JPH01307494A - Device for treating waste water by wet oxidation - Google Patents

Device for treating waste water by wet oxidation

Info

Publication number
JPH01307494A
JPH01307494A JP13843088A JP13843088A JPH01307494A JP H01307494 A JPH01307494 A JP H01307494A JP 13843088 A JP13843088 A JP 13843088A JP 13843088 A JP13843088 A JP 13843088A JP H01307494 A JPH01307494 A JP H01307494A
Authority
JP
Japan
Prior art keywords
gas
wet oxidation
wastewater
liquid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13843088A
Other languages
Japanese (ja)
Inventor
Masao Kaneko
金子 政雄
Koji Tanaka
孝二 田中
Ryosuke Miura
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13843088A priority Critical patent/JPH01307494A/en
Publication of JPH01307494A publication Critical patent/JPH01307494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To effectively decompose an org. component and nitrogen component by providing a wet oxidation reaction column and a gas-liquid sepn. column. CONSTITUTION:The waste water boosted by a boosting pump 2 is supplied to a heat exchanger 3 and is heated up by the treated water in a high-temp. state emitted from the gas-liquid sepn. column 11. Further, the waste water is heated up to the temp. adequate for a wet oxidation treatment in the wet oxidation reaction column by a heater 8. The org. component is oxidized and decomposed to carbon dioxide by the oxygen in the air sent together with the waste water in the wet oxidation reaction column 9. The nitrogen component essentially consisting of ammonia is sent to the gas-liquid sepn. column 11 where the component is separated to gas and liquid. The treatment of the waste water to pollution-free water is executed in this way.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は産業廃水、下水など有機性成分と窒素成分とを
含む廃水を高温高圧状態で湿式酸化処理する湿式酸化廃
水処理装置に関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to wet oxidation wastewater treatment in which industrial wastewater, sewage, and other wastewater containing organic components and nitrogen components are subjected to wet oxidation treatment under high temperature and high pressure conditions. It is related to the device.

(従来の技術) 各種産業廃水、−股下水などの廃水中には有機性成分と
窒素成分との両者を含んだものが多く、海、河川、湖沼
などの水質汚染を招く原因となっている。
(Conventional technology) Many types of industrial wastewater, such as sewage water, contain both organic components and nitrogen components, which cause water pollution in oceans, rivers, lakes, etc. .

廃水中の有機性成分は一般にBOD、C:ODで表わさ
れ、窒素成分はアンモニア性窒素、硝酸性窒素、亜硝酸
性窒素などを含むが主体はアンモニア性窒素である。
Organic components in wastewater are generally expressed as BOD and C:OD, and nitrogen components include ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, etc., but the main component is ammonia nitrogen.

廃水中の有機性成分と窒素成分の処理には活性汚泥処理
および生物化学的脱窒処理が広く適用されているが、近
年は高濃度廃水を対象とした湿式酸化廃水処理装置が使
用されてきている。
Activated sludge treatment and biochemical denitrification treatment are widely used to treat organic and nitrogen components in wastewater, but in recent years wet oxidation wastewater treatment equipment has been used for high concentration wastewater. There is.

湿式酸化廃水処理装置は廃水中の被酸化性物質を200
〜300℃という高温で、かつ廃水がその温度で液相を
保つのに十分な圧力をかけて完全に酸化分解するもので
あり、この湿式酸化廃水処理装置は産業廃水、下水の処
理だけでなく、汚泥処理にも適用されている。
Wet oxidation wastewater treatment equipment reduces oxidizable substances in wastewater to 200%
It completely oxidizes and decomposes the wastewater at a high temperature of ~300℃ and with enough pressure to maintain the liquid phase at that temperature.This wet oxidation wastewater treatment equipment is not only used for industrial wastewater and sewage treatment. It is also applied to sludge treatment.

(発明が解決しようとする課題) 湿式酸化廃水処理装置は廃水中の有機性成分を酸化分解
するのには効率的であるが、窒素成分は分解されにくく
未処理のまま残留する。
(Problems to be Solved by the Invention) Although wet oxidation wastewater treatment equipment is efficient in oxidatively decomposing organic components in wastewater, nitrogen components are difficult to decompose and remain untreated.

従って湿式酸化処理装置を出た処理液を常温まで下げて
生物学的脱窒処理を行ったり、アルカリ剤を添加してp
H10以上で曝気し、気体中へアンモニアを移動させる
アンモニアストリッピング処理を行うなどの必要がある
Therefore, biological denitrification treatment is performed by lowering the treatment liquid that exits the wet oxidation treatment equipment to room temperature, or by adding an alkaline agent to reduce the
It is necessary to aerate at H10 or higher and perform an ammonia stripping process to move ammonia into the gas.

生物学的脱窒処理を併用すると装置の設置スペースが大
きくなり、脱窒のための微生物の維持管理に高級技術を
必要とするばかりでなく、廃水の種類と濃度変化に応じ
て処理条件を変更しなければならないという問題がある
When combined with biological denitrification treatment, the installation space for the equipment becomes large, and advanced technology is required to maintain and manage the microorganisms for denitrification, and treatment conditions are changed depending on the type and concentration of wastewater. The problem is that you have to do it.

また、アンモニアストリッピング処理では処理液を11
0以上にするためのアルカリ剤が必要であり、さらにこ
れを排出するためには酸を添加して中和する必要がある
などの問題がある。
In addition, in the ammonia stripping treatment, the treatment liquid was
Problems include the need for an alkaline agent to bring the temperature to 0 or higher, and the need to neutralize it by adding acid to discharge it.

本発明は産業廃水、下水などの廃水中に含まれる有機性
成分と窒素成分の両者を効率的に分解処理できる合理的
な湿式酸化廃水処理装置を提供することを目的としてい
る。
An object of the present invention is to provide a rational wet oxidation wastewater treatment device that can efficiently decompose both organic components and nitrogen components contained in wastewater such as industrial wastewater and sewage.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明は産業廃水、下水などの廃水を高温高圧状態で湿
式酸化処理する湿式酸化廃水処理装置であり、廃水中の
有機性成分を酸化分解する湿式酸化反応塔と、湿式酸化
反応塔からの高温高圧状態の気液混合物を液体と気体と
に分離すると共に液体の一部を蒸気として気体とともに
排出できる気液分離塔とを備えている。
(Means and effects for solving the problems) The present invention is a wet oxidation wastewater treatment device that performs wet oxidation treatment on wastewater such as industrial wastewater and sewage under high temperature and high pressure conditions. It is equipped with a reaction tower and a gas-liquid separation tower that can separate a high-temperature, high-pressure gas-liquid mixture from the wet oxidation reaction tower into liquid and gas, and discharge part of the liquid as vapor together with gas.

さらに気液分離塔から排出される気体中の窒素成分を処
理する触媒を充填した窒素成分処理塔を追加して構成す
ることができる6 昇圧された廃水と空気とは熱交換器および加熱器によっ
て酸化処理に適した温度まで昇温されて湿式酸化反応塔
に供給され、空気中の酸素を利用して廃水中の有機性成
分が高温高圧下で液状のまま炭酸ガスまで湿式酸化処理
される。
Furthermore, a nitrogen component treatment tower filled with a catalyst for treating nitrogen components in the gas discharged from the gas-liquid separation tower can be added and configured.6 Pressurized wastewater and air are separated by a heat exchanger and a heater The temperature is raised to a temperature suitable for oxidation treatment, and the wastewater is supplied to a wet oxidation reaction tower, where the organic components in the wastewater are wet-oxidized to carbon dioxide while remaining in liquid form under high temperature and high pressure using oxygen in the air.

湿式酸化反応塔ではアンモニアを主体とした窒素成分は
未処理のまま液体中に残留するが、未処理窒素成分を含
む気液混合物は高温高圧のまま気液分離塔に送られて液
体と気体に分離されると共に、液体の一部は蒸気として
気体と共に排出され。
In the wet oxidation reaction tower, the nitrogen components, mainly ammonia, remain untreated in the liquid, but the gas-liquid mixture containing the untreated nitrogen components is sent to the gas-liquid separation tower at high temperature and pressure, where it is separated into liquid and gas. As it is separated, a portion of the liquid is discharged as vapor along with the gas.

気体と蒸気中に未処理の窒素成分が移動する。Untreated nitrogen components are transferred into the gas and steam.

この窒素成分を含む気体と蒸気は窒素成分処理塔に送ら
れ、触媒と酸素とによって乾式酸化処理され、窒素成分
が無公害な窒素ガスに分Hされる。
The gas and steam containing this nitrogen component are sent to a nitrogen component treatment tower, where they are subjected to dry oxidation treatment using a catalyst and oxygen, and the nitrogen component is separated into non-polluting nitrogen gas.

本発明の一実施例を同順に示す。An embodiment of the present invention will be shown in the same order.

$1図機において、廃水配管1は昇圧ポンプ2を経て熱
交換器3の供給配管4に接続され、同様に空気配管5は
高圧ブロワ6を経て熱交換器3の供給配管4に接続され
ている。
In the $1 machine, the waste water pipe 1 is connected to the supply pipe 4 of the heat exchanger 3 via a boost pump 2, and the air pipe 5 is similarly connected to the supply pipe 4 of the heat exchanger 3 via a high pressure blower 6. There is.

熱交換器3の出口配管7は加熱器8を経て湿式酸化反応
塔9に接続され、湿式酸化反応塔9の出口配管lOは気
液分離塔11に接続され、さらに気液分離塔11の処理
水出口配管12は熱交換器3を通り処理水配管13に接
続されている。
The outlet pipe 7 of the heat exchanger 3 is connected to the wet oxidation reaction tower 9 via the heater 8, and the exit pipe 1O of the wet oxidation reaction tower 9 is connected to the gas-liquid separation tower 11, and further connected to the gas-liquid separation tower 11 for processing. The water outlet pipe 12 passes through the heat exchanger 3 and is connected to the treated water pipe 13.

一方、気液分離塔11の気体側配管14は触媒15が充
填された窒素成分処理塔16に接続され、その出口配管
17は冷却器18を経て処理水配管19と排気管20と
に接続されている。
On the other hand, the gas side pipe 14 of the gas-liquid separation tower 11 is connected to a nitrogen component treatment tower 16 filled with a catalyst 15, and its outlet pipe 17 is connected to a treated water pipe 19 and an exhaust pipe 20 via a cooler 18. ing.

上記の構成により、昇圧ポンプ2で5〜100気圧に昇
圧された廃水は、高圧ブロワ6で廃水と同程度の圧力で
圧入された空気と共に熱交換器3に供給され、気液分離
塔11を出た高温状態の処理水によって昇温され、さら
に加熱器8によって湿式酸化反応塔9内で湿式酸化処理
されるに適した温度まで昇温される。
With the above configuration, wastewater whose pressure has been boosted to 5 to 100 atmospheres by the pressure booster pump 2 is supplied to the heat exchanger 3 together with air that is pressurized at a pressure similar to that of the wastewater by the high-pressure blower 6, and is then passed through the gas-liquid separation column 11. The temperature is raised by the discharged high-temperature treated water, and further raised by the heater 8 to a temperature suitable for wet oxidation treatment in the wet oxidation reaction tower 9.

適切な温度まで昇温された廃水は、湿式酸化反応塔9内
で、廃水とともに送られてきた空気中の酸素によって有
機性成分が炭酸ガスに酸化分解される。最適な処理温度
は廃水の種類によって異なるが、150〜300℃が一
般的である。
After the temperature of the wastewater has been raised to an appropriate temperature, the organic components of the wastewater are oxidized and decomposed into carbon dioxide in the wet oxidation reaction tower 9 by oxygen in the air that is sent together with the wastewater. The optimum treatment temperature varies depending on the type of wastewater, but is generally 150 to 300°C.

有機性成分は湿式酸化反応塔9で処理されるが、アンモ
ニアを主体とした窒素成分は未処理のまま気液分離塔1
1に送られ、流入した気液混合物が気体と液体とに分離
される。
The organic components are treated in the wet oxidation reaction tower 9, but the nitrogen components mainly consisting of ammonia are left untreated in the gas-liquid separation tower 1.
1, and the incoming gas-liquid mixture is separated into gas and liquid.

気液分離塔11には高温高圧状態の気液混合物が流入す
るので、気体側配管14からは気体と共に蒸気も排出さ
れる。本発明者らは気液混合物中に含まれる未処理の窒
素成分の90%以上が気体と蒸気に移行することを確認
した。
Since a high-temperature, high-pressure gas-liquid mixture flows into the gas-liquid separation tower 11, steam is also discharged from the gas-side pipe 14 along with the gas. The present inventors have confirmed that more than 90% of the untreated nitrogen component contained in the gas-liquid mixture is transferred to gas and steam.

このアンモニアを主体とした未処理の窒素成分を含む気
体と蒸気は気体側配管14を通って窒素成分処理塔16
に送られ、触媒15と酸素とによって窒素成分が100
〜300℃の高温で乾式酸化処理され、窒素成分は無公
害な窒素ガスに分解される。
This gas and steam containing untreated nitrogen components mainly composed of ammonia pass through the gas side pipe 14 to the nitrogen component treatment tower 16.
The nitrogen component is reduced to 100% by the catalyst 15 and oxygen.
Dry oxidation treatment is performed at a high temperature of ~300°C, and the nitrogen component is decomposed into non-polluting nitrogen gas.

本発明らは窒素成分処理塔16では未処理の窒素成分の
95%以上が窒素ガスに分解されていることを確認した
The present inventors confirmed that 95% or more of the untreated nitrogen component was decomposed into nitrogen gas in the nitrogen component treatment tower 16.

触媒15としては白金、パラジウム、鉄、コバルト、ニ
ッケル、イリジウム、金、銀、銅、マンガンなどの金属
酸化物、またはこれら金属の担持触媒が使用可能である
As the catalyst 15, metal oxides such as platinum, palladium, iron, cobalt, nickel, iridium, gold, silver, copper, and manganese, or supported catalysts of these metals can be used.

窒素成分処理塔16で処理された気体と蒸気は冷却器1
8で冷却されて常温常圧に戻り、液体は処理水配管19
から排出され、気体は排気管20から排気される。
The gas and steam treated in the nitrogen component treatment tower 16 are transferred to the cooler 1
8, the liquid returns to normal temperature and pressure, and the liquid is transferred to the treated water pipe 19.
The gas is exhausted from the exhaust pipe 20.

この排気中には供給された空気中に含まれる窒素、酸素
ガスなどの未反応分と、反応により生成された炭酸ガス
および窒素ガスが含まれている。
This exhaust gas contains unreacted nitrogen and oxygen gas contained in the supplied air, as well as carbon dioxide and nitrogen gas produced by the reaction.

また廃水中に各種気体が含まれている場合は、窒素成分
と同様に窒素成分処理塔16で無公害化され、従って排
気管20からは無公害化された気体しか排出されない。
Further, if various gases are contained in the wastewater, they are made non-polluting in the nitrogen component treatment tower 16 in the same way as nitrogen components, and therefore only non-polluting gases are discharged from the exhaust pipe 20.

上記の実施例では気液分離塔11から気体側配管14を
通して気体と蒸気を排出させる時に温度が低下し、蒸気
量によっては窒素成分処理塔16での最適処理温度以下
まで下ることがある。
In the above embodiment, the temperature decreases when gas and steam are discharged from the gas-liquid separation tower 11 through the gas side pipe 14, and depending on the amount of steam, the temperature may drop to below the optimum processing temperature in the nitrogen component treatment tower 16.

この場合には、気液分離塔11に加熱器を付設したり、
気液分離塔11内の液温よりも高温の蒸気を供給する蒸
気供給器を付設することで蒸気発生による温度低下を防
ぐことができる。また、窒素成分処理塔16に加熱器を
付設して処理効率を高めることができる。
In this case, a heater may be attached to the gas-liquid separation tower 11, or
By providing a steam supply device that supplies steam at a higher temperature than the liquid temperature in the gas-liquid separation tower 11, it is possible to prevent a temperature drop due to steam generation. Additionally, a heater can be attached to the nitrogen component treatment tower 16 to increase treatment efficiency.

加熱器8は熱交換器3による昇温の不足分を補うもので
あり運転開始時には不可欠であるが、高濃度の有機性成
分を含む廃水を処理する場合には湿式酸化反応塔9での
発熱量が大きいので加熱器8を停止できることがあり、
例えばCODが110000ta/Q以上の廃水ではこ
のような運転が可能である。
The heater 8 compensates for the temperature increase caused by the heat exchanger 3 and is essential at the start of operation. Because the amount is large, it may be possible to stop the heater 8.
For example, such operation is possible for wastewater with a COD of 110,000 ta/Q or more.

以上の説明は廃水の処理について行ったが、汚泥の処理
についても同様に本発明の適用が可能である。
Although the above explanation has been made regarding the treatment of wastewater, the present invention can be similarly applied to the treatment of sludge.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の湿式酸化廃水処理装置によ
れば、湿式酸化反応塔において高温高圧状態で空気中の
酸素を利用し廃水中の有機性成分を炭酸ガスまで酸化分
解し、次に未処理のアンモニアを主体とした窒素成分が
残存する気液混合液を高温高圧のまま気液分離塔に送っ
ているので、未処理の窒素成分を気液分離塔から排出さ
れる気体と蒸気中に効率よく移動させることができる。
As explained above, according to the wet oxidation wastewater treatment apparatus of the present invention, organic components in wastewater are oxidized and decomposed into carbon dioxide gas at high temperature and high pressure in the wet oxidation reaction tower, and then the organic components in wastewater are decomposed into carbon dioxide. The treated gas-liquid mixture containing residual nitrogen components, mainly ammonia, is sent to the gas-liquid separation tower at high temperature and pressure, so untreated nitrogen components are absorbed into the gas and steam discharged from the gas-liquid separation tower. It can be moved efficiently.

さらに未処理の窒素成分を含む気体と蒸気は窒素成分処
理塔において、触媒と酸素による乾式酸化により窒素成
分を窒素ガスに分解することができる。
Furthermore, the untreated nitrogen-containing gas and steam can be decomposed into nitrogen gas by dry oxidation using a catalyst and oxygen in a nitrogen component treatment tower.

従って本発明によれば、廃水中の有機性成分と窒素成分
の両者を無公害な状態まで処理できる合理的な湿式酸化
廃水処理装置が得られる。
Therefore, according to the present invention, a rational wet oxidation wastewater treatment apparatus can be obtained that can treat both organic components and nitrogen components in wastewater to a non-polluting state.

【図面の簡単な説明】[Brief explanation of the drawing]

斗1図該は本発明による湿式酸化廃水処理装置の一実施
例を示す系統図である。 1・・・廃水配管    2・・・昇圧ポンプ3・・・
熱交換器    4・・・供給配管5・・・空気配管 
   6・・・高圧ブロワ7、10.17・・・出口配
管  8・・・加熱器9・・・湿式酸化反応塔  11
・・・気液分離塔12・・・処理水出口配管  13.
19・・・処理水配管14・・・気体側配管   15
・・・触媒16・・・窒素成分処理塔  18・・・冷
却器20・・・排気管 代理人 弁理士 則 近 憲 佑 同  山王 −
Figure 1 is a system diagram showing an embodiment of the wet oxidation wastewater treatment apparatus according to the present invention. 1...Wastewater piping 2...Boost pump 3...
Heat exchanger 4... Supply piping 5... Air piping
6... High pressure blower 7, 10.17... Outlet piping 8... Heater 9... Wet oxidation reaction tower 11
... Gas-liquid separation tower 12 ... Treated water outlet piping 13.
19... Treated water piping 14... Gas side piping 15
...Catalyst 16...Nitrogen component treatment tower 18...Cooler 20...Exhaust pipe agent Patent attorney Nori Chika Ken Yudo Sanno −

Claims (2)

【特許請求の範囲】[Claims] (1)廃水を高温高圧状態で湿式酸化廃水処理する湿式
酸化廃水処理装置において、廃水中の有機性成分を高温
高圧下で酸化分解する湿式酸化反応塔と、この酸化反応
塔から出た高温高圧状態の気液混合物を気体と液体とに
分離すると共に液体の一部を蒸気として気体と共に排出
する気液分離塔を備えたことを特徴とする湿式酸化廃水
処理装置。
(1) In a wet oxidation wastewater treatment device that processes wastewater under high temperature and high pressure conditions, there is a wet oxidation reaction tower that oxidizes and decomposes organic components in the wastewater under high temperature and high pressure, and a high temperature and high pressure output from the oxidation reaction tower. A wet oxidation wastewater treatment apparatus comprising a gas-liquid separation tower that separates a gas-liquid mixture into gas and liquid and discharges a part of the liquid as vapor together with the gas.
(2)上記気液分離塔から排出される窒素成分を含む気
体と蒸気との混合物を処理する触媒が充填された窒素成
分処理塔をさらに備えた特許請求の範囲第1項記載の湿
式酸化廃水処理装置。
(2) Wet oxidation wastewater according to claim 1, further comprising a nitrogen component treatment tower filled with a catalyst for treating the mixture of gas and steam containing nitrogen components discharged from the gas-liquid separation tower. Processing equipment.
JP13843088A 1988-06-07 1988-06-07 Device for treating waste water by wet oxidation Pending JPH01307494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13843088A JPH01307494A (en) 1988-06-07 1988-06-07 Device for treating waste water by wet oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13843088A JPH01307494A (en) 1988-06-07 1988-06-07 Device for treating waste water by wet oxidation

Publications (1)

Publication Number Publication Date
JPH01307494A true JPH01307494A (en) 1989-12-12

Family

ID=15221787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13843088A Pending JPH01307494A (en) 1988-06-07 1988-06-07 Device for treating waste water by wet oxidation

Country Status (1)

Country Link
JP (1) JPH01307494A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586584A (en) * 1978-12-22 1980-06-30 Osaka Gas Co Ltd Wet oxidizing treatment of waste water
JPS58109122A (en) * 1982-08-09 1983-06-29 Takeda Chem Ind Ltd Vapor phase decomposing method for ammonia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586584A (en) * 1978-12-22 1980-06-30 Osaka Gas Co Ltd Wet oxidizing treatment of waste water
JPS58109122A (en) * 1982-08-09 1983-06-29 Takeda Chem Ind Ltd Vapor phase decomposing method for ammonia

Similar Documents

Publication Publication Date Title
JP4907289B2 (en) Wastewater treatment method
JP2000117273A (en) Waste water treatment
CN100413787C (en) Process for efficient removing organic pollutant in water by catalysis and ozonization
JPH01307494A (en) Device for treating waste water by wet oxidation
JP2003071497A (en) Method and apparatus for treating organic waste
WO2022050838A1 (en) Wastewater ozone treatment
JPH091165A (en) Treatment of ammonia-containing waste water
JP3811614B2 (en) Wastewater treatment method
JPH11300374A (en) Treatment of waste water
JP4187845B2 (en) Method for treating ammonia-containing water
KR100465521B1 (en) Method of treating wastewater using catalytic wet oxidation process
JP2000167570A (en) Treatment of waste water
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP3739452B2 (en) Power plant wastewater treatment method containing amine compounds
JP3906666B2 (en) Method and apparatus for treating nitrogen compound-containing water
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JPH11128958A (en) Water denitrification treatment apparatus
JPH01210097A (en) Wet-oxidation waste water treatment apparatus
CN115140878B (en) System and method for producing hydrogen peroxide with low energy consumption and in situ removing perfluorinated compounds in water
JP2509008B2 (en) Wastewater treatment method
JP4223706B2 (en) Wastewater treatment method
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JP2002086166A (en) Treatment of waste water
JP2001347282A (en) Method for treating wastewater containing hydrogen peroxide and ammonia
KR20230076320A (en) Nitrogen removal method in wastewater using non-temperature plasma