JPH02138472A - Method for cleaning deposited film forming device - Google Patents
Method for cleaning deposited film forming deviceInfo
- Publication number
- JPH02138472A JPH02138472A JP28982688A JP28982688A JPH02138472A JP H02138472 A JPH02138472 A JP H02138472A JP 28982688 A JP28982688 A JP 28982688A JP 28982688 A JP28982688 A JP 28982688A JP H02138472 A JPH02138472 A JP H02138472A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- gas
- deposited film
- film forming
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims description 33
- 238000005530 etching Methods 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 70
- 150000002927 oxygen compounds Chemical class 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 23
- 239000000758 substrate Substances 0.000 abstract description 21
- 239000012808 vapor phase Substances 0.000 abstract description 9
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 7
- 229910000077 silane Inorganic materials 0.000 abstract description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052786 argon Inorganic materials 0.000 abstract description 4
- 229910052734 helium Inorganic materials 0.000 abstract description 3
- 229910052743 krypton Inorganic materials 0.000 abstract description 3
- 229910052754 neon Inorganic materials 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 2
- 239000008246 gaseous mixture Substances 0.000 abstract 2
- 238000000151 deposition Methods 0.000 description 27
- 230000008021 deposition Effects 0.000 description 27
- 108091008695 photoreceptors Proteins 0.000 description 10
- 230000007423 decrease Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005406 washing Methods 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920000548 poly(silane) polymer Polymers 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- -1 silane compound Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G5/00—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の属する分野の説明コ
本発明は堆積膜形成装置、とりわけRFプラズマCVD
法、マイクロ波プラズマCVD法、熱CVD法、グロー
放電法、アーク放電法(以下、これらを気相法と総称す
る)により堆積膜を形成する装置の洗浄方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Description of the field to which the invention pertains] The present invention relates to a deposited film forming apparatus, particularly an RF plasma CVD
The present invention relates to a cleaning method for an apparatus for forming a deposited film by a method, a microwave plasma CVD method, a thermal CVD method, a glow discharge method, or an arc discharge method (hereinafter, these are collectively referred to as vapor phase methods).
[従来の技術の説明]
気相法によって基体上に機能性被膜を形成する技術は例
えば電子写真における光導電性部材を均一にドラム上に
成膜すφ場合などに既に広く採用されている。かかる気
相法による堆積膜形成に際して、反応生成物の一部が目
的とする基体以外の部分、即ち反応室等の内壁に被膜ま
たは粉末として付着することは避けることができない。[Description of the Prior Art] The technique of forming a functional film on a substrate by a vapor phase method has already been widely employed, for example, in the case of uniformly forming a photoconductive member on a drum in electrophotography. When forming a deposited film by such a vapor phase method, it is unavoidable that a part of the reaction product adheres as a film or powder to a portion other than the target substrate, that is, to the inner wall of the reaction chamber or the like.
反応室等の内壁に付着するこれらの被膜または粉末は、
剥離しやすく、この剥離した小片や粉は反応室内を飛翔
して機能性堆積膜を形成すべき基体上に付着し、これら
が堆積膜にピンホール等の膜欠陥を生ずる原因の一つに
なっていた。These films or powders that adhere to the inner walls of reaction chambers, etc.
It is easy to peel off, and these peeled off particles and powder fly inside the reaction chamber and adhere to the substrate on which the functional deposited film is to be formed, which is one of the causes of film defects such as pinholes in the deposited film. was.
従来、気相法により形成される堆積膜の例として、例え
ばシラン系化合物を用いてプラズマ反応により形成され
るケイ素原子を主成分とする光受容部材用の堆積膜があ
る。この堆積を形成した反応室内には、基体以外の部分
にケイ素原子を主成分とする被膜やシランの重複合物(
ポリシランと呼ばれている)が大量に副生じ、これを洗
浄除去する方法として、従来例えばCF4と02との混
合ガスを用いてプラズマ反応により洗浄する方法が用い
られている。Conventionally, as an example of a deposited film formed by a vapor phase method, there is a deposited film for a light-receiving member whose main component is silicon atoms, which is formed by a plasma reaction using, for example, a silane compound. In the reaction chamber where this deposit was formed, a coating mainly composed of silicon atoms and a heavy composite of silane (
A large amount of polysilane (called polysilane) is produced as a by-product, and as a method of cleaning and removing it, a method of cleaning by plasma reaction using a mixed gas of CF4 and 02, for example, has been used.
[発明が解決しようとしている課題]
しかしながら、上述の方法によりケイ素原子を主成分と
する被膜やポリシランは取り除かれるが、これにより5
i02が残渣として残り、また02 、F2分子等が吸
着物として残留し、次回の堆積形成時に堆積膜中にとり
込まれ、例えば光受容部材としての利用特性低下(帯電
能の低下、画像流れ等)、乃至は光導電特性低下[光導
電率(σ、h)/暗導電率((1,)の低下、モビリテ
ィ−の低下]の原因となる。特にイオンが発生する堆積
膜形成において前記した使用特性乃至は光導電特性の低
下が著しい。[Problem to be solved by the invention] However, although the above-mentioned method removes the film and polysilane mainly composed of silicon atoms,
i02 remains as a residue, and 02, F2 molecules, etc. remain as adsorbents and are incorporated into the deposited film during the next deposition, resulting in a decrease in the usability of the material as a light-receiving member (decreased charging ability, image blurring, etc.) , or cause a decrease in photoconductive properties [decrease in photoconductivity (σ, h)/dark conductivity ((1,), decrease in mobility]. In particular, the above-mentioned use in deposited film formation where ions are generated) The properties or photoconductive properties are significantly deteriorated.
従って、前述した堆積膜形成と洗浄を繰返しサイクルで
行なうと、次第に特性低下が嵩じ、比較的短期間で製品
としての品質許容限度を逸脱してしまう。従ってこれ迄
は、数サイクル毎に、前記洗浄のほかに反応室等の分解
清掃作業、あるいは又前記洗浄のほかに例えばCF4と
F2の混合ガス、ArとF2の混合ガス等それぞれ反応
性の異なる複数の気体を用いて複数回反応操作を行なう
ことが必要となり、生産性の低下を招いた。Therefore, if the above-described deposited film formation and cleaning are repeated in repeated cycles, the characteristics will gradually deteriorate, and the quality of the product will exceed the allowable limit in a relatively short period of time. Therefore, in addition to the above-mentioned cleaning, disassembly and cleaning of the reaction chamber etc. has been carried out every few cycles, or in addition to the above-mentioned cleaning, for example, a mixed gas of CF4 and F2, a mixed gas of Ar and F2, etc. each have a different reactivity. It became necessary to perform the reaction operation multiple times using multiple gases, resulting in a decrease in productivity.
そこで堆積膜形成装置の洗浄用エツチングガスとしてS
F aと酸素化合物(02、No、NO2等)との混
合ガスの使用が検討され、例えば光受容部材の形成にお
いて、所定の条件下で堆積膜形成と洗浄とを交互に繰り
返し行なっても、光受容部材としての使用特性角び光導
電特性の低下のない良好な結果が得られている。しかし
ながらSF8と酸素化合物との混合ガスは反応室内にお
けるプラズマの安定性乃至は均一性に欠けるため、装置
の構成によっては反応室内の洗浄領域が不均一になるこ
とがあり、反応室内全体の洗浄が完了するまでの時間増
加の問題及び反応室内の早く洗浄が終了した部分が過剰
にエツチングされ損傷を受けることによる装置耐久性の
低下の問題が残されていた。Therefore, S is used as an etching gas for cleaning the deposited film forming equipment.
The use of a mixed gas of F a and oxygen compounds (02, No, NO2, etc.) has been considered, and for example, in the formation of a light-receiving member, even if deposited film formation and cleaning are alternately repeated under predetermined conditions, Good results have been obtained with no deterioration in the properties of use as a light-receiving member and photoconductive properties. However, the mixed gas of SF8 and oxygen compounds lacks plasma stability or uniformity in the reaction chamber, so depending on the configuration of the device, the cleaning area within the reaction chamber may become uneven, making it difficult to clean the entire reaction chamber. There remained the problem of an increase in the time required to complete the process and a decrease in the durability of the device due to excessive etching and damage to parts of the reaction chamber where cleaning was completed early.
[発明の目的]
本発明は、従来の課題を解決し、気相法により堆積膜の
形成と反応室等の洗浄を交互に繰り返し行なう際、形成
される堆積膜の品質を高水準に維持し、且つ反応室の内
壁等に生じた付着物を均一に効率よく洗浄することので
きる堆積膜形成装置の洗浄方法を提供することを目的と
する。[Object of the Invention] The present invention solves the conventional problems and maintains the quality of the deposited film at a high level when forming the deposited film and cleaning the reaction chamber etc. by the vapor phase method are alternately repeated. Another object of the present invention is to provide a method for cleaning a deposited film forming apparatus, which can uniformly and efficiently clean deposits formed on the inner walls of a reaction chamber, etc.
[課題を解決するための手段]
上述のごとき従来の課題を解決する手段として見い出さ
れた本発明の堆積膜形成装置の洗浄方法は、気相法によ
りケイ素を含む堆積膜を形成する際に反応室等の内壁に
生じる付着物を、ガス分子に高周波エネルギーを与えて
プラズマ反応をせしめ、該反応により生じた活性成分の
エツチング作用により前記付着物を洗浄する方法におい
て、エツチングガスとして、SF6と酸素化合物(Ox
、N O、N O2等)との混合ガスを用い、該混合ガ
スに希ガス(0□、No、NO2等)との混合ガスを用
い、該混合ガスに希ガス(He。[Means for Solving the Problems] The method for cleaning a deposited film forming apparatus of the present invention, which was discovered as a means to solve the conventional problems as described above, is a method for cleaning a deposited film forming apparatus that uses a reaction method when forming a deposited film containing silicon by a vapor phase method. In a method of cleaning deposits formed on the inner wall of a chamber, etc., by applying high frequency energy to gas molecules to cause a plasma reaction, and by the etching action of the active ingredient produced by the reaction, SF6 and oxygen are used as the etching gas. Compound (Ox
, NO, NO2, etc.), and the mixed gas is a mixed gas with a rare gas (0□, No, NO2, etc.), and the mixed gas is a rare gas (He, etc.).
Ne、Ar、Kr、Xs等)を混合し、希ガスノ混合比
を5−60%、酸素化合物の混合比を25−80%とす
るものである。Ne, Ar, Kr, Xs, etc.) are mixed, and the mixing ratio of the rare gas is 5-60% and the mixing ratio of the oxygen compound is 25-80%.
(発明の詳細な説明〕
前述したようにSFsと酸素化合物との混合ガスは反応
室内におけるプラズマの安定性乃至は均一性にやや欠け
るため、反応室内の電極間距離が場所によって異なる場
所乃至は高周波電波のアンテナになるような部分がある
場合などには、電極間距離の近い場合乃至はアンテナ部
分にプラズマが集中して、反応室内のプラズマの分布が
不均一になり易い。従って、反応室内の付着物のエツチ
ング速度は、プラズマの強い部分では増加するがプラズ
マの弱い部分では大きく低下することになって、結果と
して反応室内全体の付着物の洗浄除去の時間が増加する
ことになり、また洗浄除去が早く終了した部分がその後
、過剰にエツチングされるため、その部分が損傷を受け
ることもあった。(Detailed Description of the Invention) As mentioned above, the mixed gas of SFs and oxygen compounds slightly lacks the stability or uniformity of the plasma in the reaction chamber. If there is a part that acts as an antenna for radio waves, plasma tends to concentrate in the antenna part or if the distance between the electrodes is close, making the plasma distribution in the reaction chamber uneven. The etching rate of deposits increases in areas where the plasma is strong, but it decreases significantly in areas where the plasma is weak, resulting in an increase in the time required to clean and remove deposits throughout the reaction chamber. The areas that were removed early were then etched excessively, which sometimes resulted in damage to those areas.
そこで、本発明者は鋭意研究を続けた結果、前記したS
F8と酸素化合物との混合ガスに希ガス(He、Ne、
Ar、Kr、Xe等)を混合することにより、エツチン
グ速度をほとんど低下させることなく反応室内における
プラズマの安定性及び均一性を向上させることかでざる
との知見を得た。本発明を実施することにより反応室内
の電極間距離が場所によフて異なるような装置や高周波
電波のアンテナになるような部分を持つ装置においても
プラズマを均一に分布させ、反応室内全部分でのエツチ
ング速度を揃えることが可能になり、結果として反応室
内の付着物の洗浄除去時間を短縮することができ、また
反応室内壁等が過剰エツチングによる損傷を受けること
もなかった。Therefore, as a result of intensive research, the inventors of the present invention found that the above-mentioned S
Rare gases (He, Ne,
It has been found that the stability and uniformity of the plasma in the reaction chamber can be improved without substantially reducing the etching rate by mixing etchants (Ar, Kr, Xe, etc.). By implementing the present invention, plasma can be uniformly distributed in all parts of the reaction chamber, even in devices where the distance between electrodes in the reaction chamber varies depending on the location, or in devices that have a part that serves as an antenna for high-frequency radio waves. As a result, the cleaning and removal time for deposits in the reaction chamber can be shortened, and the walls of the reaction chamber are not damaged due to excessive etching.
本発明において、用いるSF、iと酸素化合物と希ガス
との混合ガス中の希ガスの混合比が5%までであると、
反応室内におけるプラズマの安定性乃至は均一性の向上
は見られず、また希ガスの混合比が60%を越えるとブ
イラズマの安定性乃至は均一性は良いが付着物に対する
エツチング速度が低下するため希ガスの混合比5〜60
%の範囲外においては洗浄除去時間を短縮することがで
きない。本発明において用いる前記混合ガス中の酸素化
合物の混合比は25%までであると反応室内に残留する
イオウ化合物が増加し、また80%を越えると反応室内
に5in2の固体残渣が付着する。In the present invention, when the mixture ratio of the rare gas in the mixed gas of SF, i, oxygen compound, and rare gas used is up to 5%,
No improvement in the stability or uniformity of the plasma in the reaction chamber was observed, and if the mixing ratio of rare gas exceeded 60%, the stability or uniformity of the plasma was good, but the etching rate for deposits decreased. Noble gas mixing ratio 5-60
%, the cleaning removal time cannot be shortened. If the mixing ratio of oxygen compounds in the mixed gas used in the present invention is up to 25%, the amount of sulfur compounds remaining in the reaction chamber will increase, and if it exceeds 80%, a solid residue of 5 in 2 will adhere to the reaction chamber.
本発明が利用できるデバイスとしては、その作製におい
て目的とする基体以外の部分にもケイ素原子を含む被膜
やポリシランなどの副生物が生じるような例えば電子写
真用感光体、太陽電池、ラインセンサー TPT等のデ
バイスが挙げられる0本発明が利用で幹る堆積膜形成方
法としては、イオンが発生する様な例えばプラズマCV
D法、マイクロ波プラズマCVD法、HRCVD法等が
挙げられる。本発明に使用するエツチングガスとしては
SFeの他に5FsHや5F4H2等も同様に使用でき
る。酸素化合物としてはo2が普通であるが、他の酸素
化合物、例えばNo。Examples of devices to which the present invention can be applied include electrophotographic photoreceptors, solar cells, line sensors, TPT, etc. in which by-products such as silicon atom-containing films and polysilane are produced in areas other than the intended substrate during manufacture. Examples of the deposited film forming method utilized in the present invention include devices such as plasma CVD in which ions are generated.
Examples include D method, microwave plasma CVD method, HRCVD method, and the like. As the etching gas used in the present invention, 5FsH, 5F4H2, etc. can be used in addition to SFe. O2 is common as an oxygen compound, but other oxygen compounds such as No.
No2等でもo2と同様に使用でき、混合ガス中の比率
は25−80%の範囲で用いるのが良い。No. 2 and the like can also be used in the same way as O. 2, and the ratio in the mixed gas is preferably in the range of 25-80%.
希ガスとしてはHeあるいは又Arが使い易いが他の希
ガスのNe、Kr、Xe等も同様に使用することができ
、また2種類以上の希ガスを混合して使用することもで
きる。As the rare gas, it is easy to use He or Ar, but other rare gases such as Ne, Kr, and Xe can be used as well, and two or more types of rare gases can also be used as a mixture.
本発明における洗浄の際の反応室内の圧力は、プラズマ
を発生できる圧力の範囲であれば問題ないが、lXl0
”’Torrから5X10Torrの範囲が適当であり
、SF8と酸素化合物と希ガスとの混合ガスの流量は反
応室の容積や排気ポンプの能力によって適時法められる
が、0. ISccmから10”SLMの範囲で用い
られ、またガス分子に与える高周波エネルギーは大きい
程エツチング速度は早くなるが装置の形態及び使用する
電源によって適時法められ、数Wから10’KWの範囲
で用いられる。There is no problem with the pressure inside the reaction chamber during cleaning in the present invention as long as it is within a pressure range that can generate plasma, but lXl0
The appropriate range is from 0.1 Torr to 5 x 10 Torr, and the flow rate of the mixed gas of SF8, oxygen compound, and rare gas is determined from time to time depending on the volume of the reaction chamber and the capacity of the exhaust pump. The higher the high frequency energy applied to the gas molecules, the faster the etching speed will be, but it is determined appropriately depending on the configuration of the apparatus and the power source used, and is used in the range of several watts to 10'KW.
実施例1
第1図は気相法により電子写真感光体の堆積膜を形成す
る際に用いたRFプラズマCVD装置の概要を示す図で
ある。101は円筒状のカソード電極であり、102は
円筒状のアノード電極で基体を兼ねている。排気管11
3を通じ排気されている反応室中に第1表に示した条件
で原料ガスをガス導入管108のガス導入孔109から
導入し、高周波マツチングボックス112より導入され
る高周波電波により電極間で発生したプラズマの作用で
気相法により基体上にA−3iの堆積膜を形成したが、
この際反応室の内壁等にも反応生成物の一部が付着した
。Example 1 FIG. 1 is a diagram schematically showing an RF plasma CVD apparatus used to form a deposited film on an electrophotographic photoreceptor by a vapor phase method. 101 is a cylindrical cathode electrode, and 102 is a cylindrical anode electrode that also serves as a base. exhaust pipe 11
The raw material gas is introduced from the gas introduction hole 109 of the gas introduction pipe 108 under the conditions shown in Table 1 into the reaction chamber which is being evacuated through A deposited film of A-3i was formed on the substrate by the vapor phase method due to the action of plasma.
At this time, some of the reaction products also adhered to the inner walls of the reaction chamber.
形成した電子写真感光体を取り出し、替りに堆積形成用
の基体と同じ形状のダミー基体を装着し、堆積膜形成の
際と同様に下記に示した洗浄条件によりガス導入管10
8のガス導入孔109からSF、と0□とArとの混合
ガスを導入し、高周波マツチングボックス112より導
入される高周波電波によりプラズマを発生せしめ、生じ
た活性成分のエツチング作用により反応室の内壁等の付
着物を洗浄を行ない堆積膜形成と洗浄を連続し繰り返し
行なった。The formed electrophotographic photoreceptor was taken out, a dummy substrate having the same shape as the substrate for deposit formation was attached in its place, and the gas introduction tube 10 was cleaned under the cleaning conditions shown below in the same manner as when forming the deposited film.
A mixed gas of SF, 0□, and Ar is introduced through the gas introduction hole 109 of No. 8, and plasma is generated by high-frequency radio waves introduced from the high-frequency matching box 112, and the etching action of the generated active component causes the reaction chamber to become The deposited film formation and cleaning were successively repeated to clean the deposits on the inner walls and the like.
〈洗浄条件〉 使用ガス 5F6 700 Seem。<Cleaning conditions> Gas used: 5F6 700 Seem.
380 Sccm。380 Sccm.
460 Sccm
(混合比30%)
0.5Torr
13.56MHz
1.5KW
r
堆積室内内圧
放電周波数
高周波電力
弔
表
比較例1
堆積膜の形成条件は実施例1と同じとし、洗浄にSF6
と02との混合ガスを用い、堆積膜形成と洗浄を連続し
て繰り返し行なった。洗浄条件を下記に示す。460 Sccm (Mixing ratio 30%) 0.5 Torr 13.56 MHz 1.5 KW r Deposition chamber internal pressure Discharge frequency High frequency power Condolence table Comparative example 1 The conditions for forming the deposited film were the same as in Example 1, and SF6 was used for cleaning.
Deposited film formation and cleaning were continuously and repeatedly performed using a mixed gas of and 02. The washing conditions are shown below.
〈洗浄条件) 使用ガス SF、 700 Sccm。(Cleaning conditions) Gas used: SF, 700 Sccm.
02 380 5can。02 380 5 can.
堆積室内内圧 0.5Torr
放電周波数 13.56MHz
高周波電力 1.5KW
第2図の堆積室を上部、中央部、下部の3つに分けると
、比較例1では洗浄において上部と下部のプラズマが強
く中央部が弱くなる為、堆積室内壁の上部と下部の付着
物は比較的早く洗浄除去されるが、中央部の付着物の洗
浄除去は最も遅く、上部付着物の洗浄除去時間を1と規
格化すると中央部の洗浄除去時間は1.8必要で、これ
が堆積室全体の洗浄が終了する時間であり、また洗浄除
去が早く終了した上部及び下部ではその後も過剰にエツ
チングされた為部分的な損傷が見られた。Deposition chamber internal pressure: 0.5 Torr Discharge frequency: 13.56 MHz High frequency power: 1.5 KW If the deposition chamber in Fig. 2 is divided into three parts: upper, middle, and lower, in Comparative Example 1, during cleaning, the plasma in the upper and lower parts was stronger in the center. Because the upper and lower parts of the inner wall of the deposition chamber are weaker, the deposits on the upper and lower parts of the inner wall of the deposition chamber are cleaned and removed relatively quickly, but the deposits in the center are the slowest to clean and remove, and the cleaning and removal time for the upper deposits is standardized as 1. Then, the cleaning and removal time for the central part is 1.8, which is the time required to finish cleaning the entire deposition chamber, and the upper and lower parts, where cleaning and removal were completed earlier, were still partially damaged due to excessive etching. It was observed.
実施例1では洗浄において上部、中央部、下部のプラズ
マの強度の分布がほぼ均一化され、付着物の洗浄除去速
度もほぼ揃える事ができたため、堆積室全体の洗浄時間
は大幅に短縮し、また堆積室内の損傷もなかった。結果
を第4図に示した。In Example 1, the distribution of the plasma intensity in the upper, middle, and lower parts was made almost uniform during cleaning, and the cleaning removal speed of deposits was also made almost the same, so the cleaning time for the entire deposition chamber was significantly shortened. There was also no damage inside the deposition chamber. The results are shown in Figure 4.
かくして堆積膜形成と洗浄とをそれぞれ20サイクル繰
り返し、初期サイクルと10サイクル目、20サイクル
目の電子写真感光体の画像流れの評価(画像状態の優良
なものをAとし、A。In this way, deposited film formation and cleaning were repeated for 20 cycles each, and the image deletion of the electrophotographic photoreceptor was evaluated at the initial cycle, the 10th cycle, and the 20th cycle (one with an excellent image condition was rated A;
B、C,D、Eの5段階で評価)、画像欠陥の評価(◎
=極めて高水準、O=実用上十分、△=実用上不十分)
及び光導電特性と電子写真用感光体としての総合的な実
用評価(◎=極めて高水準、O=実用上十分、△=実用
上不十分)を行なった。結果を第2表に示した。Evaluation in 5 stages: B, C, D, E), image defect evaluation (◎
= extremely high level, O = practically sufficient, △ = practically insufficient)
A comprehensive practical evaluation of photoconductive properties and use as an electrophotographic photoreceptor (◎ = extremely high level, O = practically sufficient, △ = practically insufficient) was conducted. The results are shown in Table 2.
第2表から、本発明を実施する事により、堆積室の洗浄
時間を短縮する事ができ、堆積膜形成と洗浄を繰り返し
行なっても堆積膜特性の変動がなく、品質を高水準に維
持できる事がわかる。Table 2 shows that by carrying out the present invention, the cleaning time of the deposition chamber can be shortened, and even if deposited film formation and cleaning are repeated, there is no change in the deposited film characteristics, and the quality can be maintained at a high level. I understand.
実施例2〜10
堆積膜形成条件は実施例1と同じとし、第3表及び第4
表に示した条件により洗浄し、堆積室内の各部分の洗浄
除去時間と堆積室全体の洗浄時間を第3表及び第4表に
示した。Examples 2 to 10 The deposited film forming conditions were the same as in Example 1, and Tables 3 and 4
The cleaning was carried out under the conditions shown in the table, and the cleaning time for each part of the deposition chamber and the cleaning time for the entire deposition chamber are shown in Tables 3 and 4.
実施例11〜12
堆積膜形成条件は実施例1と同じとし、洗浄用ガスとし
てSFaと02とHeの混合ガスを用い第4表に示した
条件により洗浄し、堆積室内の各部の洗浄除去時間と堆
積室全体の洗浄時間を第4表に示した。Examples 11 to 12 The deposited film formation conditions were the same as in Example 1, and cleaning was performed under the conditions shown in Table 4 using a mixed gas of SFa, 02, and He as the cleaning gas, and the cleaning removal time of each part in the deposition chamber was Table 4 shows the cleaning time for the entire deposition chamber.
実施例13
第2図に示した装置を用い以下の如き操作によって電子
写真感光体の堆積膜を形成した。Example 13 Using the apparatus shown in FIG. 2, a deposited film of an electrophotographic photoreceptor was formed by the following operations.
第2図において、201は成膜空間としての堆積室であ
り、内部の基体支持台211上にコーニング社製705
9ガラス基板206を設置した。In FIG. 2, reference numeral 201 is a deposition chamber as a film forming space, and a 705 film manufactured by Corning Co., Ltd.
9 glass substrates 206 were installed.
つぎに排気バルブ204を開け、排気配管212を通じ
て不図示の真空ポンプによって反応炉内を!O−’To
rrまで排気し、205の基体加熱用のヒータを発熱さ
せ、基板表面温度が250℃となるようにコントロール
した。Next, the exhaust valve 204 is opened, and the inside of the reactor is pumped through the exhaust pipe 212 by a vacuum pump (not shown)! O-'To
The temperature was evacuated to rr, the heater 205 for heating the substrate was heated, and the substrate surface temperature was controlled to be 250°C.
つぎに下記に示した堆積膜形成条件によりガス併給管2
09より導入管208を通じて反応炉内に成膜用ガスを
導入し、はぼ同時に放電エネルギー発生装置202によ
って放電パワーを導入し、プラズマを生成させ、堆積膜
形成を行った。Next, the gas co-supply pipe 2 is
A film-forming gas was introduced into the reactor through the introduction pipe 208 from 09, and at about the same time, discharge power was introduced by the discharge energy generator 202 to generate plasma and form a deposited film.
これと併せて下記洗浄条件により本発明を実施して反応
室内の副成物の洗浄を行い、堆積膜形成と洗浄とを連続
し繰り返し行つた。In addition, the present invention was carried out under the following cleaning conditions to clean by-products in the reaction chamber, and deposited film formation and cleaning were successively repeated.
く堆積膜形成条件〉
使用ガス
堆積室内内圧
放電周波数
高周波電力
基板温度
堆積膜形成速度
膜 厚
く洗浄条件〉
使用ガス
5iHa 50Sccm
O,3Torr
13、 56MHz
QW
250 ℃
3.2人/ s e e
1 μ nl
S F e 5 0 0 S c c
m 。Deposited film formation conditions〉 Gas used: Internal pressure inside the deposition chamber Discharge frequency High frequency power Substrate temperature Deposited film formation speed Thick film Cleaning conditions〉 Used gas: 5iHa 50Sccm O, 3Torr 13, 56MHz QW 250℃ 3.2 people/s e 1 μnl S F e 5 0 0 S c c
m.
022 7 0 S c c m。022 7 0 S c m.
Ar 380Secm
(混合比33%)
堆積室内内圧 0.5Torr
放電周波数 13.56MHz
高周波電力 iooow
比較例2
堆積膜の形成条件は実施例13と同じとし、洗浄に従来
のS F aと02との混合ガスを用い堆積膜形成と洗
浄を連続して繰り返し行なった。洗浄条件を下記に示す
。Ar 380Secm (mixing ratio 33%) Deposition chamber internal pressure 0.5 Torr Discharge frequency 13.56MHz High frequency power iooow Comparative Example 2 The deposited film formation conditions were the same as in Example 13, and the conventional S Fa and 02 were mixed for cleaning. Deposited film formation and cleaning were successively repeated using gas. The washing conditions are shown below.
〈洗浄条件〉 使用ガス SFs 500Sccm。<Cleaning conditions> Gas used: SFs 500Sccm.
0、 270Sccm
堆積室内内圧 0.5Torr
放電周波数 13.56MHz
高周波電力 1000W
第3図の堆積室をガス導入管に近い部分を前部、基体支
持台に近い部分を中央部、排気管212に近い部分を後
部の3つに分けると比較例2では洗浄において中央部の
プラズマが強く前部と後部のプラズマが弱いため、中央
部の付着物は比較的早く洗浄除去されたが、前部と後部
の付着物の洗浄除去は遅く後部が最も遅かりた。中央部
の洗浄除去時間を1とすると、前部は1.9倍、後部は
2.1倍必要であり、洗浄除去が早く終了した中央部も
そのあと後部が終了するまでの間、過剰にエツチングさ
れたため部分的な損傷が見られた。実施例13では洗浄
において前部、中央部、後部のプラズマの強度がほぼ均
一化され、付着物の洗浄速度もほぼ揃ったため、堆積室
全体の洗浄時間を大幅に短縮することができ、また堆積
室内の損傷もなかった。結果を第5表に示した。0, 270Sccm Deposition chamber internal pressure 0.5Torr Discharge frequency 13.56MHz High frequency power 1000W In the deposition chamber shown in Figure 3, the part near the gas introduction pipe is the front part, the part near the substrate support is the center part, and the part near the exhaust pipe 212 In Comparative Example 2, the plasma in the central part was strong and the plasma in the front and rear parts were weak during cleaning, so the deposits in the central part were cleaned relatively quickly, but the deposits in the front and rear parts were cleaned relatively quickly. Cleaning and removal of deposits was slow, and the slowest was at the rear. If the cleaning and removal time for the central part is 1, then the front part requires 1.9 times the cleaning and removal time, and the rear part requires 2.1 times the cleaning and removal time. Partial damage was seen due to etching. In Example 13, the intensity of the plasma in the front, center, and rear parts was almost uniform during cleaning, and the cleaning speed of deposits was also almost uniform, so the cleaning time for the entire deposition chamber could be significantly shortened, and the deposition There was no damage inside the room. The results are shown in Table 5.
かくして堆積膜形成と洗浄とをそれぞれ20サイクル繰
り返し、初期のサイクルと10サイクル目、20サイク
ル目のA−3i:H半導体膜の特性を評価し、結果を第
5表に示した。Thus, the deposited film formation and cleaning were repeated 20 cycles each, and the characteristics of the A-3i:H semiconductor film at the initial cycle, 10th cycle, and 20th cycle were evaluated, and the results are shown in Table 5.
第5表から、本発明を実施することにより、堆積室の洗
浄時間を短縮することができ、堆積膜形成と洗浄とを繰
り返し行なっても電子写真用感光体、太陽電池、ライン
センサー、TPT等のデバイスに使用できる極めて良品
質なA−3t:H半導体膜を再現性良く得られることが
わかった。Table 5 shows that by carrying out the present invention, the cleaning time of the deposition chamber can be shortened, and even if deposited film formation and cleaning are repeated, electrophotographic photoreceptors, solar cells, line sensors, TPT, etc. It was found that an extremely high quality A-3t:H semiconductor film that can be used in devices can be obtained with good reproducibility.
実施例14
第3図はマイクロ波を使用するプラズマCVD法(以下
rMw−PCVD法」と表記する。)により電子写真感
光体の堆積膜を形成する際に用いた装置の概要を示す図
である。Example 14 FIG. 3 is a diagram showing an outline of an apparatus used to form a deposited film on an electrophotographic photoreceptor by a plasma CVD method using microwaves (hereinafter referred to as "rMw-PCVD method"). .
真空容器21内部を、排気管305を介して真空排気す
ると共に、円筒状基体307を基体加熱ヒーター308
により所定温度に加熱、保持した0次に、原料ガス供給
管30Bを介して、シランガス、水素ガス等の原料ガス
が該原料ガス供給管に開口せられた複数のガス放出孔3
06′306′・・・・・・を通して真空容器301内
に放出した。これと同時併行的に、マイクロ波電源(図
示せず)から周波数2.45GHzのマイクロ波304
を発生し、該マイクロ波を導波部303を通り誘電体窓
302を介して真空容器301内に導入した。かくして
、第6表に示す作製条件により真空容器301内の導入
原料ガスを、マイクロ波のエネルギーにより励起して解
離し、中性ラジカル粒子、イオン粒子、電子等を生成し
、それ等を相互に反応し円筒状基体307の表面に電子
写真感光体の堆積膜を形成した。The inside of the vacuum container 21 is evacuated via the exhaust pipe 305, and the cylindrical substrate 307 is heated by a substrate heating heater 308.
Next, a raw material gas such as silane gas or hydrogen gas is heated and maintained at a predetermined temperature by a raw material gas supply pipe 30B through a plurality of gas discharge holes 3 opened to the raw material gas supply pipe.
06'306'... was discharged into the vacuum container 301. At the same time, a microwave 304 with a frequency of 2.45 GHz is generated from a microwave power source (not shown).
was generated, and the microwave was introduced into the vacuum vessel 301 through the waveguide 303 and the dielectric window 302. Thus, according to the manufacturing conditions shown in Table 6, the raw material gas introduced into the vacuum container 301 is excited and dissociated by microwave energy, generating neutral radical particles, ion particles, electrons, etc., and mutually dissociating them. The reaction occurred and a deposited film of an electrophotographic photoreceptor was formed on the surface of the cylindrical substrate 307.
これと併せて下記洗浄条件により本発明を実施して反応
室内の副生物の洗浄を行ない、堆積膜形成と洗浄とを連
続して繰り返し行なった。In addition, the present invention was carried out under the following cleaning conditions to clean by-products in the reaction chamber, and deposited film formation and cleaning were successively repeated.
く洗浄条件〉 使用ガス SF6 400Sccm。Washing conditions> Gas used: SF6 400Sccm.
02 210Sccm。02 210Sccm.
Ar 260Sccm
(混合比30%)
堆積室内内圧 0.4mTorr
放電周波数 2.45GHz
マイクロ波電力 1゜6KW
第
表
比較例3
堆積膜の形成条件は実施例14と同じとし、洗浄にSF
6との混合ガスを用い堆積膜形成と洗浄を連続して繰り
返し行なった。洗浄条件を下記に示す。Ar 260Sccm (mixing ratio 30%) Deposition chamber internal pressure 0.4mTorr Discharge frequency 2.45GHz Microwave power 1゜6KW Table Comparative Example 3 The deposited film formation conditions were the same as in Example 14, and SF was used for cleaning.
Deposited film formation and cleaning were continuously and repeatedly performed using a mixed gas of No. 6. The washing conditions are shown below.
く洗浄条件〉 使用ガス SFa 400Sccm。Washing conditions> Gas used: SFa 400Sccm.
02 210Sccm
堆積室内内圧 0.4mTorr
放電周波数 2.45GHz
マイクロ波電力 1.6KW
第4図の堆積室を上部、中央部、下部の3つに分けると
、比較例3では洗浄において上部と下部のプラズマが強
く中央部のプラズマが弱いため、上部と下部の付着物は
比較的早く洗浄除去されたが、中央部は遅く、上部及び
下部の洗浄除去時間を1とすると、中央部は1,6であ
フた。実施例14では洗浄において上部、中央部、下部
のプラズマの強度は、はぼ均一化され、付着物の洗浄除
去速度もほぼ揃ったため、堆積室全体の洗浄時間を短縮
することがでた。02 210Sccm Deposition chamber internal pressure 0.4 mTorr Discharge frequency 2.45 GHz Microwave power 1.6 KW If the deposition chamber in Fig. 4 is divided into three parts: upper, middle, and lower, in Comparative Example 3, the plasma in the upper and lower parts was removed during cleaning. Because the plasma is strong and the plasma is weak in the center, the deposits on the top and bottom were cleaned and removed relatively quickly, but the center was slow. After. In Example 14, the intensity of the plasma in the upper, middle, and lower parts of the cleaning chamber was made almost uniform, and the cleaning removal rate of deposits was almost uniform, so that the cleaning time for the entire deposition chamber could be shortened.
かくして堆積膜形成と洗浄とをそれぞれ20サイクル繰
り返し、初期のサイクルと10サイクル目、20サイク
ル目の電子写真用感光体の特性を実施例1と同様に評価
し極めて良好な結果を得た。結果を第7表に示した。Thus, the deposition film formation and cleaning were repeated 20 cycles each, and the characteristics of the electrophotographic photoreceptor at the initial cycle, 10th cycle, and 20th cycle were evaluated in the same manner as in Example 1, and very good results were obtained. The results are shown in Table 7.
[発明の効果コ
本発明によれば、堆積膜形成装置の洗浄において反応室
内の付着物を短時間で効率良く洗浄除去することができ
、且つ形成する堆積膜の品質を高水準に維持することが
できる。[Effects of the Invention] According to the present invention, deposits in the reaction chamber can be efficiently cleaned and removed in a short time when cleaning a deposited film forming apparatus, and the quality of the deposited film to be formed can be maintained at a high level. Can be done.
第1図は本発明に用いた堆積膜形成装置の構成を示した
模式図である。第2図は本発明に用いた堆積膜形成装置
の概略図である。第3図は本発明に用いたマイクロ波−
PCVD法による堆積膜形成装置の断面略図である。第
4図は洗浄時間を示すグラフ。
201・・・成膜室、
202・・・高周波プラズマ発生装置、203・・・高
周波導入用カソード電極、204・・・排気バルブ、
205・・・基体加熱用ヒータ、
206・・・基体、
207・・・ガス導入管、
208・・・成膜用ガス導入管、
209・・・洗浄ガス導入管、
210・・・基体支持台、
211・・・排気用配管、
301・・・真空容器、
302・・・屈電体窓、
303・・・導波部、
304・・・マイクロ波、
305・・・排気管、
306・・・原料ガス供給管、
307・・・円筒状基体、
308・・・加熱ヒーター
こりFIG. 1 is a schematic diagram showing the configuration of a deposited film forming apparatus used in the present invention. FIG. 2 is a schematic diagram of a deposited film forming apparatus used in the present invention. Figure 3 shows the microwave used in the present invention.
1 is a schematic cross-sectional view of a deposited film forming apparatus using a PCVD method. FIG. 4 is a graph showing cleaning time. 201... Film forming chamber, 202... High frequency plasma generator, 203... Cathode electrode for high frequency introduction, 204... Exhaust valve, 205... Heater for heating the substrate, 206... Substrate, 207 ... Gas introduction pipe, 208 ... Gas introduction pipe for film formation, 209 ... Cleaning gas introduction pipe, 210 ... Substrate support stand, 211 ... Exhaust pipe, 301 ... Vacuum container, 302... Reflexive window, 303... Waveguide, 304... Microwave, 305... Exhaust pipe, 306... Raw material gas supply pipe, 307... Cylindrical base, 308...・Heating heater stiffness
Claims (3)
反応室の内壁等に生じる付着物を、ガス分子に高周波エ
ネルギーを与えてプラズマ反応をせしめ、該反応により
生じた活性成分のエッチング作用により前記付着物を洗
浄する方法においてエッチングガスとしてSF_6と酸
素化合物との混合ガスを用い、該混合ガスに、希ガスを
混合することを特徴とする堆積膜形成装置の洗浄方法。(1) When forming a silicon-containing deposited film using the gas phase method, deposits that occur on the inner walls of the reaction chamber are removed by applying high-frequency energy to gas molecules to cause a plasma reaction, and the active components produced by the reaction are etched. A method for cleaning a deposited film forming apparatus, characterized in that a mixed gas of SF_6 and an oxygen compound is used as an etching gas in the method for cleaning the deposits by action, and a rare gas is mixed in the mixed gas.
ることを特徴とする請求項(1)に記載の堆積膜形成装
置の洗浄方法。(2) The method for cleaning a deposited film forming apparatus according to claim (1), wherein the mixing ratio of the rare gas in the mixed gas is 5-60%.
%であることを特徴とする請求項(1)に記載の堆積膜
形成装置の洗浄方法。(3) The mixing ratio of oxygen compounds in the mixed gas is 25-80
%. %. The method for cleaning a deposited film forming apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28982688A JPH02138472A (en) | 1988-11-16 | 1988-11-16 | Method for cleaning deposited film forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28982688A JPH02138472A (en) | 1988-11-16 | 1988-11-16 | Method for cleaning deposited film forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02138472A true JPH02138472A (en) | 1990-05-28 |
Family
ID=17748272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28982688A Pending JPH02138472A (en) | 1988-11-16 | 1988-11-16 | Method for cleaning deposited film forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02138472A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08319586A (en) * | 1995-05-24 | 1996-12-03 | Nec Yamagata Ltd | Method for cleaning vacuum treating device |
WO1999050897A1 (en) * | 1998-03-31 | 1999-10-07 | Lam Research Corporation | Techniques for forming trenches in a silicon layer of a substrate in a high density plasma processing system |
US6743733B2 (en) * | 2001-08-23 | 2004-06-01 | Hitachi, Ltd. | Process for producing a semiconductor device including etching using a multi-step etching treatment having different gas compositions in each step |
-
1988
- 1988-11-16 JP JP28982688A patent/JPH02138472A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08319586A (en) * | 1995-05-24 | 1996-12-03 | Nec Yamagata Ltd | Method for cleaning vacuum treating device |
WO1999050897A1 (en) * | 1998-03-31 | 1999-10-07 | Lam Research Corporation | Techniques for forming trenches in a silicon layer of a substrate in a high density plasma processing system |
US6743733B2 (en) * | 2001-08-23 | 2004-06-01 | Hitachi, Ltd. | Process for producing a semiconductor device including etching using a multi-step etching treatment having different gas compositions in each step |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5454903A (en) | Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization | |
US5863339A (en) | Chamber etching of plasma processing apparatus | |
Booth et al. | Dual-frequency capacitive radiofrequency discharges: effect of low-frequency power on electron density and ion flux | |
JP4714166B2 (en) | Substrate plasma processing apparatus and plasma processing method | |
JPS59142839A (en) | Cleaning method of vapor-phase apparatus | |
JPH06287760A (en) | Plasma treating device and treatment | |
JPH0773997A (en) | Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device | |
JPH09185999A (en) | Radical control method | |
JPS60169139A (en) | Vapor-phase treating apparatus | |
JPH02138472A (en) | Method for cleaning deposited film forming device | |
JPH02129371A (en) | Method for cleaning device for forming deposited film | |
KR20040096380A (en) | Method for cleaning of chamber for depositing metal oxide and apparatus for depositing to performing the same | |
JPH0776781A (en) | Plasma vapor growth device | |
JP4980055B2 (en) | Method for manufacturing a vacuum plasma treated workpiece | |
JP2004214609A (en) | Method of treating plasma processing apparatus | |
JPS6134931A (en) | Manufacture of silicon film | |
JPH0892746A (en) | Plasma chemical vapor deposition and device therefor | |
JPS60147113A (en) | Manufacture of silicon film | |
JPH02185977A (en) | Film forming vacuum device | |
JPH02129372A (en) | Method for cleaning device for forming deposited film | |
JP3359128B2 (en) | Plasma CVD deposited film forming apparatus and deposited film forming method | |
JPH0418456B2 (en) | ||
US6626187B2 (en) | Method of reconditioning reaction chamber | |
JP2001011641A (en) | Film formation treating method | |
JP2001267251A (en) | Equipment and method for plasma processing |