運搬
の際に潅流液も同時に運搬しなければならず重量の点で
不具合があった。
FIG. 5 shows another embodiment related to the organ preservation device, in which a tank similar to the perfusion fluid storage tank of the cold storage unit for transportation is also provided in the drive unit installed in the means of transportation such as a car. This is an attempt to reduce the weight of the cold storage unit.゛If the irrigant was provided only in the cold storage unit, the irrigant would also have to be transported at the same time, causing problems in terms of weight.

保冷ユニット39は、潅流室41と計測室42を有し、
潅流室41は内部室間部を覆うように氷68とその外側
に発泡スチロール、ウレタン等の断熱材43とを設けて
いる。潅流室41には臓器44を収納する臓器収納室4
5、運搬時の潅流に最小限必要な潅流液を貯蔵する潅流
液貯蔵タンクA46、゛潅流液中の大径粒子を捕捉する
フィルター47、潅流用ポンプ48、人工肺49、泡取
器50をシリコン、テフロン等のチューブで連結してい
る。泡取器50には温度センサ51、圧力センサ52、
PHセンサ53を設け、これらを計測室4の計測部16
と連結している。計測部54には記録部55、表示部5
6を連設している。
The cold storage unit 39 has a perfusion chamber 41 and a measurement chamber 42,
The perfusion chamber 41 is provided with ice 68 and a heat insulating material 43 such as styrofoam or urethane on the outside so as to cover the inner chamber. The perfusion chamber 41 includes an organ storage chamber 4 that stores organs 44.
5. A perfusion liquid storage tank A46 that stores the minimum perfusion liquid required for perfusion during transportation, a filter 47 that captures large particles in the perfusion liquid, a perfusion pump 48, an artificial lung 49, and a bubble remover 50. They are connected with silicone, Teflon, etc. tubes. The bubble remover 50 includes a temperature sensor 51, a pressure sensor 52,
A PH sensor 53 is provided, and these are connected to the measurement section 16 of the measurement chamber 4.
It is connected with. The measurement unit 54 includes a recording unit 55 and a display unit 5.
6 are installed in a row.

駆動ユニット40には、臓器44の長時間保存に必要な
量の潅流液を貯蔵する゛潅流液貯蔵タンクB57、熱交
換器58、冷却液循環装置59を連設し、人工肺49と
連結しているガス制御装置60、ガスタンク61、制御
部62を設けている。制御部62と計測部54、制御部
62と潅流用ポンプ48、人工肺49とガス制御装置6
0、潅流液貯蔵タンクA46と潅流液貯蔵タンクB57
、熱交換器58とフィルタ47とはそれぞれコネクタA
63、コネクタB64、コネクタC65、コネクタD6
6、コネクタE67により着脱自在に連結している。コ
ネクタD66とコネクタE67は切り換えチューブ69
により接続している。
The drive unit 40 is connected with a perfusion liquid storage tank B57 for storing an amount of perfusion liquid necessary for long-term preservation of the organ 44, a heat exchanger 58, and a coolant circulation system 59, and is connected to the oxygenator 49. A gas control device 60, a gas tank 61, and a control section 62 are provided. The control unit 62 and the measurement unit 54, the control unit 62 and the perfusion pump 48, the oxygenator 49 and the gas control device 6
0.Irrigation fluid storage tank A46 and irrigation fluid storage tank B57
, the heat exchanger 58 and the filter 47 are connected to connector A, respectively.
63, Connector B64, Connector C65, Connector D6
6. Detachably connected by connector E67. Connector D66 and connector E67 are switching tubes 69
Connected by

このように構成しているので病院内で臓器保存をする場
合は、保冷ユニット39と駆動ユニット40を連結し、
潅流液貯蔵タンクB57、熱交換器58を含んだ潅流回
路を形成する。この際、切り換えチューブ69はこの部
分の流れを遮断している。制御部62は、計測部54か
らの信号を受けて冷却液循環装置59、ガス供給装置6
0、ポンプ48をコントロールしている。計測部54の
信号は、表示部56で表示するとともに記録部55で記
録している。
With this configuration, when preserving organs in a hospital, the cold storage unit 39 and drive unit 40 are connected,
A perfusion circuit including a perfusion liquid storage tank B57 and a heat exchanger 58 is formed. At this time, the switching tube 69 blocks the flow in this portion. The control unit 62 receives the signal from the measurement unit 54 and controls the coolant circulation device 59 and the gas supply device 6.
0, controlling pump 48. The signal from the measuring section 54 is displayed on the display section 56 and recorded on the recording section 55.

病院から病院への臓器44運閲時の場合は、保冷ユニッ
ト39を駆動ユニット40から分離する。切り換えチュ
ーブ69には液流をし、保冷ユニット39内で潅流回路
を形成する。保冷ユニット39内機器の駆動は補助バッ
テリー(図示していない)により行う。
When the organ 44 is transported from hospital to hospital, the cold storage unit 39 is separated from the drive unit 40. A liquid flow is applied to the switching tube 69 to form a perfusion circuit within the cold storage unit 39. The equipment inside the cold storage unit 39 is driven by an auxiliary battery (not shown).

このようにして保冷ユニット39のみを運搬する場合は
、潅流液の量は潅流液貯蔵タンクB57に貯蔵されてい
る分だけ運搬しなくともすむので、保冷ユニット39の
小型化、軽量化を実現できる。なお、運搬時には通常2
〜3時間とすれば潅流液の壇は少量でも十分である。
When only the cold storage unit 39 is transported in this way, it is not necessary to transport the amount of irrigation fluid stored in the irrigation fluid storage tank B57, so the cooling unit 39 can be made smaller and lighter. . In addition, when transporting, there are usually 2
For ~3 hours, a small amount of perfusate is sufficient.

第6図は、第5図に示した実施例の変形例であり、保冷
ユニット39にICメモリを搭載した記憶部70を設は
計測部54と接続している。駆動ユニット40に記録部
55を設け、コネクタ71を介して計測部54と接続し
ている。このように構成して、病院での臓器保存の場合
には、保冷ユニット39と駆動ユニット40を接続し、
計測部54からの信号を表示部56に表すとともに記録
部55で記録し記憶部7oで保管する。一方、病院間を
保冷ユニット39のみを運搬する場合は、計測部54か
らの信号を表示部56で表すとともに記憶部70で保管
する。この実施例でハ保冷ユニット39に記録部を設け
ていないので、より小型、軽量化を図れる。
FIG. 6 is a modification of the embodiment shown in FIG. 5, in which a storage unit 70 equipped with an IC memory is connected to the measurement unit 54 in the cold storage unit 39. A recording section 55 is provided in the drive unit 40 and connected to the measuring section 54 via a connector 71. With this configuration, in the case of organ preservation in a hospital, the cold storage unit 39 and the drive unit 40 are connected,
The signal from the measurement section 54 is displayed on the display section 56, recorded in the recording section 55, and stored in the storage section 7o. On the other hand, when transporting only the cold storage unit 39 between hospitals, the signal from the measurement section 54 is displayed on the display section 56 and stored in the storage section 70. In this embodiment, since the cold storage unit 39 is not provided with a recording section, it can be made smaller and lighter.

〔発明の効果〕〔Effect of the invention〕

以上のごとく本発明によれば、保冷容器の内部に人工肺
、熱交換器等を設けていないので小型化でき、冷却を効
率的に行える。しかも運搬中には保冷ユニットに設けで
ある人工肺、熱交換器には潅流液を流さないようにして
一時的な保冷容器内の潅流回路を形成して運搬できる。
As described above, according to the present invention, since an oxygenator, a heat exchanger, etc. are not provided inside the cold storage container, the size can be reduced and cooling can be performed efficiently. Moreover, during transportation, the perfusion fluid can be prevented from flowing into the oxygenator and heat exchanger provided in the cold storage unit, so that a temporary perfusion circuit can be formed inside the cold storage container for transportation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例の全体説明図、第2図は
、保冷ユニットの斜視図、 第3図は、第2実施例の全体説明図、 第4図は、第3実施例の全体説明図、 第5図は、本発明に関連する他の実施例の全体説明図、 第6図は、上記実施例の変形例の全体説明図である。
Fig. 1 is an overall explanatory diagram of the first embodiment of the present invention, Fig. 2 is a perspective view of a cold storage unit, Fig. 3 is an overall explanatory diagram of the second embodiment, and Fig. 4 is an illustration of the third embodiment. FIG. 5 is an overall explanatory diagram of another embodiment related to the present invention. FIG. 6 is an overall explanatory diagram of a modification of the above embodiment.

Claims (1)

【特許請求の範囲】 1、少なくとも臓器収納室、熱交換器、人工肺を有しこ
れらを接続して潅流回路を形成した保冷ユニットを、駆
動ユニットに着脱自在に接続した臓器保存装置において
、 保冷ユニットに少なくとも臓器収納室を収納する保冷容
器と、少なくとも熱交換器、人工肺を収納する制御収納
部を仕切って設け、保冷ユニットの移動時には熱交換器
、人工肺へ潅流液が流れない潅流回路を形成するように
したことを特徴とする臓器保存装置。
[Scope of Claims] 1. An organ preservation device in which a cold storage unit having at least an organ storage chamber, a heat exchanger, and an oxygenator and connecting these to form a perfusion circuit is removably connected to a drive unit, comprising: The unit is provided with a partitioned cooling container that stores at least an organ storage chamber and a control storage section that stores at least a heat exchanger and an oxygenator, and a perfusion circuit that prevents perfusion fluid from flowing to the heat exchanger and oxygenator when the cold storage unit is moved. An organ preservation device characterized by forming a.
JP14062488A 1988-06-09 1988-06-09 Device for preserving organ Pending JPH01311001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14062488A JPH01311001A (en) 1988-06-09 1988-06-09 Device for preserving organ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14062488A JPH01311001A (en) 1988-06-09 1988-06-09 Device for preserving organ

Publications (1)

Publication Number Publication Date
JPH01311001A true JPH01311001A (en) 1989-12-15

Family

ID=15273032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14062488A Pending JPH01311001A (en) 1988-06-09 1988-06-09 Device for preserving organ

Country Status (1)

Country Link
JP (1) JPH01311001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616501A (en) * 1992-05-06 1994-01-25 Tonokura Ika Kogyo Kk Method and device for carrying organ and pump for organ-carrying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616501A (en) * 1992-05-06 1994-01-25 Tonokura Ika Kogyo Kk Method and device for carrying organ and pump for organ-carrying device

Similar Documents

Publication Publication Date Title
US20200352155A1 (en) Systems and methods for ex vivo lung care
US9756848B2 (en) Apparatus, system and method for conditioning and preserving an organ from a donor
EP1017274B1 (en) Compositions, methods and devices for maintaining an organ
WO2020192513A1 (en) Mechanical perfusion preservation device for living body's organs
JP2849473B2 (en) Method and apparatus for storing organs, body ends and body fragments
EP0376763A2 (en) A device for transportation of human organs used for transplantation
US20140007961A1 (en) Apparatus for maintaining a harvested organ viable and transportable
WO1988005261A1 (en) Total organ perfusion system
JP2024042048A (en) Systems and methods for organ maintenance and transport
US20190098892A1 (en) Organ perfusion device and method
JPH0499701A (en) Transporting device for human internal organs for use in transplant
JPH02282301A (en) Device for storing organ
JPH01311001A (en) Device for preserving organ
JPH0291001A (en) Internal organ-storing system
JPH0269401A (en) Organ preserving device
JPH01128901A (en) Organ preserving device
JPH03287501A (en) Method and device for preservation of internal organs
JPH01261301A (en) Organ preserving device
JPH0459701A (en) Apparatus for storage of organ
US20160066564A1 (en) Perfusion systems and methods of perfusing at least a portion of a small intestine
EP1981335A2 (en) Non-recirculating organ perfusion device