JPH01309982A - Method for cleaning device for forming deposited film - Google Patents

Method for cleaning device for forming deposited film

Info

Publication number
JPH01309982A
JPH01309982A JP13886988A JP13886988A JPH01309982A JP H01309982 A JPH01309982 A JP H01309982A JP 13886988 A JP13886988 A JP 13886988A JP 13886988 A JP13886988 A JP 13886988A JP H01309982 A JPH01309982 A JP H01309982A
Authority
JP
Japan
Prior art keywords
etching
deposited film
cleaning
gas
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13886988A
Other languages
Japanese (ja)
Inventor
Toshimitsu Kariya
俊光 狩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13886988A priority Critical patent/JPH01309982A/en
Publication of JPH01309982A publication Critical patent/JPH01309982A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/005Materials for treating the recording members, e.g. for cleaning, reactivating, polishing

Abstract

PURPOSE:To accurately detect the end of removal of reaction residue sticking to the inner wall of a vacuum reaction vessel and to shorten the time required to clean the inner wall by monitoring the intensity of light emitted during cleaning by dry etching. CONSTITUTION:When the inner wall of the vacuum reaction vessel 21 of a device for forming a deposited film by a vapor phase method with a flowing film forming gas is cleaned by dry etching, a light emitting phenomenon occurs. This light emitting state is monitored with an emission intensity monitor 32 and the degree of cleaning by dry etching is detected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はドライエツチング法による増結膜形成装置の洗
浄方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for cleaning a conjunctiva forming device using a dry etching method.

[従来の技術] 従来、気相法により基体上にシリコン系堆y1121(
以後、堆積膜と略記する)を形成する技術は、電子写真
において光導電性部材を円筒状基体に形成する場合、あ
るいは太陽電池において光受容部材を平板状基体に形成
する場合などに広く用いられている。しかし、かかる気
相法による堆8!膜形成に際して、反応生成物の一部が
目的とする基体以外の部分、即ち、堆積膜形成装置の真
空反応槽、排気管等の内壁に被膜又は粉末として付着す
ることは避けることができない、付着したこれらの被膜
又は粉末は′A離し易く、剥離した小片や粉体は真空反
応槽内を飛翔して機能性堆積膜を形成するべき基体−L
に付着し、この付着が堆積膜にピンホール等の膜欠陥を
生ずる原因のひとつとなっている。
[Prior Art] Conventionally, a silicon-based deposit y1121 (
The technique of forming a deposited film (hereinafter abbreviated as a deposited film) is widely used when forming a photoconductive member on a cylindrical substrate in electrophotography, or when forming a light-receiving member on a flat substrate in a solar cell. ing. However, it is difficult to deposit by such a vapor phase method! During film formation, it is unavoidable that a part of the reaction product adheres as a film or powder to parts other than the target substrate, i.e., the inner walls of the vacuum reaction tank, exhaust pipe, etc. of the deposited film forming apparatus. These coatings or powders are easily separated, and the peeled off pieces and powders fly in the vacuum reaction tank and become the substrate on which the functional deposited film is to be formed.
This adhesion is one of the causes of film defects such as pinholes in the deposited film.

従って1機能性堆積膜模を形成する前に、これらの被膜
又は粉末を除去し、真空反応槽を物理的にも電気的にも
浄化しておくことは機能性堆積膜を繰返し形成する場合
に用要である。
Therefore, before forming a monofunctional deposited film pattern, it is important to remove these films or powders and purify the vacuum reactor both physically and electrically, in order to repeatedly form functional deposited films. It is necessary.

気相法により形成される堆積膜としては、具体的に例え
ばシラン系化合物を用いてプラズマ反応による形成され
る、シリコン原子を主成分とする光導電性部材の塩m膜
があり、このような堆積膜を形成後の反応槽内には基体
以外の部分にシランの重複合物(ポリシランと呼ばれて
いる)が副生ずる。これを洗浄除去する方法として、例
えば特開昭59−142839号公報、特公昭59−4
4770号公報に示されているようなCFs と02の
混合ガスを用いてプラズマ反応により洗浄する方法が知
られている。この方法を用いて堆積膜形成と洗浄という
サイクルを行なうことにより、上述のピンホールの発生
を減少させることができる。
As a deposited film formed by a vapor phase method, for example, there is a salt m film of a photoconductive member whose main component is silicon atoms, which is formed by a plasma reaction using a silane compound. After the deposited film is formed, a heavy composite of silane (called polysilane) is produced as a by-product in areas other than the substrate in the reaction tank. As a method of washing and removing this, for example, Japanese Patent Application Laid-Open No. 59-142839, Japanese Patent Publication No. 59-4
A cleaning method using a plasma reaction using a mixed gas of CFs and 02 is known, as disclosed in Japanese Patent No. 4770. By performing a cycle of deposited film formation and cleaning using this method, the occurrence of the above-mentioned pinholes can be reduced.

[発明が解決しようとする課題] しかし、この方法においては洗浄に要する時間にばらつ
きがある場合が多く、またこれまで洗浄の終了を正確に
検知する適当な手段もなかった。そのため堆81膜の品
質を優先する場合には洗浄時間に余裕を持たせるなどの
対策が必要となり、したがって、膜形成の単位サイクル
に要する時間が長くなり生産効率の向上に限界があった
[Problems to be Solved by the Invention] However, in this method, the time required for cleaning often varies, and until now there has been no suitable means for accurately detecting the end of cleaning. Therefore, when giving priority to the quality of the deposited film, it is necessary to take measures such as allowing extra time for cleaning, and as a result, the time required for a unit cycle of film formation becomes long, which limits the improvement in production efficiency.

また、洗浄時間を短縮して生産効率を向上させようとす
る゛と、エツチング不良により製品歩溜りの低下を招き
、いずれにしても生産性の向]二を図ることが困難であ
った。
Furthermore, when an attempt is made to improve production efficiency by shortening the cleaning time, poor etching results in a decrease in product yield, making it difficult to improve productivity.

従って1本発明の目的は、堆積膜形成装置の真空反応槽
内および排気管内のドライエツチングによる洗浄の終了
すなわち反応残渣の除去の完了時を正確に検知すること
ができることにより、堆積膜の形成された製品の歩溜り
を向上し、しかも洗浄時間の短縮により生産性の向上を
図ることができる堆積膜形成装置の洗浄方法を提供する
ことにある。
Therefore, one object of the present invention is to accurately detect the completion of cleaning by dry etching in the vacuum reaction tank and exhaust pipe of a deposited film forming apparatus, that is, the completion of removal of reaction residues, thereby preventing the formation of a deposited film. An object of the present invention is to provide a method for cleaning a deposited film forming apparatus, which can improve the yield of products and also improve productivity by shortening cleaning time.

[課題を解決するための手段] 前記課題を解決するものとして、気相法により堆結膜を
形成する堆積膜形成装置の洗浄方法において、堆積膜形
成装置内の堆積膜形成用の気体の流通空間を形成してい
る内壁をドライエツチング法で洗浄を行う際にドライエ
ツチング作用により生ずる発光の状態をモニターして洗
すの程度を検知することを特徴とする堆積膜形成装置の
洗浄方法が提供される。
[Means for Solving the Problems] To solve the above problems, in a method for cleaning a deposited film forming apparatus that forms a deposited film by a vapor phase method, a gas circulation space for forming a deposited film in the deposited film forming apparatus is provided. There is provided a method for cleaning a deposited film forming apparatus, which comprises detecting the degree of cleaning by monitoring the state of light emission caused by the dry etching action when cleaning the inner wall forming the deposited film using a dry etching method. Ru.

C1,F’ y等の洗浄ガスは反応残渣(シランの重複
合物)と化学反応する際、発行現象を伴うため真空反応
層内の発光の強度をモニターしその変化を解析すること
によりエツチングの進行度合を知ることができるという
知見を得た0本発明においては上記の知見に基づき、例
えば真空反応槽に前記発光強度を検知しうる手段を設け
ることによって、真空反応槽内のエツチングの終了を正
確に知ることができるので堆lIt膜の品質を高水準に
値打しつつ実質的に洗浄時間を短縮し、生産性の向上が
達成される。
When cleaning gases such as C1 and F' y chemically react with reaction residues (silane heavy complexes), they are accompanied by a light emission phenomenon, so etching can be detected by monitoring the intensity of light emission within the vacuum reaction layer and analyzing its changes. Based on the above-mentioned knowledge, the present invention has obtained the knowledge that it is possible to know the degree of progress of etching.Based on the above-mentioned knowledge, the present invention makes it possible to detect the completion of etching in the vacuum reaction tank by, for example, providing a means for detecting the luminescence intensity in the vacuum reaction tank. Since it is possible to accurately determine the quality of the deposited lIt film, it is possible to substantially reduce cleaning time and improve productivity while ensuring a high level of quality.

以F図面にしたがって本発明に用いる?t!及び本発明
の方法を具体的に説明する。第1図は本発明によるとこ
ろの堆積膜形成装置の洗浄装置の断面図であり、本発明
に用いるシリコン系堆積膜形成装置の断面図でもある0
図においてlは真空反応槽本体であり、該真空反応槽は
高周波゛電極2と1:、着7.8と下蓋底板3,4より
構成される。高周波電極2は不図示の高周波電源に接続
され、11つ本発明によるところの真空反応槽容器の−
・部でもある。゛本発明に用いる堆積膜形成用のガス(
成膜ガス)および洗浄用ガスは(エツチングガス)は導
入管11および9、導入孔10より真空反応槽lに導入
され、油回転ポンプ、メカニカルブースターポンプ等の
真空排気装21t17によって排気管13から不図示の
排ガス処理装置に排気される0本発明では例ば真空反応
槽lに発光強度を検知しうる手段を設けており、第1図
においては発光強度検知器15とこれに接続された発光
強度モニター16を設けである。6は本発明に用いるこ
とのできる電子−写真感光体用光導電性部材の基体であ
り、5は基体6の受台、14は基体6を加熱する加熱抵
抗加熱体である。18は流出バルブ、19は流入バルブ
である。
Is it used in the present invention according to the F drawings? T! and the method of the present invention will be specifically explained. FIG. 1 is a cross-sectional view of a cleaning device for a deposited film forming apparatus according to the present invention, and is also a cross-sectional view of a silicon-based deposited film forming apparatus used in the present invention.
In the figure, 1 is the main body of the vacuum reaction tank, and the vacuum reaction tank is composed of high frequency electrodes 2 and 1, mounting 7.8, and lower cover bottom plates 3 and 4. The high-frequency electrode 2 is connected to a high-frequency power source (not shown), and the 11-
・It is also a department.゛Gas for forming deposited film used in the present invention (
Film-forming gas) and cleaning gas (etching gas) are introduced into the vacuum reaction tank l through the introduction pipes 11 and 9 and the introduction hole 10, and are then introduced from the exhaust pipe 13 by a vacuum evacuation device 21t17 such as an oil rotary pump or a mechanical booster pump. In the present invention, for example, a means for detecting luminescence intensity is provided in the vacuum reaction tank l, and in FIG. 1, a luminescence intensity detector 15 and a luminescence An intensity monitor 16 is provided. 6 is a base of a photoconductive member for an electrophotographic photoreceptor that can be used in the present invention, 5 is a pedestal for the base 6, and 14 is a heating resistance heater for heating the base 6. 18 is an outflow valve, and 19 is an inflow valve.

第5図は第1図に示す装とを用いて形成することのでき
る電子写真感光体用光導電性部材の一例を示す断面図で
ある。第5図においてlotはA1竿で構成された導′
市性基体、102はシリコンを1成分とする゛重荷注入
阻止層、103はシリコンを主成分とする光導電層、そ
して104はシリコンと炭素を主我分とする表面層であ
る。
FIG. 5 is a sectional view showing an example of a photoconductive member for an electrophotographic photoreceptor that can be formed using the apparatus shown in FIG. In Figure 5, lot is a guide made up of A1 rods.
102 is a heavy implantation blocking layer containing silicon as one component, 103 is a photoconductive layer containing silicon as a main component, and 104 is a surface layer containing silicon and carbon as main components.

第1図に示す装とを用いて第5図の電子写真感光体用光
導電性部材を形成する場合を例にとり、本発明の方法を
実施する手順を以下に1作しく説明する。
Taking as an example the case where the photoconductive member for an electrophotographic photoreceptor shown in FIG. 5 is formed using the apparatus shown in FIG. 1, the procedure for carrying out the method of the present invention will be briefly explained below.

まず該基体となるA1等で構成された導電性基体6を基
体受台5に置き、上蓋7.8.流入バルブ19を閉め流
出バルブ18を開さ、真空反応槽1内を真空排気装fi
17で約I X 1O−3Torrまで真空引きし、加
熱抵抗体14によって基体6を所定の温度まで加熱する
0次に流入バルブ19を開さ電子写真感光体用光導電性
部材を形成するための成膜ガスを真空反応槽1内に導入
し所定の成膜条件になるように不図示のマスフローコン
トローラーおよびメカニカルブースターポンプの回転数
を調整する0次に不図示の高周波電源から高周波電力を
高周波電極2に投入し、真空反応槽1内にグロー放電を
生起し所望のシリコン系堆積膜を導電性基体6上に形成
する。所望のシリコン系堆a膜を形成し終えたところで
高周波電源からの高周波電力を切り、流入バルブ19を
閉じ成膜ガスの導入を止め、再び真空反応槽l内を約I
 X 1O−3Torrまで真空引きする0次に流出バ
ルブ18を閉じ、流入バルブ19を開いてArガスを真
空反応槽l内に導入して真空反応槽lをリークし、電子
写真感光体用光導゛重性部材を取出す。
First, the conductive base 6 made of A1 or the like is placed on the base pedestal 5, and the upper lid 7.8. The inflow valve 19 is closed, the outflow valve 18 is opened, and the inside of the vacuum reaction tank 1 is vacuum-exhausted.
At step 17, the vacuum is evacuated to about I x 10-3 Torr, and the substrate 6 is heated to a predetermined temperature by the heating resistor 14. Next, the inflow valve 19 is opened to form a photoconductive member for an electrophotographic photoreceptor. A film-forming gas is introduced into the vacuum reaction chamber 1, and the rotational speed of a mass flow controller (not shown) and a mechanical booster pump are adjusted to achieve predetermined film-forming conditions. 2, a glow discharge is generated in the vacuum reaction chamber 1, and a desired silicon-based deposited film is formed on the conductive substrate 6. When the desired silicon-based deposited film has been formed, the high-frequency power from the high-frequency power supply is cut off, the inflow valve 19 is closed, and the introduction of the film-forming gas is stopped.
Next, close the outflow valve 18 and open the inflow valve 19 to introduce Ar gas into the vacuum reaction tank 1 to leak the vacuum reaction tank 1, and then remove the vacuum from the vacuum reaction tank 1. Remove heavy components.

このようにして堆積膜を形成した後の真空反応槽1内、
具体的には、高周波電極2の内壁2導入管9、上蓋7,
8の内壁、下蓋底板3.4の内壁には反応残渣(シラン
の重複合物)が付着堆積している。
Inside the vacuum reaction tank 1 after forming the deposited film in this way,
Specifically, the inner wall 2 introduction tube 9 of the high frequency electrode 2, the upper lid 7,
8 and the inner wall of the lower lid bottom plate 3.4, reaction residues (silane heavy compound) are deposited and deposited.

次に第1図に示すStlを用いてこのシランの重複合物
をエツチングし、該装置を洗浄する手順を以下に説明す
る。
Next, a procedure for etching this silane composite using the Stl shown in FIG. 1 and cleaning the apparatus will be described below.

まずダミーの円筒状導電性基体を受台5の上にδき上4
7.8および流入バルブ19を閉め、流出バルブ18を
開は真空反応槽1内を約I X 101Tarrまで真
空引きしたところで、流入バルブ19を開は洗浄用ガス
(エツチングガス)を真空反応槽l内に導入し所定のエ
ツチング条件になるように不図示のマスフローコントロ
ーラーおよびメカニカルブースターポンプの回転数を7
A整し、真空反応槽1内にグロー放電を生起し真空反応
槽lの内壁に付着堆積したシランの重複合物をエツチン
グする。後に述べる方法によってエツチングを終えたと
ころで流入バルブ19を閉じエツチングガスの導入を止
め、再び真空反応槽1内を約1×1O−3Torrまで
真空引きする0次に流出バルブ18を閉じ、流入バルブ
19を開いてA「ガスを真空反応槽1内に導入して真空
反応槽1をリークし、ダミーの円筒状導電性基体を取出
す。
First, place a dummy cylindrical conductive substrate by δ on the pedestal 5.
7.8 and the inflow valve 19 are closed, and the outflow valve 18 is opened. When the inside of the vacuum reaction tank 1 is evacuated to about I x 101 Tarr, the inflow valve 19 is opened to supply cleaning gas (etching gas) to the vacuum reaction tank 1. The rotational speed of the mass flow controller and mechanical booster pump (not shown) was set to 7 to achieve the specified etching conditions.
A glow discharge is generated in the vacuum reactor 1 to etch the silane compound deposited on the inner wall of the vacuum reactor 1. When etching is finished by the method described later, the inflow valve 19 is closed to stop the introduction of etching gas, and the inside of the vacuum reactor 1 is again evacuated to about 1 x 1 O-3 Torr.Next, the outflow valve 18 is closed and the inflow valve 19 Open A and introduce gas into the vacuum reaction tank 1 to leak the vacuum reaction tank 1, and take out the dummy cylindrical conductive substrate.

本発明においては上記の手順に従ってシリコン系堆積膜
の形成と堆積膜形r!を装置の洗浄というサイクルを行
なうが、塩8!膜の種類によっては上記以外の手順によ
って塩81膜の形成と堆ykIP!!形成装この洗浄と
いうサイクルを行なってもよい。
In the present invention, according to the above procedure, a silicon-based deposited film is formed and the deposited film shape r! A cycle of cleaning the equipment is performed, but the salt 8! Depending on the type of film, the salt 81 film may be formed and deposited using procedures other than those described above. ! A cycle of forming and washing may be performed.

本発明において使用する洗浄ズスとしては三フッ化塩素
(ClF3)等が好適であり1例えばClF3ガスは従
来の洗浄ガス例えばCF4 と02の混合ガスのように
プラズマ状態にする必要がなく、すなわち放電工゛ネル
ギーを付与する必要がない、 ClF3ガスで堆積膜形
成装置を洗浄する際にはC1hガス単独で使用してもよ
いが、Ar、)!e、Me、To 、N2.H2ガス等
の希釈ガスと混合して使用してもよい、またエツチング
対象となる堆積膜の種類によってC1h単独ガスあるい
は混合ガスを電気炉等で加熱してもよい。
The cleaning gas used in the present invention is preferably chlorine trifluoride (ClF3).1 For example, ClF3 gas does not need to be in a plasma state unlike conventional cleaning gases, such as mixed gases of CF4 and 02, and thus does not require release. When cleaning the deposited film forming apparatus with ClF3 gas, which does not require electrician energy, Clh gas alone may be used, but Ar,)! e, Me, To, N2. It may be used in combination with a diluent gas such as H2 gas, or C1h alone or a mixed gas may be heated in an electric furnace or the like depending on the type of deposited film to be etched.

また上記のCIF+単独ガスあるいは混合ガスによって
堆aWJ形IJt装置の洗浄をする際、真空排気装を等
で真空排気しながら使用してもよいし、堆積膜形成装置
内に封入してもよい、さらにClF3ガスは従来のエツ
チングガス(例えばCF4 と02の混合カズ)よりも
エツチング速度が速いという4’r徴を有し効率的なエ
ツチングが可能である。エツチング速度を調整する場合
にはAr、He、Ne、02.N2 、H2ガス等の希
釈ガスと混合して使用してもよいし。
In addition, when cleaning a deposition IJt device with the above CIF+ gas alone or a mixed gas, it may be used while evacuating with a vacuum evacuation device, etc., or it may be enclosed within the deposited film forming device. Furthermore, ClF3 gas has the 4'r characteristic of having a faster etching rate than conventional etching gases (for example, a mixture of CF4 and 02), and allows efficient etching. When adjusting the etching speed, Ar, He, Ne, 02. It may be used in combination with a diluent gas such as N2 or H2 gas.

場合によってはClF37t1独ガスあるいは混合ガス
を′電気炉等で加熱して使用してもよい。
Depending on the case, ClF37t1 gas or mixed gas may be heated in an electric furnace or the like.

以下実験例により本発明の構成及び作用をさらにJL体
的に説明する。
The structure and operation of the present invention will be further explained in JL format using experimental examples below.

(実験例1) 第1図に示す装置を用い前述した手順に従い第5図に示
す電子写真感光体用光導電性部材を第1表の成膜条件で
形成した。
(Experimental Example 1) A photoconductive member for an electrophotographic photoreceptor shown in FIG. 5 was formed using the apparatus shown in FIG. 1 according to the procedure described above under the film forming conditions shown in Table 1.

第1表 上記の電子写真感光体用光導電性部材を形成し終えたと
ころ、真空反応槽l内およびシランの重複合物が堆積し
ていた。該光導電性部材を第1図の装置より取出しシラ
ンの重複合物を前述の手順を用いてClF3とArの混
合ガスによってエツチングした。以下にエツチング条件
を示す。
Table 1 When the above photoconductive member for an electrophotographic photoreceptor was formed, a heavy composite of silane was deposited inside the vacuum reaction tank 1. The photoconductive member was removed from the apparatus of FIG. 1 and the silane composite was etched with a mixture of ClF3 and Ar using the procedure described above. The etching conditions are shown below.

エツチング条件−1 CIFti績100s100 5c流量900sccm 内圧     10.0Torr CIF+と^「の混合ガスを第3図の真空反応槽1内に
導入するとただちにClF3とシランの重複合物の化学
反応が生じエツチングが始まった。このとき光強度検知
器15が示す真空反応槽内の発光強度CI)とエツチン
グ時間(T)の関係を第2図に示した。エツチング開始
時(T=O)から真空反応槽内の発光強度Iは増加し1
時間T1に経過後1発光強度工は11 となり時間T2
までほぼ一定であった0時間T2より発光強度Iは急速
に減少し、時間T3において発光ガス強度工が0となっ
たところで流入バルブ19を閉じCIhとArの混合ガ
スの供給を止めた。第1図の真空反応槽内をリークして
みると真空反応槽1内にはシランの重複合物が付着堆積
しておらず、真空反応槽lのエツチングは完了していた
Etching conditions-1 CIF Ti performance 100s1005c Flow rate 900sccm Internal pressure 10.0Torr When a mixed gas of CIF+ and ^' is introduced into the vacuum reaction tank 1 shown in Figure 3, a chemical reaction of a heavy complex of ClF3 and silane immediately occurs and etching begins. At this time, the relationship between the luminescence intensity CI) in the vacuum reaction tank indicated by the light intensity detector 15 and the etching time (T) is shown in Figure 2. The luminescence intensity I increases by 1
After time T1 elapses, 1 emission intensity becomes 11 and time T2
The luminescence intensity I rapidly decreased from 0 time T2, which remained almost constant until time T3, and when the luminescence gas intensity became 0, the inflow valve 19 was closed and the supply of the mixed gas of CIh and Ar was stopped. When the inside of the vacuum reactor shown in FIG. 1 was leaked, no heavy compound of silane was deposited inside the vacuum reactor 1, and etching of the vacuum reactor 1 was completed.

次に上記と同様な手順にしたがいエツチング時間TをT
2にして(すなわち発光強度■が減少し始めたところで
ClF3とArの供給を止めた)行なったところ真空反
応槽内にシランの重複合物が残っていた。
Next, according to the same procedure as above, the etching time T is
2 (that is, the supply of ClF3 and Ar was stopped when the luminescence intensity (1) began to decrease), and a silane overlapping compound remained in the vacuum reaction tank.

L記の2つの実験から真空反応槽内を完全に且つ効率的
にエツチングするには発光強度工がOとなったところで
エツチングガスの供給を止めればよいことがわかった。
From the two experiments described in Section L, it was found that in order to completely and efficiently etch the inside of the vacuum reactor, it is sufficient to stop the supply of etching gas when the luminescence intensity reaches O.

実験例1と同様な実験を実験例1と同じ装置を用い、エ
ツチング条件(エツチングガスの流−丑、内圧)のみを
様々に変化させて行なったところ、真空反応槽1内の発
光強度は第2図と同様な結果となり、第2図の関係がエ
ツチング条件によらず汗遍的なものであることが見出さ
れた。
When an experiment similar to Experimental Example 1 was carried out using the same apparatus as Experimental Example 1 and only the etching conditions (etching gas flow, internal pressure) were varied, the luminescence intensity in the vacuum reaction chamber 1 was as follows. The results were similar to those shown in FIG. 2, and it was found that the relationship shown in FIG. 2 was uniform regardless of the etching conditions.

以Fば希釈ガスの種類、洗浄装置を変えた実験例を示す
Hereinafter, an experimental example in which the type of diluent gas and the cleaning device were changed will be shown.

(実験例2) 第3図は本発明に用いることのできるシリコン系堆結膜
形成装この断面図であり、本発明によるところの堆積膜
形成製この洗浄装置でもある0図において20は真空反
応槽容器、25は高周波電源、22はこの高周波電源に
接続された高周波電極、21はもう一方の高周波電極で
接地されており、本発明によるところの真空反応槽容器
の一部でもある0本発明に用いる堆t&I模形成用のガ
スおよび洗浄用ガスは導入管29より真空反応槽20に
導入され、油回転ポンプ、メカニカルブースターポンプ
等の排気装2134によって排気管30から不図示の緋
ガス処理y装置に排気される。第3図においては真空反
応槽容器21に発光強度を検知しうる手段、すなわち発
光強度検知奏32とこれに接続された発光強度モニター
33を設けである。27は本発明に用いることのできる
太陽電池用光受容部材の基体であり、23は基体27の
受台、26は基体27を加熱する加熱抵抗体である。2
4はシールド、28は流入バルブ、31は流出バルブで
ある。
(Experiment Example 2) Figure 3 is a cross-sectional view of a silicon-based deposited film forming device that can be used in the present invention, and is also a cleaning device for deposited film forming according to the present invention. The container, 25 is a high frequency power source, 22 is a high frequency electrode connected to this high frequency power source, 21 is grounded by the other high frequency electrode, and is also part of the vacuum reaction tank container according to the present invention. The gas for forming the compost and I and the cleaning gas to be used are introduced into the vacuum reaction tank 20 through the introduction pipe 29, and are passed through the exhaust pipe 30 by an exhaust system 2134 such as an oil rotary pump or a mechanical booster pump to a scarlet gas treatment device (not shown). is exhausted. In FIG. 3, the vacuum reactor container 21 is provided with means for detecting the luminescence intensity, that is, a luminescence intensity detector 32 and a luminescence intensity monitor 33 connected thereto. 27 is a base of a light-receiving member for a solar cell that can be used in the present invention, 23 is a pedestal for the base 27, and 26 is a heating resistor for heating the base 27. 2
4 is a shield, 28 is an inflow valve, and 31 is an outflow valve.

第6図は第3図に示す装置を用いて形成することのでき
る太陽電池用光受容部材の一例を示す断面図である。第
6図において201はステンレス等で構成された導電性
基体、202はシリコンを主成分とするP型の導電性を
示す層、203はシリコンを主成分とするイントリンシ
ックな光受容層(工型層)、モして204はシリコンを
主成分とするN型の導電性を示す層である。
FIG. 6 is a sectional view showing an example of a light-receiving member for a solar cell that can be formed using the apparatus shown in FIG. 3. In FIG. 6, 201 is a conductive substrate made of stainless steel or the like, 202 is a layer containing silicon as the main component and exhibiting P-type conductivity, and 203 is an intrinsic photoreceptive layer containing silicon as the main component. 204 is a layer mainly composed of silicon and exhibiting N-type conductivity.

第3図に示す装とを用いて実験例1と同様な手順で第6
図の太陽電池用光受容部材を第2表の成膜条件で形成し
た。
The sixth experiment was carried out in the same manner as in Experimental Example 1 using the equipment shown in Figure 3.
The light-receiving member for a solar cell shown in the figure was formed under the film-forming conditions shown in Table 2.

第2表 すなわち、該基体となるステンレス等で構成された導電
性基体27を基体受台23に置き、流入バルブ28を閉
め流出バルブ31を開き、真空反応槽20内を真空排気
装置34で約lXl0〜3Torrまで真空引きし、加
熱抵抗体26によって基体27を所定の温度まで加熱し
た0次に流入バルブ28を開き太陽電池用光受容部材を
形成するための成膜ガス真空反応槽20内に導入し所定
の成膜条件になるように不図示のマスフローコントロー
ラーおよびメカニカルブースターポンプの回転数を調整
した0次に高周波電源25から高周波電力を高周波電極
22に投入し、真空反応槽2o内にグロー放電を生起し
第2表に示したシリコン系堆積膜を導電性基体27上に
形成した。所望のシリコン系堆積膜を形成し終えたとこ
ろで高周波電源からの高周波電力を切り、流入バルブ2
8を閉じ成膜ガスの導入を止め、再び真空反応槽20内
を約I X 1O−3Torrまで真空引きした8次に
流出バルブ31を閉じ、流入バルブ28を開いてArカ
スを真空反応槽20内に導入してJ′を空反応槽2oを
す−りし、太陽電池用光受容部材を取出した。
In Table 2, the conductive substrate 27 made of stainless steel or the like is placed on the substrate pedestal 23, the inflow valve 28 is closed and the outflow valve 31 is opened, and the inside of the vacuum reaction tank 20 is evacuated using the evacuation device 34. After evacuation to 1X10 to 3 Torr and heating the substrate 27 to a predetermined temperature using the heating resistor 26, the inflow valve 28 is opened and a film-forming gas for forming a light-receiving member for a solar cell is placed in the vacuum reaction tank 20. High-frequency power is supplied to the high-frequency electrode 22 from the zero-order high-frequency power supply 25, which has adjusted the rotational speed of a mass flow controller (not shown) and a mechanical booster pump to achieve predetermined film-forming conditions, and a glow is generated in the vacuum reaction tank 2o. A discharge was generated to form a silicon-based deposited film shown in Table 2 on the conductive substrate 27. After forming the desired silicon-based deposited film, turn off the high frequency power from the high frequency power supply and close the inflow valve 2.
8, the introduction of the film forming gas was stopped, and the inside of the vacuum reaction tank 20 was again evacuated to about I x 1O-3 Torr. 8. Next, the outflow valve 31 was closed, and the inflow valve 28 was opened to remove Ar scum from the vacuum reaction tank 20. J' was passed through the empty reaction tank 2o, and the light-receiving member for solar cells was taken out.

真空反応槽20内、具体的には、高周波電極22、真空
反応槽容器21の内壁、受台23にはシランの重複合物
が付着堆積していた。
Inside the vacuum reaction tank 20, specifically, on the high frequency electrode 22, the inner wall of the vacuum reaction tank container 21, and the pedestal 23, a heavy composite of silane was deposited.

次に第3図に示す装置を用いてこのシランの重複合物を
CIFpガスとN2ガスの混合気体によってエツチング
し、該装置を洗浄する手順を以下に説明する。
Next, using the apparatus shown in FIG. 3, the procedure for etching this silane composite with a mixed gas of CIFp gas and N2 gas and cleaning the apparatus will be described below.

まずダミーの平板状導電性基体を受台23の上に置き流
入バルブ28を閉め、流出バルブ31を開は真空反応槽
20内を約I X 1O−3Torrまで真空引きした
ところで、流入バルブ28を開けClhガスとN2ガス
の混合気体を真空反応槽20内に導入し下記のエツチン
グ条件になるように不図示のマスフローコントローラー
およびメカニカルブースターポンプの回転数を調整し、
高周波電源25は切ったままでエツチングを行なった。
First, a dummy flat conductive substrate is placed on the pedestal 23, the inflow valve 28 is closed, and the outflow valve 31 is opened.After the inside of the vacuum reaction tank 20 has been evacuated to about I x 1O-3 Torr, the inflow valve 28 is opened. A mixed gas of Clh gas and N2 gas is introduced into the vacuum reaction tank 20, and the rotational speed of the mass flow controller and mechanical booster pump (not shown) are adjusted so that the following etching conditions are met.
Etching was carried out with the high frequency power supply 25 turned off.

エツチング条件−2 CIF3R、til       10se105e流
、f990sccm 内圧     10.0Torr CIF3とN2の混合ガスを第3図の真空反応槽20内
に導入するとただちにClF3とシランの重複合物の化
学反応が生じエツチングが始まった。このとき発光強度
検知器32が示す真空反応槽内の発光強度(1)とエツ
チング時間(T)の関係を第4図に示した。エツチング
開始時(T=O)から真空反応槽内の発光強度Iは増加
し、時間TIに経過後、発光強度Iは工1 となり時間
T2 までほぼ一定であった0時間T2より発光強度I
は急速に減少し、時間T1において発光強度工がOとな
ったところで流入バルブ28を閉じClF3とN?の混
合ガスの供給を止めた。第1図の真空反応槽をリークし
てみると真空反応槽20内にはシランの重複合物が付着
堆積しておらず、真空反応槽20のエツチング開始時了
していた。
Etching conditions-2 CIF3R, til 10se105e flow, f990sccm Internal pressure 10.0 Torr When a mixed gas of CIF3 and N2 is introduced into the vacuum reaction tank 20 shown in Fig. 3, a chemical reaction of a heavy complex of ClF3 and silane immediately occurs and etching begins. Ta. FIG. 4 shows the relationship between the luminescence intensity (1) in the vacuum reactor and the etching time (T) indicated by the luminescence intensity detector 32 at this time. The luminescence intensity I in the vacuum reactor increases from the start of etching (T=O), and after time TI, the luminescence intensity I becomes 1 and remains almost constant until time T2.
rapidly decreases, and when the luminescence intensity reaches O at time T1, the inflow valve 28 is closed and ClF3 and N? The supply of mixed gas was stopped. When the vacuum reactor shown in FIG. 1 was leaked, no heavy compound of silane was deposited inside the vacuum reactor 20, and etching of the vacuum reactor 20 was completed when etching was started.

次にL記と同様な手順にしたがいエツチング時+11I
 TをT2にして(すなわち発光強度Iが減少し始めた
ところでClF3とN2の供給を止めた)行なったとこ
ろ真空反応槽内にシランの重複合物が残っていた。
Next, according to the same procedure as in L, when etching +11I
When T was changed to T2 (that is, the supply of ClF3 and N2 was stopped when the luminescence intensity I began to decrease), a silane overlapping compound remained in the vacuum reactor.

上記2つの実験から真空反応槽内を完全に且つ効率的に
エツチングするには発光強度Iが0となったところでエ
ツチングガスの供給を止めればよいことがわかった。
From the above two experiments, it was found that in order to completely and efficiently etch the inside of the vacuum reactor, it is sufficient to stop the supply of etching gas when the luminescence intensity I becomes 0.

実験例2と同様な実験を実験例2と同じ装置を用いエツ
チング条件(エツチングガスの流量、内圧?)のみを種
々に変化させて行なったところ。
An experiment similar to Experimental Example 2 was conducted using the same apparatus as Experimental Example 2, but only by varying the etching conditions (etching gas flow rate, internal pressure?).

真空反応槽20内の発光強度は第4図と同様な結果とな
り、第4図の関係がエツチング条件によらず普遍的なも
のであることが見出された。
The luminescence intensity within the vacuum reaction chamber 20 was found to be similar to that shown in FIG. 4, and it was found that the relationship shown in FIG. 4 is universal regardless of the etching conditions.

以上実験例1.実験例2に見られるように真空反応槽内
の発光強度とエツチングの進行状況はエツチング条件(
エツチングガスの流量、内圧等)、希釈ガスの種類、洗
浄装置によらず汁遁的なものであることが見出された。
Above is Experimental Example 1. As seen in Experimental Example 2, the luminescence intensity in the vacuum reactor and the progress of etching depend on the etching conditions (
It was found that the problem is independent of the etching gas flow rate, internal pressure, etc.), the type of diluent gas, and the cleaning device.

[実施例1 以下本発明の効果を実証するための具体的実施例を説明
するが、本発明はこれらにより制限を受けるものではな
い。
[Example 1] Specific examples for demonstrating the effects of the present invention will be described below, but the present invention is not limited thereto.

(実施g41) 第1図に示した装置に不図示の高周波電源を接続し、実
験例1と同様の条件により電子写真感光体用光導電性部
材を形成し、これを取り出した後に実験例1に示したエ
ツチング条件−1およびエツチング時間T = T 3
 という条件すなわち全光強If Iが0になったとこ
ろでエツチングガスの導入を止めるという条件で真空反
応4e10のエツチングをするというサイクルを連続し
て50回繰り返し行なったところ、真空反応槽1内にに
シランの重複合物が残っていた(エツチング不良)回数
は1回もなかった。1サイクルにおけるエツチング時間
は45分から62分とばらついており、中でも55分の
ものが一番多かった。なお50回の繰り返し運転後の総
エツチング時間は2620分であった0作成された電子
写真感光体用光導電性部材をキャノン製の複写機MP−
7550にセシトし画像特性を評価したところ、すべて
画像欠陥の無いすぐれた品質のものであった。
(Example g41) A high frequency power source (not shown) was connected to the apparatus shown in FIG. 1, and a photoconductive member for an electrophotographic photoreceptor was formed under the same conditions as in Experimental Example 1. Etching conditions-1 and etching time T = T3 shown in
When the cycle of vacuum reaction 4e10 etching was repeated 50 times under the condition that the introduction of etching gas was stopped when the total light intensity If I became 0, there was no gas in the vacuum reaction tank 1. There were no cases where a heavy compound of silane remained (poor etching). The etching time in one cycle varied from 45 minutes to 62 minutes, with 55 minutes being the most common. The total etching time after 50 repeated operations was 2620 minutes.
7550 and evaluated the image characteristics, all images were of excellent quality with no image defects.

(比較例1−■) エツチング時間をT=55分と固定する以外は実施例1
と同じ条件で電子写真感光体用光導電性部材の形成と真
空反応槽1のエツチングというサイクルを連続して50
回繰り返し行なったところ、真空反応槽l内にシランの
重複合物が残っていた回数は5回であった。真空反応槽
1内にシランの重複合物が残っていたときの次の成膜に
よる電子写真感光体用光導電性部材を実施例1と同様に
画像特性を評価したところ、すべて画像欠陥がある品質
の悪いものであった。50回の繰り返し運転後の総エツ
チング時間は2750分であった。
(Comparative Example 1-■) Example 1 except that the etching time was fixed at T = 55 minutes.
The cycle of forming a photoconductive member for an electrophotographic photoreceptor and etching the vacuum reaction tank 1 was repeated 50 times under the same conditions as above.
When the test was repeated 5 times, the silane composite remained in the vacuum reaction tank 1 5 times. When the image characteristics of the photoconductive members for electrophotographic photoreceptors formed by the subsequent film formation when a heavy composite of silane remained in the vacuum reaction tank 1 were evaluated in the same manner as in Example 1, it was found that all of them had image defects. It was of poor quality. The total etching time after 50 repeated runs was 2750 minutes.

(比較例1−2) エツチング時間をT=62分と固定する以外は実施例1
と同じ条件で電子写真感光体用光導電性部材の形成と真
空反応槽1のエツチングというサイクルを連続して50
回繰り返し行なったところ、真空反応槽1内にシランの
重複合物が残っていた回数は1回もなかった0作成され
た電子写真感光体用光導電性部材を実施例1と同様にそ
の画像特性を′評価したところ、すべて画像欠陥のない
すぐれた品質のものであったが、50回の繰り返し運転
後の総エツチング時間は3100分という長時間を要し
た。
(Comparative Example 1-2) Example 1 except that the etching time was fixed at T = 62 minutes.
The cycle of forming a photoconductive member for an electrophotographic photoreceptor and etching the vacuum reaction tank 1 was repeated 50 times under the same conditions as above.
When the process was repeated several times, there was no case that a heavy composite of silane remained in the vacuum reaction tank 1. When the properties were evaluated, all of them were of excellent quality with no image defects, but the total etching time after 50 repeated operations was as long as 3100 minutes.

実施例1、比較例1−1、比較例1−2に見られるよう
にエツチング不良による画像特性の悪化および総エツチ
ング時間の両者を鑑みると比較例1−1、比較例1−2
よりも実施例1のほうが総合的に優位であることが認め
られた。
Considering both the deterioration of image characteristics due to poor etching and the total etching time as seen in Example 1, Comparative Example 1-1, and Comparative Example 1-2, Comparative Example 1-1 and Comparative Example 1-2
It was recognized that Example 1 was superior overall.

(実施例2) 第3図に示した装置を用い実験例2と同様の条件により
太陽電池用光受容部材を形成し、これ電増り出した後に
実験例2に示したエツチング条件−2およびエツチング
時間T = T ] という条件すなわち発光強度がO
となったところでエツチングガスの導入を止めるという
条件で真空反応槽20のエツチングをするというサイク
ルを連続して50回繰り返し行なったところ、真空反応
槽20内にシランの重複合物が残っていた(エツチング
不良)回数は1回もなかった。1サイクルにおけるエツ
チング時間は15分から21分とばらついており、中で
も18分のものが一番多かった。なお50回の繰り返し
運転後の総エツチング時間は870分であった0作成さ
れた太FIIJMl池用光受容材を評価したところ、す
べてピンホールによる短絡の無いすぐれた品質のもので
あった。
(Example 2) A light-receiving member for a solar cell was formed using the apparatus shown in FIG. etching time T = T], that is, the emission intensity is O
When the cycle of etching the vacuum reaction tank 20 was repeated 50 times under the condition that the introduction of the etching gas was stopped at this point, a heavy compound of silane remained in the vacuum reaction tank 20 ( There were no etching defects. The etching time in one cycle varied from 15 minutes to 21 minutes, with 18 minutes being the most common. The total etching time after 50 repeated operations was 870 minutes. When the prepared photoreceptive materials for large FIIJMl ponds were evaluated, they were all of excellent quality with no short circuits due to pinholes.

(比較例2−1) エツチング時間をT=18分と固定する以外は実施例2
と同じ条件で太陽電池用光受容部材の形成と真空反応槽
20のエツチングというサイクルを連続して50回繰り
返し行なったところ、真空反応槽20内にシランの重複
合物が残っていた回数は6回であった。真空反応槽20
内にシランの重複合物が残っていたときの次の成膜によ
る太陽電池用光受容部材を実施例2と同様に評価したと
ころ、すべてピンホールによるm絡奢有する品質の悪い
ものであった。50回綴り返し運転後の総エツチング時
間は900分であった。
(Comparative Example 2-1) Example 2 except that the etching time was fixed at T = 18 minutes.
When the cycle of forming a light-receiving member for a solar cell and etching the vacuum reaction tank 20 was repeated 50 times under the same conditions as above, the number of times that a heavy compound of silane remained in the vacuum reaction tank 20 was 6. It was times. Vacuum reaction tank 20
When the light-receiving members for solar cells were evaluated in the same manner as in Example 2 after the subsequent film formation when the silane heavy composite remained in the film, all of them were of poor quality with m-interference caused by pinholes. . The total etching time after 50 repeat operations was 900 minutes.

(比較例2−2) エツチング時間をT=21分と固定する以外は実施例2
と同じ条件で太陽電池用光受容部材の形成と真空反応槽
20のエツチングというサイクルを連続して50回綴り
返し行なったところ、真空反応槽20内にシランの重複
合物が残っていた回数は1回もなかった。形成された太
陽電池用光受容部材を実施例2と同様に評価したところ
、すべてピンホールによる短絡の無いすぐれた品質のも
のであったが50回の繰り返し運転後の総エツチング時
間は1050分という時間を要した。
(Comparative Example 2-2) Example 2 except that the etching time was fixed at T = 21 minutes.
When the cycle of forming a light-receiving member for a solar cell and etching the vacuum reaction tank 20 was repeated 50 times under the same conditions as above, the number of times that a heavy compound of silane remained in the vacuum reaction tank 20 was as follows. Not even once. When the formed light-receiving members for solar cells were evaluated in the same manner as in Example 2, they were all of excellent quality with no short circuits due to pinholes, but the total etching time after 50 repeated operations was 1050 minutes. It took time.

実施例2、比較例2−1、比較例2−2に見られるよう
にエツチング不良による該部材の短絡および総エツチン
グ時間の両者を鑑みると比較例2−1、比較例2−2よ
りも実施例2のほうが総合的に優位であることが認めら
れた。
Considering both the short circuit of the member due to poor etching and the total etching time as seen in Example 2, Comparative Example 2-1, and Comparative Example 2-2, the etching process was better than Comparative Example 2-1 and Comparative Example 2-2. It was recognized that Example 2 was superior overall.

なお本発明の効果は希釈ガスの種類およびそれらの混合
比や流量、真空反応槽の内圧等のエツチング条件や洗浄
除去対象となる堆積膜の種類、形成方法、形成装置等に
依存することなく発揮され、]二記の実施例に限ったも
のではない。
The effects of the present invention are achieved regardless of the type of diluent gas, their mixing ratio and flow rate, the etching conditions such as the internal pressure of the vacuum reaction tank, the type of deposited film to be cleaned and removed, the formation method, the formation apparatus, etc. ], and is not limited to the two embodiments.

[発明の効果] 本発明によれば、堆植膜形成装aの真空反応槽内ドライ
エツチングによる洗浄の終了、すなわち反応残渣の除去
の完了時を正確に検知することができるので、堆積膜の
形成された製品の水溜り向上し、しかも洗浄時間の短縮
により生産性の向」二を図ることができる。
[Effects of the Invention] According to the present invention, it is possible to accurately detect the end of cleaning by dry etching in the vacuum reaction tank of the deposited film forming device a, that is, the completion of the removal of reaction residues. Productivity can be improved by improving water retention in formed products and shortening cleaning time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いることのできる堆積膜形成装置を
洗浄する装置の具体例を示した図である。 第1図において、1・・・真空反応槽、2・・・高周波
電極、3,4・・・下蓋底板、5・・・基体受は台、6
・・・円筒状導電性基体、7.8・・・上蓋、  9・
・・ガス導入管、10・・・ガス導入孔、 11・・−ガス導入管、 13・・・ガス排気管、 14・・・加熱抵抗体、 15・・・発光強度検知器、 16・・・発光強度モニター、 17・・・真空排気装置、 18・・・流出バルブ、19・・・流入バルブ:52図
は実験例1におけるエツチング時間(T)と真空反応槽
内の発光強度CI)の関係を表わした図である。 第3図は本発明に用いることのできる堆積膜形成装置を
洗浄する装との具体例を示した図である。 第3図において、20・・・真空反応槽、21・・・真
空反応槽容器、 22・・・高周波電極、 23・・・基体受は台、 24・・・シールド、25・・・高周波電源。 26・・・加熱抵抗体、 27・・・基板、   28・・・流入バルブ、29・
・・成膜ガスあるいはエツチングガス、30・・・排気
管、  31・・・流出バルブ、32・・・発光強度検
出器、 33・・・発光強度モニター、 34・・・真空排気装置。 第4図は実験例2におけるエツチング時間(T)と真空
反応槽内の発光強度CI)の関係を示した図である。 第5図は本発明に用いられる電子写真用光導電性部材の
層構成を示した図である。 第5図において、101・・・導電性基体、102・・
・電荷注入阻止層。 103・・・光導電層、 104・・−表面層。 第6図は本発明に用いられる大wA電池用光受容部材の
層構成を示した図である。 第6図において、201・・・導電性基体、202・・
・P型層、 203・・・■型光受容層、 204・・・N型層。 代理人 弁理士 山 下 積 平 第1図 日 第2図 1・7チング°8!I開(T) 第3 図 第4図 エフ+ング°時聞(T) 第5図 N6図
FIG. 1 is a diagram showing a specific example of an apparatus for cleaning a deposited film forming apparatus that can be used in the present invention. In Fig. 1, 1... Vacuum reaction tank, 2... High frequency electrode, 3, 4... Bottom cover bottom plate, 5... Substrate holder is a stand, 6
...Cylindrical conductive base, 7.8...Top lid, 9.
...Gas inlet pipe, 10...Gas inlet hole, 11...Gas inlet pipe, 13...Gas exhaust pipe, 14...Heating resistor, 15...Emission intensity detector, 16...・Emission intensity monitor, 17... Vacuum exhaust device, 18... Outflow valve, 19... Inflow valve: 52 Figure shows the etching time (T) and the emission intensity CI) in the vacuum reaction tank in Experimental Example 1. It is a diagram showing a relationship. FIG. 3 is a diagram showing a specific example of a device for cleaning a deposited film forming apparatus that can be used in the present invention. In FIG. 3, 20...Vacuum reaction tank, 21...Vacuum reaction tank container, 22...High frequency electrode, 23...Substrate support is stand, 24...Shield, 25...High frequency power source . 26... Heating resistor, 27... Substrate, 28... Inflow valve, 29...
...Filming gas or etching gas, 30...Exhaust pipe, 31...Outflow valve, 32...Emission intensity detector, 33...Emission intensity monitor, 34...Evacuation device. FIG. 4 is a diagram showing the relationship between the etching time (T) and the luminescence intensity CI) in the vacuum reaction chamber in Experimental Example 2. FIG. 5 is a diagram showing the layer structure of a photoconductive member for electrophotography used in the present invention. In FIG. 5, 101... conductive substrate, 102...
・Charge injection blocking layer. 103...Photoconductive layer, 104...-Surface layer. FIG. 6 is a diagram showing the layer structure of a light-receiving member for a large wA battery used in the present invention. In FIG. 6, 201... conductive substrate, 202...
- P-type layer, 203... ■-type photoreceptive layer, 204... N-type layer. Agent Patent Attorney Seki Yamashita Figure 1 Day Figure 2 1.7 Ching°8! I open (T) Figure 3 Figure 4 F+NG ° Time (T) Figure 5 Figure N6

Claims (1)

【特許請求の範囲】 1、気相法により堆積膜を形成する堆積膜形成装置の洗
浄方法において、堆積膜形成装置内の堆積膜形成用の気
体の流通空間を形成している内壁をドライエッチング法
で洗浄を行う際にドライエッチング作用により生ずる発
光の状態をモニターして洗浄の程度を検知することを特
徴とする堆積膜形成装置の洗浄方法。 2、洗浄に用いるガスがClF_3である請求項1記載
の堆積膜形成装置の洗浄方法。
[Claims] 1. In a method for cleaning a deposited film forming apparatus that forms a deposited film by a vapor phase method, an inner wall forming a gas circulation space for forming a deposited film in the deposited film forming apparatus is dry etched. 1. A method for cleaning a deposited film forming apparatus, characterized in that the degree of cleaning is detected by monitoring the state of light emitted by dry etching during cleaning. 2. The method for cleaning a deposited film forming apparatus according to claim 1, wherein the gas used for cleaning is ClF_3.
JP13886988A 1988-06-06 1988-06-06 Method for cleaning device for forming deposited film Pending JPH01309982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13886988A JPH01309982A (en) 1988-06-06 1988-06-06 Method for cleaning device for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13886988A JPH01309982A (en) 1988-06-06 1988-06-06 Method for cleaning device for forming deposited film

Publications (1)

Publication Number Publication Date
JPH01309982A true JPH01309982A (en) 1989-12-14

Family

ID=15232022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13886988A Pending JPH01309982A (en) 1988-06-06 1988-06-06 Method for cleaning device for forming deposited film

Country Status (1)

Country Link
JP (1) JPH01309982A (en)

Similar Documents

Publication Publication Date Title
US4840139A (en) Apparatus for the formation of a functional deposited film using microwave plasma chemical vapor deposition process
US4785763A (en) Apparatus for the formation of a functional deposited film using microwave plasma chemical vapor deposition process
JP2007177320A (en) METHOD OF WASHING THIN FILM DEPOSITION UNIT FOR DEPOSITING Al-CONTAINING METAL FILM AND Al-CONTAINING METAL NITRIDE FILM
US4897284A (en) Process for forming a deposited film on each of a plurality of substrates by way of microwave plasma chemical vapor deposition method
US20010054430A1 (en) Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method
JPH01309982A (en) Method for cleaning device for forming deposited film
JPH01306582A (en) Method for cleaning deposited film forming device
JPS621873A (en) Washing method for deposit film-forming device
JPH02185977A (en) Film forming vacuum device
JPH062143A (en) Cleaning method of deposited film forming device
JPS6220875A (en) Accumulated film formation device
JPH03219080A (en) Method for cleaning deposited film forming device
JPH09148255A (en) Cleaning method in reaction container
JPS60147113A (en) Manufacture of silicon film
JPH02138472A (en) Method for cleaning deposited film forming device
JPH02129371A (en) Method for cleaning device for forming deposited film
JPH0277579A (en) Method for cleaning deposited film forming device
JPH0418456B2 (en)
JPH02129372A (en) Method for cleaning device for forming deposited film
JP3133529B2 (en) Deposited film forming apparatus and deposited film forming method
JPH03277767A (en) Deposited film formation
JPS58194342A (en) Preparation of plasma cvd semiconductor device
JPH0212265A (en) Production of electrophotographic sensitive body
JPH01127685A (en) Method for cleaning of glow discharge cracking device by gas etching
JPH06163485A (en) Removing method of residual halogen inside reaction furnace for glow discharge film formation