JPH02129371A - Method for cleaning device for forming deposited film - Google Patents
Method for cleaning device for forming deposited filmInfo
- Publication number
- JPH02129371A JPH02129371A JP63282078A JP28207888A JPH02129371A JP H02129371 A JPH02129371 A JP H02129371A JP 63282078 A JP63282078 A JP 63282078A JP 28207888 A JP28207888 A JP 28207888A JP H02129371 A JPH02129371 A JP H02129371A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- deposited film
- gas
- etching
- deposits
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004140 cleaning Methods 0.000 title claims description 80
- 239000007789 gas Substances 0.000 claims abstract description 83
- 238000005530 etching Methods 0.000 claims abstract description 56
- 230000009471 action Effects 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 150000002927 oxygen compounds Chemical class 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 20
- 239000012808 vapor phase Substances 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 4
- 229910000077 silane Inorganic materials 0.000 abstract description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract 2
- 229910052760 oxygen Inorganic materials 0.000 abstract 2
- 238000000151 deposition Methods 0.000 description 27
- 230000008021 deposition Effects 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 21
- 108091008695 photoreceptors Proteins 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920000548 poly(silane) polymer Polymers 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- -1 silane compound Chemical class 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4405—Cleaning of reactor or parts inside the reactor by using reactive gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/005—Materials for treating the recording members, e.g. for cleaning, reactivating, polishing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Metallurgy (AREA)
- Toxicology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Light Receiving Elements (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の属する分野の説明]
本発明は堆積膜形成装置、とりわけRFプラズマCVD
法、マイクロ波プラズマCVD法、熱CVD法グログロ
ー放電法−ク放電法(以下、これらを気相法と総称する
)により堆積膜を形成する装置の洗浄方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Description of the field to which the invention pertains] The present invention relates to a deposited film forming apparatus, particularly an RF plasma CVD
The present invention relates to a cleaning method for an apparatus for forming a deposited film by a method, a microwave plasma CVD method, a thermal CVD method, a glow-glow discharge method, or a discharge method (hereinafter collectively referred to as a vapor phase method).
[従来の技術の説明コ
気相法によって基体上に機能性被膜を形成する技術は例
えば電子写真における先導仏性部材を均一にドラム上に
成膜する場合などに既に広く採用されている。かかる気
相法による堆積膜形成に際して、反応生成物の一部が目
的とする基体以外の部分、即ち反応室等の内壁に被膜ま
たは粉末として被着することは避けることができない。[Description of the Prior Art] The technique of forming a functional film on a substrate by a vapor phase method has already been widely employed, for example, when forming a film on a drum uniformly for a leading member in electrophotography. When forming a deposited film by such a vapor phase method, it is unavoidable that a part of the reaction product adheres as a film or powder to a portion other than the intended substrate, that is, to the inner wall of the reaction chamber or the like.
反応室等の内壁に被着するこれらの被膜または粉末は、
剥離しやすく、この剥離した小片や粉は反応槽内を飛翔
して機能性堆積膜を形成すべき基体上に付着し、これら
が堆積膜にピンホール等の膜欠陥を生ずる原因の一つに
なる。These films or powders that adhere to the inner walls of reaction chambers, etc.
It is easy to peel off, and these peeled off particles and powder fly inside the reaction tank and adhere to the substrate on which the functional deposited film is to be formed, and this is one of the causes of film defects such as pinholes in the deposited film. Become.
従来、気相法により形成される堆積膜の例として、例え
ばシラン系化合物を用いてプラズマ反応により形成され
るケイ素原子を主成分とする光受容部材用の堆積膜があ
る。この堆積を形成した反応室内には、基体以外の部分
にケイ素原子を主成分とする被膜やシランの重複合物(
ポリシランと呼ばれている)が大量に副生じ、これを洗
浄除去する方法として、従来例えばCF4と02との混
合ガスを用いてプラズマ反応により洗浄する方法が用い
られている。Conventionally, as an example of a deposited film formed by a vapor phase method, there is a deposited film for a light-receiving member whose main component is silicon atoms, which is formed by a plasma reaction using, for example, a silane compound. In the reaction chamber where this deposit was formed, a coating mainly composed of silicon atoms and a heavy composite of silane (
A large amount of polysilane (called polysilane) is produced as a by-product, and as a method of cleaning and removing it, a method of cleaning by plasma reaction using a mixed gas of CF4 and 02, for example, has been used.
[発明が解決しようとする課題]
しかしながら、上述の方法によりケイ素原子を主成分と
する被膜やポリシランは取り除かれるが、これにより5
in2が残渣として残り、また02、F、分子等が吸着
物として残留し、次回の堆積形成時に堆積膜中にとり込
まれ、例えば光受容部材としての利用特性低下(帯電能
の低下、画像流れ等)、内視は光導伝特性低下[光導電
率(σph) /暗導電率(σd)の低下、モビリティ
−の低下コの原因となる。特にイオンが発生する堆積膜
形成において前記した使用特性乃至は光導電特性の低下
が著しい。[Problems to be Solved by the Invention] However, although the above-mentioned method removes the film and polysilane mainly composed of silicon atoms,
in2 remains as a residue, and 02, F, molecules, etc. remain as adsorbents and are incorporated into the deposited film during the next deposition formation, resulting in, for example, deterioration of the usability characteristics as a light-receiving member (decreased charging ability, image blurring, etc.) ), internal vision causes a decrease in photoconductive properties [a decrease in photoconductivity (σph)/dark conductivity (σd)] and a decrease in mobility. Particularly in the formation of a deposited film in which ions are generated, the above-mentioned usage characteristics or photoconductive characteristics are significantly deteriorated.
従って、前述した堆積膜形成と洗浄を繰返しサイクルで
行なうと、次第に特性低下が嵩じ、比較的短期間で製品
としての品質許容限度を逸脱してしまう。従ってこれ迄
は、数サイクル毎に、前記洗浄のほかに反応室等の分解
清掃作業、あるいは又前記洗浄のぽかに例えばArとH
2の混合ガス等それぞれ反応性の異なる複数の気体を用
いて複数回反応操作を行なうことが必要となり、生産性
の低下を招いた。Therefore, if the above-described deposited film formation and cleaning are repeated in repeated cycles, the characteristics will gradually deteriorate, and the quality of the product will exceed the allowable limit in a relatively short period of time. Therefore, until now, in addition to the above-mentioned cleaning, the reaction chamber etc. had to be disassembled and cleaned every few cycles, or for example, Ar and H
It became necessary to perform the reaction operation multiple times using a plurality of gases each having a different reactivity, such as the mixed gas of No. 2, resulting in a decrease in productivity.
そこで堆積膜形成装置の洗浄用エツチングガスとしてS
F6と酸素化合物(02、No、NO2等)との混合ガ
スの使用が検討され、例えば光受容部材の形成において
、所定の条件下で堆積膜形成と洗浄とを交互に繰り返し
行なっても、光受容部材としての使用特性乃至は光導電
特性の低下のない良好な結果が得られている。しかしな
がらSF、と酸素化合物との混合ガスは反応室内におけ
るプラズマの安定性乃至は均一性に欠けるため、装置の
構成によっては反応室内の洗浄領域が不均一になること
があり、反応室内全体の洗浄が完了するまでの時間増加
の問題及び反応室内の早く洗浄が終了した部分が過剰に
エツチングされダメージを受けることによる装置耐久性
の低下の問題が残されていた。Therefore, S is used as an etching gas for cleaning the deposited film forming equipment.
The use of a mixed gas of F6 and oxygen compounds (02, No, NO2, etc.) has been studied. Good results have been obtained with no deterioration in the usage characteristics as a receiving member or in the photoconductive characteristics. However, the mixed gas of SF and oxygen compounds lacks plasma stability or uniformity in the reaction chamber, so depending on the configuration of the device, the cleaning area within the reaction chamber may become uneven, and the entire reaction chamber can be cleaned. There remained the problem of an increase in the time required for the cleaning to be completed, and a problem of decreased durability of the device due to excessive etching and damage to parts of the reaction chamber where cleaning was completed early.
[発明の目的]
本発明は、従来の問題点を解決し、気相法により堆積膜
の形成と反応室等の洗浄を交互に繰り返し行なう際、形
成される堆積膜の品質を高水準に維持し、且つ反応室の
内壁等に生じた付着物を均一に効率よく洗浄することの
できる堆積膜形成装置の洗浄方法を提供することを目的
とする。[Object of the invention] The present invention solves the conventional problems and maintains the quality of the deposited film at a high level when forming the deposited film and cleaning the reaction chamber etc. by a vapor phase method are alternately repeated. It is an object of the present invention to provide a method for cleaning a deposited film forming apparatus that can uniformly and efficiently clean deposits formed on the inner walls of a reaction chamber, etc.
[課題を解決するための手段]
上述のごとき従来の問題点を解決する手段として見い出
された本発明の堆積膜形成装置の洗浄方法は、気相法に
よりケイ素を含む堆積膜を形成する際に反応室等の内壁
に生じる付着物を、ガス分子に高周波エネルギーを与え
てプラズマ反応をせしめ、該反応により生じた活性成分
のエツチング作用により前記付着物を洗浄する方法にお
いて、エツチングガスとして、SF、と酸素化合物(0
2,No、No□等)との混合ガスを用い、該混合ガス
にSF、以外のエラチンガス(CF4゜NF3等)を混
合することを特徴とするものである。[Means for Solving the Problems] The method for cleaning a deposited film forming apparatus of the present invention, which was discovered as a means to solve the above-mentioned conventional problems, is a method for cleaning a deposited film forming apparatus that uses a vapor phase method to form a deposited film containing silicon. In a method of cleaning deposits formed on the inner wall of a reaction chamber or the like by applying high frequency energy to gas molecules to cause a plasma reaction, and using the etching action of the active ingredient produced by the reaction, the etching gas may include SF, and oxygen compounds (0
This method is characterized by using a mixed gas with other gases (e.g., No. 2, No. 2, No. 2, No. 2, No. 2, No. 2, No. 2, No.
さらに詳しくは本発明の堆積膜形成装置の洗浄方法は、
SF6を使いエツチングする時の堆積膜の高品質の維持
性能と、エツチングの高速性を保持したままSF6以外
のエツチングガス、特にCF a又はNF3の、SF6
と併用したときに現われる、反応炉内の付着物の大量に
分布している部分へのエツチングの集中化効果を利用し
、エッツチングの均一性を達成することを特徴とするも
のである。More specifically, the method for cleaning a deposited film forming apparatus of the present invention includes:
Etching gases other than SF6, especially CF a or NF3, can be used to maintain the high quality of the deposited film and the high speed of etching when etching with SF6.
This method is characterized by achieving etching uniformity by utilizing the effect of concentrating etching on areas in the reactor where a large amount of deposits are distributed, which occurs when used in combination with etching.
前述したようにSF6と酸素化合物との混合ガスは反応
室内におけるプラズマの安定性乃至は均一性にやや欠け
るため、反応室内の電極間距離が場所によって異なる場
合乃至は高周波電波のアンテナになるような部分がある
場合などには、電極間距離の近い場合乃至はアンテナ部
分にプラズマが集中して、反応室内のプラズマの分布が
不均一になり易い。従って、反応室内の付着物のエツチ
ング速度は、プラズマの強い部分では増加するがプラズ
マの弱い部分では大きく低下することになって、結果と
して反応室内全体の付着物の洗浄除去の時間が増加する
ことになり、また洗浄除去が早く終了した部分がその後
、過剰にエツチングされるため、その部分がダメージを
受けることもあった。As mentioned above, the mixed gas of SF6 and oxygen compounds slightly lacks the stability or uniformity of the plasma in the reaction chamber. In cases where the electrodes are close to each other, or where the electrodes are close to each other, plasma tends to concentrate on the antenna portion, resulting in non-uniform distribution of plasma within the reaction chamber. Therefore, the etching rate of deposits in the reaction chamber increases in areas where the plasma is strong, but decreases significantly in areas where the plasma is weak, resulting in an increase in the time required to clean and remove deposits throughout the reaction chamber. In addition, areas where cleaning and removal were completed quickly were subsequently etched excessively, resulting in damage to those areas.
そこで、本発明者は鋭意研究を続けた結果、前記したS
F、と酸素化合物との混合ガスにSF。Therefore, as a result of intensive research, the inventors of the present invention found that the above-mentioned S
SF is a mixed gas of F and oxygen compounds.
以外のエツチングガス(CF4 、NF3等)を混合す
ることにより、エツチング速度をほとんど低下させるこ
となく反応室内におけるエツチングの安定性及び均一性
を向上させることができるとの知見を得た。本発明を実
施することにより反応室内の電極間距離が場所によって
異なるような装置や高周波電波のアンテナになるような
部分を持つ装置においても反応室内の全部分でのエツチ
ング時間を揃えることが可能になり、結果として反応室
内の付着物の洗浄除去時間を短縮することができ、また
反応室内壁等が過剰エツチングによるダメージを受ける
こともなかった。It has been found that by mixing other etching gases (such as CF4 and NF3), it is possible to improve the stability and uniformity of etching within the reaction chamber without substantially reducing the etching rate. By implementing the present invention, it is possible to make the etching time uniform in all parts of the reaction chamber, even in devices where the distance between electrodes in the reaction chamber varies depending on location, or in devices that have a part that serves as an antenna for high-frequency radio waves. As a result, it was possible to shorten the cleaning and removal time of deposits in the reaction chamber, and the walls of the reaction chamber were not damaged due to excessive etching.
本発明において、エッチング工程中反応炉内のガスの混
合比を一定で行なう場合、混合ガス中の5Fet以外の
エツチングガスの混合比がエツチングガス流量全体に対
して10%までであると、反応室内におけるエツチング
の安定性乃至は均一性の向上は見られず、また混合比が
エツチングガス流量全体に対して80%を越えるとエツ
チングの安定性乃至は均一性は良いが付着物に対するエ
ツチング速度が低下するためSF、以外のエツチングガ
スの混合比はエツチングガス流量全体に対して10〜8
0%の範囲外においては洗浄除去時間を短縮することが
できない。In the present invention, when the mixing ratio of gases in the reaction furnace is kept constant during the etching process, if the mixing ratio of etching gases other than 5Fet in the mixed gas is up to 10% of the total etching gas flow rate, No improvement in etching stability or uniformity was observed, and if the mixing ratio exceeded 80% of the entire etching gas flow rate, the etching stability or uniformity was good, but the etching rate for deposits decreased. Therefore, the mixing ratio of etching gases other than SF is 10 to 8 with respect to the entire etching gas flow rate.
Outside the range of 0%, the cleaning removal time cannot be shortened.
又SF、と酸素化合物とSF、以外のエツチングガスの
混合ガスの混合比をエッチング工程中変化させる場合は
、SF6以外のエツチングガスの比率を任意に変えるこ
とにより各反応炉の形状に最適のエツチング工程を決め
ることができる。In addition, when changing the mixing ratio of SF, an oxygen compound, and an etching gas other than SF during the etching process, the optimum etching for each reactor shape can be achieved by arbitrarily changing the ratio of etching gases other than SF6. You can decide the process.
本発明が利用できるデバイスとしては、その作製におい
て目的とする基体以外の部分にもケイ素原子を含む被膜
やポリシランなどの副生物が生じるような例えは電子写
真用感光体、太陽電池、ラインセンサー、TPT等のデ
バイスが挙げられる。本発明が利用できる堆積膜形成方
法としては、例えばプラズマCVD法、マイクロ波プラ
ズマCVD法、HRCVD法等が挙げられる。本発明に
使用する゛酸素化合物としてはo2が普通であるが、他
の酸素化合物、例えばNo、No2等でも02と同様に
使用できる。Examples of devices to which the present invention can be applied include electrophotographic photoreceptors, solar cells, line sensors, etc. in which by-products such as silicon atom-containing coatings and polysilane are produced in areas other than the intended substrate during their manufacture. Examples include devices such as TPT. Examples of deposited film forming methods that can be used in the present invention include plasma CVD, microwave plasma CVD, HRCVD, and the like. The oxygen compound used in the present invention is usually O2, but other oxygen compounds such as No. 2, No. 2, etc. can also be used in the same manner as 02.
酸素化合物の混合比は、エツチングガスの利用効率をあ
げ、さらにエツチング速度の絶対値を高い値に維持する
為10%以上80%以下が好ましく、最適に25%以上
60%以下が使用される。The mixing ratio of the oxygen compound is preferably 10% or more and 80% or less, and optimally 25% or more and 60% or less, in order to increase the etching gas usage efficiency and maintain the absolute value of the etching rate at a high value.
但し、いずれの酸素化合物を使用してもSF6及びSF
6以外のエツチングガスの利用効率は向上するが、SF
6とSF6以外のエツチングガスの各混合比におけるエ
ツチングの安定性、及び均一性は酸素化合物の混合比に
は依存せず、SF6とSF6以外のエツチングガスの混
合比に依存する。However, no matter which oxygen compound is used, SF6 and SF
Although the efficiency of using etching gases other than 6 is improved, SF
Etching stability and uniformity at each mixing ratio of etching gases other than SF6 and SF6 do not depend on the mixing ratio of oxygen compounds, but depend on the mixing ratio of SF6 and etching gases other than SF6.
本発明に使用するSF、以外のエツチングガスとしては
、CF4あるいはNF、が適しているが他にSiF4
、BF3.F2等も同様に使用することができる。また
2種類以上のエツチングガスを混合して使用することも
できる。As the etching gas other than SF used in the present invention, CF4 or NF is suitable, but SiF4 is also suitable.
, BF3. F2 etc. can be used similarly. It is also possible to use a mixture of two or more types of etching gas.
本発明における洗浄の際の反応室内の圧力は、プラズマ
を発生できる圧力の範囲であれば問題ないが、1xlO
−’Torrから5X10Torrの範囲が適当であり
、SF、と酸素化合物とSF6以外のエツチングガスと
の混合ガスの流量は反応室の容積や排気ポンプの能力に
よって適時法められるが、0.ISccmから1102
SLの範囲で用いられ、またガス分子に与える高周波エ
ネルギーは大きい程エツチング速度は早くなるが装置の
形態及び使用する電源によって適時法められ、数Wから
10”KWの範囲で用いられる。There is no problem with the pressure inside the reaction chamber during cleaning in the present invention as long as it is within the pressure range that can generate plasma;
-' Torr to 5 x 10 Torr is appropriate, and the flow rate of the mixed gas of SF, oxygen compound, and etching gas other than SF6 is determined from time to time depending on the volume of the reaction chamber and the capacity of the exhaust pump. 1102 from ISccm
It is used in the range of SL, and the higher the high frequency energy applied to the gas molecules, the faster the etching rate, but it is appropriately determined depending on the form of the apparatus and the power source used, and is used in the range of several watts to 10'' kW.
[実施例]
(実施例1)
第1図は気相法により電子写真感光体の堆積膜を形成す
る際に用いたRFプラズマCVD装置の概要を示す図で
ある。101は円筒状のカソード電極であり、102は
円筒状のアノード電極で基体を兼ねている。排気管11
3を通じ排気されている反応室中に第1表に示した条件
で原料ガスをガス導入管108のガス導入孔109から
導入し、高周波マツチングボックス112より導入され
る高周波電波により電極間で発生したプラズマの作用で
気相法により基体上にA−Siの堆積膜を形成したが、
この際反応室の内壁等にも反応生成物の一部が付着した
。[Example] (Example 1) Fig. 1 is a diagram showing an outline of an RF plasma CVD apparatus used when forming a deposited film of an electrophotographic photoreceptor by a vapor phase method. 101 is a cylindrical cathode electrode, and 102 is a cylindrical anode electrode that also serves as a base. exhaust pipe 11
The raw material gas is introduced from the gas introduction hole 109 of the gas introduction pipe 108 under the conditions shown in Table 1 into the reaction chamber which is evacuated through A deposited film of A-Si was formed on the substrate by the vapor phase method using the action of plasma.
At this time, some of the reaction products also adhered to the inner walls of the reaction chamber.
形成した電子写真感光体を取り出し、替りに堆積形成用
の基体と同じ形状のダミー基体を装着し、堆積膜形成の
際と同様に下記に示した洗浄条件によりガス導入管10
8のガス導入孔109からSF6と02とCF4との混
合ガスを導入し、高周波マツチングボックス112より
導入される高周波電波によりプラズマを発生せしめ、生
じた活性性成分のエツチング作用により反応室の内壁等
の付着物を洗浄を行ない堆積膜形成と洗浄を連続し繰り
返し行なった。The formed electrophotographic photoreceptor was taken out, a dummy substrate having the same shape as the substrate for deposit formation was attached in its place, and the gas introduction tube 10 was cleaned under the cleaning conditions shown below in the same manner as when forming the deposited film.
A mixed gas of SF6, 02, and CF4 is introduced through the gas introduction hole 109 of No. 8, and plasma is generated by high frequency radio waves introduced from the high frequency matching box 112, and the inner wall of the reaction chamber is etched by the etching action of the generated active component. The deposited film formation and cleaning were successively repeated.
〈洗浄条件〉
使用ガス SF6 480 Sccm、Q、
4QOSccm。<Cleaning conditions> Gas used: SF6 480 Sccm, Q,
4QOSccm.
CF4320 Sccm
(混合比40%)
0、 5Torr
13、 56MHz
1.5KW
放電周波数
堆積室内内圧
高周波電力
力
表
比較例1
堆積膜の形成条件は実施例1と同じとし、洗浄にSF8
とo2との混合ガスを用い、堆積膜形成と洗浄を連続し
て繰り返し行なった。洗浄条件を下記に示す。CF4320 Sccm (Mixing ratio 40%) 0, 5 Torr 13, 56 MHz 1.5 KW Discharge frequency Deposition chamber internal pressure High frequency power Power table Comparative example 1 The deposited film formation conditions were the same as in Example 1, and SF8 was used for cleaning.
Deposited film formation and cleaning were successively repeated using a mixed gas of O2 and O2. The washing conditions are shown below.
〈洗浄条件〉
使用ガス SF、 800 Sccm、02
400 Seem。<Cleaning conditions> Gas used: SF, 800 Sccm, 02
400 Seem.
堆積室内内圧 0.5Torr
放電周波数 13.56MHz
高周波電力 1.5KW
第1図の堆積室を上部、中央部、下部の3つに分けると
、比較例1では洗浄において上部と下部のプラズマが強
く中央部が弱くなるため、堆積室内壁の上部と下部の付
着物は比較的早く洗浄除去されるが、中央部の付着物の
洗浄除去は最も遅く、上部付着物の洗浄除去時間を1と
規格化すると中央部の洗浄除去時間は1.8必要で、こ
れが堆積室全体の洗浄が終了する時間であり、また洗浄
除去が早く終了した上部及び下部ではその後も過剰にエ
ツチングされたため部分的な損傷が見られた。実施例1
では洗浄において上部、中央部、下部のプラズマの強度
の分布は比較例1と変わらないが、付着物の洗浄除去速
度は、CF4を混合したことにより残留する付着物の量
もしくは付着物の表面積に依存して、プラズマの強度の
弱いところが、逆にエツチング速度がエツチングが進む
につれ徐々にあがってくるため、反応炉内の上部、中央
部、下部の洗浄除去完了時間をほぼ揃えることができた
。このため、堆積室全体の洗浄時間は大幅に短縮し、ま
た堆積室内の損傷もなかった。Deposition chamber internal pressure: 0.5 Torr Discharge frequency: 13.56 MHz High frequency power: 1.5 KW If the deposition chamber in Fig. 1 is divided into three parts: upper, middle, and lower, in Comparative Example 1, during cleaning, the plasma in the upper and lower parts was stronger in the center. Because the upper and lower parts of the inner wall of the deposition chamber are weaker, the deposits on the upper and lower parts of the inner wall of the deposition chamber are cleaned and removed relatively quickly, but the deposits in the center are the slowest to clean and remove, and the cleaning and removal time for the upper deposits is standardized as 1. Then, the cleaning and removal time for the central part was 1.8, which is the time required to finish cleaning the entire deposition chamber, and the upper and lower parts, where cleaning and removal were completed earlier, were still partially damaged due to excessive etching. It was seen. Example 1
In cleaning, the distribution of plasma intensity at the top, center, and bottom is the same as in Comparative Example 1, but the cleaning removal rate of deposits depends on the amount of deposits remaining or the surface area of deposits due to the addition of CF4. As etching progresses, the etching rate gradually increases in areas where the plasma intensity is weak, so the cleaning and removal times for the upper, middle, and lower parts of the reactor were almost the same. Therefore, the cleaning time for the entire deposition chamber was significantly shortened, and there was no damage to the interior of the deposition chamber.
結果を第2図に示した。かくして堆積膜形成と洗浄とを
それぞれ20サイクル繰り返し、初期サイクルと10サ
イクル目、20サイクル目の電子写真感光体の画像流れ
の評価(画像状態の優良なものをAとし、A、B、C,
D、Eの5段階で評価)、画像欠陥の評価(◎=極めて
高水準、O=実用上十分、△=実用上不十分)及び光導
電特性と電子写真用感光体としての総合的な実用評価(
◎=極めて高水準、○=実用上十分、△=実用上不十分
)を行なった。結果を第2表に示した。The results are shown in Figure 2. In this way, deposited film formation and cleaning were repeated for 20 cycles each, and the image deletion of the electrophotographic photoreceptor was evaluated at the initial cycle, the 10th cycle, and the 20th cycle (one with an excellent image condition is designated as A, and A, B, C,
evaluation on a 5-level scale of D and E), image defect evaluation (◎ = extremely high level, O = practically sufficient, △ = practically insufficient), and photoconductive properties and overall practical use as an electrophotographic photoreceptor. evaluation(
◎ = extremely high level, ○ = practically sufficient, △ = practically insufficient). The results are shown in Table 2.
第2表から、本発明を実施することにより、堆積室の洗
浄時間を短縮することができ、堆積膜形成と洗浄を繰り
返し行なっても堆積膜特性の変動がなく、品質を高水準
に維持できることがわかる。Table 2 shows that by carrying out the present invention, the cleaning time of the deposition chamber can be shortened, and even if deposited film formation and cleaning are repeated, there is no change in the deposited film characteristics, and the quality can be maintained at a high level. I understand.
ニー−′
(実施例2〜10)
堆積膜形成条件は実施例1と同じとし、第3表及び第4
表に示した条件により洗浄し、堆積室内の各部分の洗浄
除去時間と堆積室全体の洗浄時間を第3表及び第4表に
示した。Knee-' (Examples 2 to 10) The deposited film forming conditions were the same as in Example 1, and Tables 3 and 4
The cleaning was carried out under the conditions shown in the table, and the cleaning time for each part of the deposition chamber and the cleaning time for the entire deposition chamber are shown in Tables 3 and 4.
(実施例11〜12)
堆積膜形成条件は実施例1と同じとし、洗浄用ガスとし
てSF、と02とNF3の混合ガスを用い第4表に示し
た条件により洗浄し、堆積室内の各部の洗浄除去時間と
堆積室全体の洗浄時間を第4表に示した。(Examples 11 and 12) The deposited film forming conditions were the same as in Example 1, and cleaning was performed under the conditions shown in Table 4 using SF, a mixed gas of 02, and NF3 as the cleaning gas, and each part in the deposition chamber was cleaned. Table 4 shows the cleaning removal time and the cleaning time for the entire deposition chamber.
[−一一
(実施例13)
第3図に示した装置を用い以下の如き操作によフて電子
写真感光体の堆積膜を形成した。[-11 (Example 13) Using the apparatus shown in FIG. 3, a deposited film of an electrophotographic photoreceptor was formed by the following operations.
第3図において、301は成膜空間としての堆積室であ
り、内部の基体支持台310上にコーニング社製705
9ガラス基板306を設置した。In FIG. 3, 301 is a deposition chamber as a film forming space, and a 705 film manufactured by Corning Co., Ltd. is placed on a substrate support stand 310 inside.
9 glass substrate 306 was installed.
つぎに排気バルブ304を開け、排気配管311を通じ
て不図示の真空ポンプによって反応炉内を10””To
rrまで排気し、305の基体加熱用のヒータを発熱さ
せ、基板表面温度が250℃となるようにコントロール
した。Next, the exhaust valve 304 is opened, and a vacuum pump (not shown) is used to pump the inside of the reactor to 10''To
The temperature of the substrate surface was controlled to be 250° C. by exhausting the air to rr and generating heat by the heater 305 for heating the substrate.
つぎに下記に示した堆積膜形成条件によりガス供給間3
08より導入管307を通じて反応炉内に成膜用ガスを
導入し、はぼ同時に放電エネルギー発生装置302によ
フて放電パワーを導入し、プラズマを生成させ、堆積膜
形成を行った。Next, under the deposited film formation conditions shown below, the gas supply period 3
From 08, a film forming gas was introduced into the reactor through the introduction pipe 307, and at the same time, discharge power was introduced using the discharge energy generator 302 to generate plasma and form a deposited film.
これと併せて下記洗浄条件により本発明を実施して反応
室内の副成分の洗浄を行い堆積膜形成と洗浄とを連続し
繰り返し行った。In addition, the present invention was carried out under the following cleaning conditions to clean the subcomponents in the reaction chamber, and the deposited film formation and cleaning were successively repeated.
SiH450Sccm O,3Torr 13、 56MHz 0 W 250 ℃ 3.2人/ s e c 1 μ m 〈堆積膜形成条件〉 使用ガス 堆積室内内圧 放電周波数 高周波電力 基板温度 堆積膜形成速度 膜厚 く洗浄条件〉 使用ガス SF6 3505ccm 02 270Sccm。SiH450Sccm O,3 Torr 13, 56MHz W W 250℃ 3.2 people/s e c 1μm <Deposited film formation conditions> Gas used Deposition chamber internal pressure discharge frequency high frequency power Substrate temperature Deposited film formation rate Film thickness Washing conditions> Gas used SF6 3505ccm 02 270Sccm.
CF 4 150Sccm
(混合比30%)
堆積室内内圧 0.5Torr
放電周波数 13.56MHz
高周波電力 100.0 W
(比較例2)
堆積膜の形成条件は実施例13と同じとし、洗浄に従来
のSF6とo2との混合ガスを用い堆積膜形成と洗浄を
連続して繰り返し行なった。洗浄条件を下記に示す。CF 4 150Sccm (mixing ratio 30%) Deposition chamber internal pressure 0.5 Torr Discharge frequency 13.56 MHz High frequency power 100.0 W (Comparative Example 2) The deposited film formation conditions were the same as in Example 13, and conventional SF6 and cleaning were used. Deposited film formation and cleaning were continuously and repeatedly performed using a mixed gas with o2. The washing conditions are shown below.
〈洗浄条件〉 使用ガス S F6500 S c c m。<Cleaning conditions> Gas used: S F6500 S c c m.
02 270Sccm
堆積室内内圧 0.5Torr
放電周波数 13.56MHz
高周波電力 1000W
第3図の堆積室をガス導入管に近い部分を前部、基体支
持台中央部分を中央部、排気管311に近い部分を後部
の3つに分けると比較例2では洗浄において中央部のプ
ラズマが強く前部と後部のプラズマが弱いため、中央部
の付着物は比較的早く洗浄除去されたが、前部と後部の
付着物の洗浄除去は遅く後部が最も遅かった。中央部の
洗浄除去時間を1とすると、前部は1.9、後部は2.
1必要であり、洗浄除去が早く終了した中央部もそのあ
と後部が終了するまで過剰にエツチングされたため部分
的な損傷が見られた。実施例X3では洗浄において前部
、中央部、後部のプラズマの強度の部分は、はぼ比較例
2と同様だったが、中央部分のエツチングが先に進み、
前部、後部の残留付着物の比率が増加するに従い前部、
後部のエツチング速度がエツチング初期に較べ速くなる
現象が見られ最終的な付着物の洗浄時間がほぼ揃ったた
め、堆積室全体の洗浄時間を大幅に短縮することができ
、また堆積室内の損傷もなかった。02 270Sccm Deposition chamber internal pressure 0.5Torr Discharge frequency 13.56MHz High frequency power 1000W In the deposition chamber shown in Figure 3, the part near the gas introduction pipe is the front, the central part of the base support is the center, and the part near the exhaust pipe 311 is the rear. In Comparative Example 2, the plasma in the central part was strong and the plasma in the front and rear parts were weak during cleaning, so the deposits in the central part were cleaned relatively quickly, but the deposits in the front and rear parts were cleaned relatively quickly. The cleaning removal was slowest in the rear part. If the cleaning and removal time at the center is 1, then the front is 1.9 and the rear is 2.
1, and the central part, where cleaning and removal was completed earlier, was then excessively etched until the rear part was finished, resulting in partial damage. In example
As the ratio of residual deposits on the front and rear increases, the front,
A phenomenon was observed in which the etching speed at the rear part became faster than at the beginning of etching, and the final cleaning time for deposits was almost equal, so the cleaning time for the entire deposition chamber could be significantly shortened, and there was no damage inside the deposition chamber. Ta.
かくして堆積膜形成と洗浄とをそれぞれ20サイクル繰
り返し、初期のサイクルと10サイクル目、20サイク
ル目のA−3i:H半導体膜の特性を評価し、結果を第
5表に示した。Thus, the deposited film formation and cleaning were repeated 20 cycles each, and the characteristics of the A-3i:H semiconductor film at the initial cycle, 10th cycle, and 20th cycle were evaluated, and the results are shown in Table 5.
第5表から、本発明を実施することにより、堆積室の洗
浄時間を短縮することができ、堆積膜形成と洗浄とを繰
り返し行なっても電子写真用感光体、太陽電池、ライン
センサー TPT等のデバイスに使用できる再現性の良
い極めて良質なA−Si:H半導体膜が得られることが
わかった。Table 5 shows that by implementing the present invention, the cleaning time of the deposition chamber can be shortened, and even if deposited film formation and cleaning are repeated, electrophotographic photoreceptors, solar cells, line sensors, TPT, etc. It was found that an extremely high quality A-Si:H semiconductor film with good reproducibility that can be used in devices can be obtained.
(実施例14)
第4図はマイクロ波を使用するプラズマCVD法(以下
rMw−PCVD法」と表記する。)により電子写真感
光体の堆積膜を形成する際に用いた装置の概要を示す図
である。(Example 14) FIG. 4 is a diagram showing an outline of an apparatus used to form a deposited film on an electrophotographic photoreceptor by a plasma CVD method using microwaves (hereinafter referred to as "rMw-PCVD method"). It is.
真空容器401内部を、排気管405を介して真空排気
すると共に、円筒状基体407を基体加熱ヒーター40
8により所定温度に加熱、保持した。次に、原料ガス供
給管406を介して、シランガス、水素ガス等の原料ガ
スが該原料ガス供給管に開口せられた複数のガス放出孔
406′・・・・・・を通して真空容器401内に放出
した。これと同時併行的に、マイクロ波電源(図示せず
)から周波2.45GHzのマイクロ波404を発生し
、該マイクロ波を導波部403を通り誂電体窓402を
介して真空容器401内に導入した。The inside of the vacuum container 401 is evacuated via the exhaust pipe 405, and the cylindrical substrate 407 is heated by the substrate heating heater 40.
8, the sample was heated to a predetermined temperature and maintained. Next, a raw material gas such as silane gas or hydrogen gas is fed into the vacuum container 401 via a raw material gas supply pipe 406 through a plurality of gas discharge holes 406' opened in the raw material gas supply pipe. Released. At the same time, a microwave power source (not shown) generates a microwave 404 with a frequency of 2.45 GHz, and the microwave is transmitted through the waveguide 403 and into the vacuum container 401 via the electric window 402. It was introduced in
かくして、第6表に示す作製条件により真空容器401
内の導入原料ガスを、マイクロ波のエネルギーにより励
起して解離し、中性ラジカル粒子、イオン粒子、電子等
を生成し、それ等を相互に反応し円筒状基体407の表
面に電子写真感光体の堆積膜を形成した。Thus, according to the manufacturing conditions shown in Table 6, the vacuum container 401
The introduced raw material gas is excited and dissociated by microwave energy to generate neutral radical particles, ion particles, electrons, etc., which react with each other to form an electrophotographic photoreceptor on the surface of the cylindrical substrate 407. A deposited film was formed.
これと併せて下記洗浄条件により本発明を実施して反応
室内の副生物の洗浄を行ない、堆積膜形成と洗浄とを連
続して繰り返し行なった。In addition, the present invention was carried out under the following cleaning conditions to clean by-products in the reaction chamber, and deposited film formation and cleaning were successively repeated.
〈洗浄条件〉 使用ガス SF8 300Sccm O,210Sccm。<Cleaning conditions> Gas used: SF8 300sccm O, 210 sccm.
CF4 100100S
c混合比25%)
mTorr
2、 45GHz
1.6KW
堆積室内内圧
放電周波数
マイクロ波電力
(以下余白)
弔
表
(比較例3)
堆積膜の形成条件は実施例14と同じとし、洗浄にSF
6とo2の混合ガスを用い堆fft膜形成と洗浄を連続
して繰り返し行なった。洗浄条件を下記に示す。CF4 100100S c mixing ratio 25%) mTorr 2, 45GHz 1.6KW Deposition chamber internal pressure discharge frequency microwave power (blank below) Funeral table (Comparative example 3) The conditions for forming the deposited film were the same as in Example 14, and SF was used for cleaning.
Deposited film formation and cleaning were successively repeated using a mixed gas of 6 and O2. The washing conditions are shown below.
〈洗浄条件〉
使用ガス SF、 400SccmO,210S
ccm
堆積室内内圧 1mTorr
放電周波数 2.45GHz
マイクロ波電力 1.6KW
第4図の堆積室を上部、中央部、下部の3つに分けると
、比較例3では洗浄において上部と下部のプラズマが強
く中央部のプラズマが弱いため、上部と下部の付着物は
比較的早く洗浄除去されたが、中央部は遅く、上部及び
下部の洗浄除去時間を1とすると、中央部は1.6であ
った。実施例14では洗浄において上部、中央部、下部
のプラズマの強度は、はぼ比較例2と同様だあったが、
SF6と混合して使用しているCF4の効果により、上
部及び下部に残留する付着物の比率が下がるに従って中
央部のエツチング速度が上がっていき、全体の付着物の
洗浄除去時間がほぼ揃ったため、堆積室全体の洗浄時間
を短縮することがでた。<Cleaning conditions> Gas used: SF, 400SccmO, 210S
ccm Deposition chamber internal pressure 1 mTorr Discharge frequency 2.45 GHz Microwave power 1.6 KW If the deposition chamber in Fig. 4 is divided into three parts: upper, middle, and lower, in Comparative Example 3, during cleaning, the plasma in the upper and lower parts was strong and concentrated in the center. Since the plasma in the upper and lower parts was weak, the deposits on the upper and lower parts were cleaned and removed relatively quickly, but the cleaning and removal time on the central part was slower.If the cleaning and removal time on the upper and lower parts was 1, the cleaning and removal time on the central part was 1.6. In Example 14, the plasma intensity in the upper, middle, and lower parts during cleaning was similar to that in Comparative Example 2;
Due to the effect of CF4 used in combination with SF6, as the ratio of deposits remaining on the upper and lower parts decreases, the etching speed in the center increases, and the cleaning and removal time for all deposits is almost the same. It was possible to shorten the cleaning time for the entire deposition chamber.
かくして堆積膜形成と洗浄とをそれぞれ20サイクル繰
り返し、初期のサイクルと10サイクル目、20サイク
ル目の電子写真用感光体の特性を実施例1と同様に評価
し極めて良好な結果を得た。結果を第7表に示した。Thus, the deposition film formation and cleaning were repeated 20 cycles each, and the characteristics of the electrophotographic photoreceptor at the initial cycle, 10th cycle, and 20th cycle were evaluated in the same manner as in Example 1, and very good results were obtained. The results are shown in Table 7.
し
[発明の効果]
本発明によれば、堆積膜形成装置の洗浄において反応室
内の付着物を短時間で効率良く洗浄除去することができ
、且つ形成する堆積膜の品質を高水準に維持することが
できる。[Effects of the Invention] According to the present invention, deposits in the reaction chamber can be efficiently cleaned and removed in a short time when cleaning a deposited film forming apparatus, and the quality of the deposited film to be formed can be maintained at a high level. be able to.
第1図は本発明に用いた堆積膜形成装置の構成を示した
模式図である。第2図は洗浄時間を示すグラフ。第3図
は本発明に用いた堆積膜形成装置の概略図である。第4
図は本発明に用いたマイクロ波−PCVD法による堆積
膜形成装置の断面略図である。
101・・・反応槽容器、
102・・・円筒状導電性基体、
103・・・容器底板、
104・・・基体受は台、
106・・・上蓋又はゲート、
108.108・・・ガス導入管、
109.109,109・・・ガス導入孔、112・・
・高周波マツチングボックス、3・・・ガス排気管、
4・・・抵抗発熱体
1・・・成膜室、
2・・・高周波プラズマ発生装置、
3・・・高周波導入用カソード電極、
4・・・排気バルブ、
5・・・基体加熱用ヒータ、
6・・・基体、
7・・・ガス導入管、
8・・・成膜用ガス導入管、
9・・・洗浄ガス導入管、
0・・・基体支持台、
1・・・排気用配管、
1・・・真空容器、
2・・・銹電体窓、
3・・・導波部、
4・・・マイクロ波、
5・・・排気管、
6・・・原料ガス供給管、
7・・・円筒状基体、
408・・・加熱ヒーターFIG. 1 is a schematic diagram showing the configuration of a deposited film forming apparatus used in the present invention. FIG. 2 is a graph showing cleaning time. FIG. 3 is a schematic diagram of a deposited film forming apparatus used in the present invention. Fourth
The figure is a schematic cross-sectional view of a deposited film forming apparatus by microwave-PCVD method used in the present invention. 101... Reaction tank container, 102... Cylindrical conductive substrate, 103... Container bottom plate, 104... Substrate holder is stand, 106... Top lid or gate, 108.108... Gas introduction Pipe, 109.109,109...Gas introduction hole, 112...
・High frequency matching box, 3... Gas exhaust pipe, 4... Resistance heating element 1... Film forming chamber, 2... High frequency plasma generator, 3... Cathode electrode for high frequency introduction, 4. ... Exhaust valve, 5... Heater for heating the substrate, 6... Substrate, 7... Gas introduction pipe, 8... Gas introduction pipe for film formation, 9... Cleaning gas introduction pipe, 0. ...Base support stand, 1...Exhaust piping, 1...Vacuum container, 2...Electrical window, 3...Wave guide, 4...Microwave, 5...Exhaust Pipe, 6... Raw material gas supply pipe, 7... Cylindrical base, 408... Heating heater
Claims (3)
反応室の内壁等に生じる付着物を、ガス分子に高周波エ
ネルギーを与えてプラズマ反応をせしめ、該反応により
生じた活性成分のエッチング作用により前記付着物を洗
浄する方法においてエッチングガスとしてSF_6と酸
素化合物との混合ガスを用い、該混合ガスに、さらにS
F_6以外のエッチングガスを混合することを特徴とす
る堆積膜形成装置の洗浄方法。(1) When forming a silicon-containing deposited film using the gas phase method, deposits that occur on the inner walls of the reaction chamber are removed by applying high-frequency energy to gas molecules to cause a plasma reaction, and the active components produced by the reaction are etched. In the method of cleaning the deposits by action, a mixed gas of SF_6 and an oxygen compound is used as an etching gas, and S is further added to the mixed gas.
A method for cleaning a deposited film forming apparatus, characterized by mixing an etching gas other than F_6.
らに混合するSF_6以外のエッチングガスがCF_4
であることを特徴とする請求項(1)に記載の堆積膜形
成装置の洗浄方法。(2) The etching gas other than SF_6 that is further mixed with the above-mentioned mixed gas of SF_6 and an oxygen compound is CF_4.
The method for cleaning a deposited film forming apparatus according to claim 1, characterized in that:
らに混合するSF_6以外のエッチングガスがNF_3
であることを特徴とする請求項(1)に記載の堆積膜形
成装置の洗浄方法。(3) Etching gas other than SF_6 that is further mixed with the above-mentioned mixed gas of SF_6 and an oxygen compound is NF_3.
The method for cleaning a deposited film forming apparatus according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63282078A JPH02129371A (en) | 1988-11-08 | 1988-11-08 | Method for cleaning device for forming deposited film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63282078A JPH02129371A (en) | 1988-11-08 | 1988-11-08 | Method for cleaning device for forming deposited film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02129371A true JPH02129371A (en) | 1990-05-17 |
Family
ID=17647840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63282078A Pending JPH02129371A (en) | 1988-11-08 | 1988-11-08 | Method for cleaning device for forming deposited film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02129371A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002007194A3 (en) * | 2000-07-18 | 2002-04-18 | Showa Denko Kk | Cleaning gas for semiconductor production equipment |
US6520189B1 (en) * | 1986-09-09 | 2003-02-18 | Semiconductor Energy Laboratory Co., Ltd. | CVD apparatus |
US6699022B2 (en) * | 2000-12-21 | 2004-03-02 | Canon Kabushiki Kaisha | Vacuum exhaust apparatuses and vacuum exhaust methods |
CN103556127A (en) * | 2013-11-13 | 2014-02-05 | 上海华力微电子有限公司 | Cleaning method of vapor deposition film-forming equipment |
-
1988
- 1988-11-08 JP JP63282078A patent/JPH02129371A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6520189B1 (en) * | 1986-09-09 | 2003-02-18 | Semiconductor Energy Laboratory Co., Ltd. | CVD apparatus |
WO2002007194A3 (en) * | 2000-07-18 | 2002-04-18 | Showa Denko Kk | Cleaning gas for semiconductor production equipment |
US6699022B2 (en) * | 2000-12-21 | 2004-03-02 | Canon Kabushiki Kaisha | Vacuum exhaust apparatuses and vacuum exhaust methods |
CN103556127A (en) * | 2013-11-13 | 2014-02-05 | 上海华力微电子有限公司 | Cleaning method of vapor deposition film-forming equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6142096A (en) | Electronic device manufacturing apparatus and method for manufacturing electronic device | |
JP2814370B2 (en) | Plasma processing equipment | |
Booth et al. | Dual-frequency capacitive radiofrequency discharges: effect of low-frequency power on electron density and ion flux | |
JPH06287760A (en) | Plasma treating device and treatment | |
KR20130054349A (en) | Plasma processing in a capacitively-coupled reactor with trapezoidal waveform excitation | |
JPH0773997A (en) | Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device | |
JP2764575B2 (en) | Radical control method | |
Takeuchi et al. | Characteristics of very-high-frequency-excited SiH4 plasmas using a ladder-shaped electrode | |
JPH02129371A (en) | Method for cleaning device for forming deposited film | |
JPH0794130A (en) | Control method and control device for radical | |
JP4224374B2 (en) | Plasma processing apparatus processing method and plasma processing method | |
JPH02138472A (en) | Method for cleaning deposited film forming device | |
US20050072444A1 (en) | Method for processing plasma processing apparatus | |
JPH0776781A (en) | Plasma vapor growth device | |
JP2001115265A (en) | High frequency plasma cvd process and high frequency plasma cvd system | |
JPS6134931A (en) | Manufacture of silicon film | |
JPH02129372A (en) | Method for cleaning device for forming deposited film | |
Mashima et al. | Uniformity of VHF plasma produced with ladder shaped electrode | |
JP2003077849A (en) | Plasma processing apparatus | |
JP2001267251A (en) | Equipment and method for plasma processing | |
JP3359128B2 (en) | Plasma CVD deposited film forming apparatus and deposited film forming method | |
JP2695155B2 (en) | Film formation method | |
JPH0897195A (en) | Thin film forming apparatus and cleaning method therefor | |
JPH11131244A (en) | High-frequency electrode for plasma generation, plasma cvd device composed by the electrode, and plasma cvd method | |
JP3793034B2 (en) | Plasma CVD equipment |