JPH013071A - High strength zirconia ceramics - Google Patents

High strength zirconia ceramics

Info

Publication number
JPH013071A
JPH013071A JP62-201315A JP20131587A JPH013071A JP H013071 A JPH013071 A JP H013071A JP 20131587 A JP20131587 A JP 20131587A JP H013071 A JPH013071 A JP H013071A
Authority
JP
Japan
Prior art keywords
mgo
mixed
bending strength
strength
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-201315A
Other languages
Japanese (ja)
Other versions
JPH037623B2 (en
JPS643071A (en
Inventor
恒川 恭輔
宗之 岩渕
健 福田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP62-201315A priority Critical patent/JPH013071A/en
Priority to US07/086,388 priority patent/US4820667A/en
Priority to EP87307289A priority patent/EP0257963B1/en
Priority to DE3789583T priority patent/DE3789583T2/en
Publication of JPS643071A publication Critical patent/JPS643071A/en
Publication of JPH013071A publication Critical patent/JPH013071A/en
Publication of JPH037623B2 publication Critical patent/JPH037623B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度ジルコニアセラミックスに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to high strength zirconia ceramics.

(従来技術) イソ1〜リアを主体とする安定化剤を1.5〜5mol
%大有するジルコニアセラミックスは部分安定化ジルコ
ニア(PSZ)セラミックスと称され、高強度のジルコ
ニアセラミックスとして機械構造材料としての用途開発
がなされている。しかじから、上記した部分安定化ジル
コニアセラミックスはかならずしも十分な曲げ強度を持
っていないことから、同セラミックスよりさらに曲げ強
度の高い高強度ジルコニアセラミックスの製造法が特開
昭60−226457号公報に示されている。
(Prior art) 1.5 to 5 mol of a stabilizer mainly composed of iso1 to ria
% of zirconia is called partially stabilized zirconia (PSZ) ceramic, and is being developed for use as a mechanical structural material as a high-strength zirconia ceramic. However, since the above-mentioned partially stabilized zirconia ceramics do not necessarily have sufficient bending strength, Japanese Patent Laid-Open No. 60-226457 discloses a method for producing high-strength zirconia ceramics that have even higher bending strength than the above-mentioned partially stabilized zirconia ceramics. has been done.

しかして、同公報に示された製造法は、特定の平均1次
粒子径の原料微粉末を特定割合で混合した混合粉末を熱
間静水圧プレスまたは一軸加圧焼結する方法である。か
かる製造法においては、Y2O3を主体とする安定化剤
を1.5〜5mol%含有するZrO□中にA1□0.
およびMgOが混在するセラミックスが一例として示さ
れている。
The manufacturing method disclosed in the publication is a method of hot isostatic pressing or uniaxial pressure sintering of a mixed powder obtained by mixing raw material fine powders having a specific average primary particle size in a specific ratio. In this production method, A1□0.
An example of ceramics containing MgO and MgO is shown as an example.

一般に、ジルコニアセラミックスは高温領域から常温領
域へいくにつれて、立方晶から正方晶を経て単斜晶へと
体積変化を伴いながら相転移する。
In general, zirconia ceramics undergoes a phase transition from cubic to tetragonal to monoclinic as it goes from a high temperature region to a room temperature region, accompanied by a volume change.

この際、特に正方晶から単斜晶への相転移時の体積変化
が大きく、これによりジルコニアセラミックスは破壊さ
れやすいという問題がある。かかる問題に対処する手段
として、ZrO□にCan 、M+;0、Y2O3等の
安定化剤を固溶させて相転移を抑制する手段が知られて
いる。現在、安定化剤としては主としてY2O,が用い
られ、常温領域において正方晶を1体とする高強度、高
靭性の部分安定化ジルコニアセラミックスが生成されて
いる。しかしながら、かかる部分安定化ジルコニアセラ
ミックスは準安定相であって経時変化を生じやすく、2
00〜400℃という比較的低い加熱により単斜晶へ相
転移し強度が経時的に劣化し、熱安定性に欠けるもので
ある。
At this time, there is a problem in that the volume change is particularly large during phase transition from tetragonal to monoclinic, and zirconia ceramics are easily destroyed due to this. As a means to deal with this problem, a known method is to dissolve a stabilizer such as Can, M+;0, Y2O3, etc. in ZrO□ to suppress the phase transition. Currently, Y2O is mainly used as a stabilizer, and partially stabilized zirconia ceramics with high strength and high toughness having a single tetragonal crystal are produced at room temperature. However, such partially stabilized zirconia ceramics are in a metastable phase and easily change over time.
When heated at a relatively low temperature of 00 to 400°C, it undergoes a phase transition to monoclinic crystal, its strength deteriorates over time, and it lacks thermal stability.

また、強度および熱安定性を向上すべく意図したジルコ
ニアセラミックスとしてZrO□中にY2O3およびA
l2O,を混在させてなるものが特開昭58−3206
6号公報に、さらにY2O3、CeO2およびA1□0
3を混在させてなるものが特開昭61−77665号公
報に示されている。
In addition, Y2O3 and A are added to ZrO□ as a zirconia ceramic intended to improve strength and thermal stability.
A mixture of 12O and
6, further Y2O3, CeO2 and A1□0
JP-A-61-77665 discloses a mixture of 3 and 3.

(発明が解決しようとする問題点) ところで、特開昭60−226457号公報においては
、Al2O.およびMgOを混合させることについての
開示にとどまり、これら両酸化物の混合比についての詳
細な検討についてはなされていない。また、特開昭58
−32066号公報および特開昭61−77665号公
報に示されたジルコニアセラミックスのうち前者のジル
コニアセラミックスにおいては強度は高いものの熱安定
性が十分でなく、後者のジルコニアセラミックスにおい
てはこれとは逆に熱安定性は高いものの強度が十分では
ないという問題がある。
(Problems to be Solved by the Invention) By the way, in Japanese Patent Application Laid-Open No. 60-226457, Al2O. The disclosure only discloses the mixing of oxides and MgO, and no detailed study is made on the mixing ratio of these two oxides. Also, JP-A-58
Among the zirconia ceramics disclosed in Japanese Patent Publication No. 32066 and Japanese Patent Application Laid-open No. 61-77665, the former zirconia ceramic has high strength but insufficient thermal stability; Although it has high thermal stability, there is a problem in that it does not have sufficient strength.

本発明者等はこれら両酸化物の混合比に着目して検討し
たところ、これら両酸化物の混合比が特にジルコニアセ
ラミックスの強度に大きな影響を及ぼし、同混合比が所
定の範囲から外れる場合には部分安定化ジルコニアセラ
ミックスの強度を増加し得ないことを知得した。従って
、本発明は特にこれら両酸化物の混合比を特定すること
により、高強度かつ高耐酸性で熱安定性に優れたジルコ
ニアセラミックスを提供することを目的とする。
The inventors of the present invention focused on the mixing ratio of these two oxides and found that the mixing ratio of these two oxides has a particularly large effect on the strength of zirconia ceramics, and that when the mixing ratio deviates from the specified range. found that the strength of partially stabilized zirconia ceramics cannot be increased. Therefore, an object of the present invention is to provide a zirconia ceramic having high strength, high acid resistance, and excellent thermal stability by specifically specifying the mixing ratio of both of these oxides.

(問題点を解決するための手段) 本発明は高強度ジルコニアセラミックスに関し、安定化
剤としてY2O,を5n+o 1%以下の範囲で含有す
るZrO□焼結体中に同焼結体を基準としてアルミニウ
ム系成分およびマグネシウム系成分がAl2O3および
MgO換算で合わせて1〜30wt%混在していること
を特徴とするものである。前記焼結体がCeO□を含有
していない場合には同焼結体中のY2O。
(Means for Solving the Problems) The present invention relates to high-strength zirconia ceramics. It is characterized in that a total of 1 to 30 wt% of the system component and the magnesium component are mixed in terms of Al2O3 and MgO. When the sintered body does not contain CeO□, Y2O in the sintered body.

の含有量は1.5〜5mo 1%であり、またCeO□
を含有している場合にはY2O3およびCeO2の含有
量は0.5〜5n+o 1%および0.5〜12+++
o1%の範囲内でがっこれら両者の合計が1.0〜15
mol%である。
The content of CeO is 1.5-5mo 1%, and CeO□
, the content of Y2O3 and CeO2 is 0.5-5n+o 1% and 0.5-12+++
Within the range of o1%, the sum of both of these is 1.0 to 15
It is mol%.

当該ジルコニアセラミックスにおいて、前記焼結体がY
2O3を1.5〜5a+o1%5n+oたはY2O3を
1.5〜3.5mol%、CeO2を2〜5mol%含
有していて、かかる焼結体中にアルミニウム系成分およ
びマグネシウム系成分がA1□0.およびMgO換算で
1〜5wt%混在していることが好ましい。また、前記
焼結体中のアルミニウム系成分およびマグネシウム系成
分に関しては、これら両系成分の混合モル比がAl2O
3およびMgO換算(AI203/ Mg0)で下記(
a )〜(c)のいずれかの範囲にあることが好ましい
In the zirconia ceramic, the sintered body is Y
It contains 1.5-5a+o1%5n+o of 2O3 or 1.5-3.5mol% of Y2O3 and 2-5mol% of CeO2, and the aluminum-based component and the magnesium-based component are A1□0 in the sintered body. .. It is preferable that 1 to 5 wt% of MgO and MgO are mixed. Regarding the aluminum-based component and the magnesium-based component in the sintered body, the mixing molar ratio of both these components is Al2O
3 and MgO conversion (AI203/Mg0) as follows (
It is preferably within the range of a) to (c).

(a):35〜45/65〜55 (b):60〜75/40〜25 (C)  : 85〜99./′15〜!本発明におけ
るジルコニアセラミックスの原料の調合には、アルミナ
−マグネシア系酸化物粉末(スピネル系粉末)をジルコ
ニア粉末に混合する方法、アルミナおよびマグネシャの
各粉末をジルコニア粉末に混合する方法、ジルコニウム
、イソ1−リウム、セリウム、アルミニウム、マグネシ
ウム等のイオンを含む水溶液を用いて湿式混合法によ−
)て粉末を得る方法等いずれの方法も採用することがで
きる。好ましくは下記の2つの方法により行われる。第
1の方法はZrO□−Y2O3混合粉末、Zr02−Y
2O3−Ce02混合粉末にAl203−MgOの混合
粉末または混合塩水溶液を添加する方法、第2の方法は
7r02− Y2O3−Al2O3混合粉末、Zr02
−Y2O3−Ce02−A120.混合粉末にMgO粉
末または塩水溶液を添加する方法である。これらの調合
方法において、Zr02−Y2O3、Zr02−Y2O
3−Ce02、Zr02−Y2O3−Al2O32r0
2 Y20g−Ce02−A1203、Al□O,はそ
れぞれの粉末の混合物であってもよく、混合塩水溶液か
ら加水分解、仮焼して得られる混合粉末であってもよく
、混合粉末を仮焼してえられる混合粉末であってらよい
(a): 35-45/65-55 (b): 60-75/40-25 (C): 85-99. /'15~! The preparation of raw materials for zirconia ceramics in the present invention includes a method of mixing alumina-magnesia-based oxide powder (spinel-based powder) with zirconia powder, a method of mixing each powder of alumina and magnesia with zirconia powder, a method of mixing zirconia powder with zirconium, iso-1 -By wet mixing method using an aqueous solution containing ions such as ion, cerium, aluminum, magnesium, etc.-
) to obtain a powder, any method can be adopted. Preferably, the following two methods are used. The first method is ZrO□-Y2O3 mixed powder, Zr02-Y
A method of adding Al203-MgO mixed powder or mixed salt aqueous solution to 2O3-Ce02 mixed powder, the second method is 7r02- Y2O3-Al2O3 mixed powder, Zr02
-Y2O3-Ce02-A120. This is a method of adding MgO powder or salt aqueous solution to mixed powder. In these preparation methods, Zr02-Y2O3, Zr02-Y2O
3-Ce02, Zr02-Y2O3-Al2O32r0
2 Y20g-Ce02-A1203, Al□O, may be a mixture of each powder, or may be a mixed powder obtained by hydrolysis and calcining from a mixed salt aqueous solution, or a mixed powder obtained by calcining the mixed powder. It would be good if it was a mixed powder that can be prepared.

なお、ジルコニア原料中にはハフニア(IIfO□)が
不可避的に0.5〜3.0wt%混在するが、本発明に
係るジルコニアセラミックスにおいてはZrO2の一部
をHfO2に置換しても同様の特性を示すものである。
Although 0.5 to 3.0 wt% of hafnia (IIfO□) is unavoidably mixed in the zirconia raw material, the zirconia ceramic according to the present invention maintains the same characteristics even if a part of ZrO2 is replaced with HfO2. This shows that.

(発明の作用・効果) (1)安定化剤としてY2O3を用いた場合(曲げ強度
、耐酸性) 第1図には、アルミニウムおよびマグネシウム系成分を
Al2O3、MgOに換算し全体に対する混合比を一定
にした場合のこれら画成化物間の混合モル比とセラミッ
クスの曲げ強度、耐酸性の結果が示されている。当該結
果から明らかなように、画成化物間の混合モル比を漸次
変更していくと曲げ強度には3つのピークが認められる
。その第1ピークはA1203  (モル)/Mg0(
モル)で略40/60、第2ピークは同モル比で略70
/ 30、第3ピークは同モル比で略90/ 10にて
それぞれ認められ、またこれら両系成分の混在による曲
げ強度の増加は上記モル比で35〜45/65〜55.
60〜75/40〜25.85〜99/15〜lの範囲
で認められる。また、耐酸性についてはこれら両系成分
が混在することにより大きくなるが、特にアルミニウム
系成分の増加に伴い大きくなる。
(Actions and effects of the invention) (1) When Y2O3 is used as a stabilizer (bending strength, acid resistance) Figure 1 shows that aluminum and magnesium components are converted into Al2O3 and MgO, and the mixing ratio to the whole is kept constant. The results of the mixing molar ratio between these defined substances, the bending strength of the ceramic, and the acid resistance are shown. As is clear from the results, three peaks are observed in the bending strength when the mixing molar ratio between the defined substances is gradually changed. The first peak is A1203 (mol)/Mg0(
mole) is approximately 40/60, and the second peak is approximately 70 in the same molar ratio
/30, the third peak was observed at the same molar ratio of approximately 90/10, and the increase in bending strength due to the mixture of these two components was 35-45/65-55.
It is recognized in the range of 60-75/40-25.85-99/15-1. In addition, the acid resistance increases due to the coexistence of both of these components, and particularly increases as the aluminum component increases.

一方、第2図にはアルミニウムおよびマグネシウム系成
分をAl2O3 、MgOに換算しこれら画成化物間の
混合モル比を上記ピークにおける値とした場合の、両酸
化物の全体に対する混合重量比とセラミックスの曲げ強
度、耐酸性の結果が示されている。当該結果から明らか
なように、両酸化物の全体に対する混合重量比が所定の
値を越えると同重量比の増加に伴い曲げ強度が漸次低下
する傾向が認められ、その最大の限界は30wt%であ
り、好ましくは1〜5 wt%である。
On the other hand, Fig. 2 shows the mixing weight ratio of both oxides to the total and the ceramics when the aluminum and magnesium components are converted into Al2O3 and MgO and the mixing molar ratio between these defined substances is the value at the above peak. Results of bending strength and acid resistance are shown. As is clear from the results, when the weight ratio of both oxides to the total exceeds a predetermined value, there is a tendency for the bending strength to gradually decrease as the weight ratio increases, and the maximum limit is 30 wt%. It is preferably 1 to 5 wt%.

(2)安定化剤としてY2O3−CeO2を用いた場合
(曲げ強度、耐酸性、熱安定性) 第3図にはジルコニアセラミックス中のY2O3混在f
fl(mol%)と曲げ強度との関係が示されており、
強度の良否の判定基準値70Kgf 7mm2の近傍よ
り低いA群〜D群のものはZrO□が85+oo1%未
満でY2O,とCeO□とが合わせて15mol%を越
えるもの、H群のものはY2O3が7mo 1%のもの
ある。また、強度の基準値の近傍のE群〜G群またはI
」群はZrO□が85mol%でY2O3とCeO2と
が合わせて15mol %、またはY2O3が5mo 
1%である。第4図にはジルコニアセラミックス中のC
eO□mol%と曲げ強度の関係が示されており、Ce
O2は曲げ強度の点から12mol%以下であることが
必要である。このことは、Y2O3、アルミニウム系成
分、マダイ・シウム系成分の混合割合が異なる場合も同
様である。
(2) When Y2O3-CeO2 is used as a stabilizer (bending strength, acid resistance, thermal stability) Figure 3 shows Y2O3 mixed in zirconia ceramics.
The relationship between fl (mol%) and bending strength is shown,
Groups A to D, which are lower than the standard value for judging strength of 70Kgf 7mm2, have ZrO□ less than 85+oo1% and a total of Y2O and CeO□ exceeding 15 mol%, and Group H has Y2O3. There is one with 7mo 1%. In addition, groups E to G or I near the reference value of intensity
” group, ZrO□ is 85 mol%, Y2O3 and CeO2 are 15 mol% in total, or Y2O3 is 5 mol%.
It is 1%. Figure 4 shows C in zirconia ceramics.
The relationship between eO□mol% and bending strength is shown, and Ce
From the viewpoint of bending strength, O2 needs to be 12 mol% or less. This also applies when the mixing ratios of Y2O3, aluminum-based components, and red sea bream/sium-based components are different.

一方、第5図および第6図にはジルコニアセラミックス
におけるアルミニウム系成分とマグオ・シラム系成分(
Al2O,、JOに換算)の混在量(wt%)と曲げ強
度の関係、および同ジルコニアセラミックスにおけるA
l2O3とMgOの混合モル比と曲げ強度の関係がそれ
ぞれ示されている。これらの関係から、人1□0.とM
gOを合わせた混在量は30wt%以下であることが必
要であり、またAl2O3とMgOの混合モル比は (a):35〜45/65〜55(b)=60〜75/
40〜25(c)=85〜99/15〜l であることが好ましい。このことは、z「02、Y2O
3、CeO2、Al2O3、MgOの混在量が他の割合
の場合も同様である。
On the other hand, Figures 5 and 6 show the aluminum component and the mago-silam component (
The relationship between the amount (wt%) of Al2O (converted to JO) and the bending strength, and the A of the same zirconia ceramics.
The relationship between the mixing molar ratio of l2O3 and MgO and the bending strength is shown. From these relationships, person 1□0. and M
The combined amount of gO must be 30 wt% or less, and the mixing molar ratio of Al2O3 and MgO is (a): 35-45/65-55 (b) = 60-75/
It is preferable that 40-25(c)=85-99/15-1. This means that z “02, Y2O
3. The same applies to cases where the mixed amounts of CeO2, Al2O3, and MgO are in other proportions.

また、第7図にはジルコニアセラミックス中のCeO□
の混在imol%と同セラミックスの熱劣化後における
正方晶および立方晶から単斜晶への転移率%との関係が
示されている。かかる関係から、ジルコニアセラミック
スの熱劣化の抑制、すなわち熱安定性にはY2O,とC
eO2の両者が大きく機能していることが明らかで、こ
れら両者共混在量が多いほど熱安定性がよい。なお、安
定化剤とじてY2O3−CeO2を用いた場合の耐酸性
についても確認済みである。
In addition, Fig. 7 shows CeO□ in zirconia ceramics.
The relationship between the mixed imol % of the ceramic and the transition rate % from tetragonal and cubic to monoclinic after thermal deterioration of the same ceramic is shown. From this relationship, Y2O and C are important for suppressing thermal deterioration of zirconia ceramics, that is, for thermal stability.
It is clear that both eO2 play a major role, and the larger the amount of both of them mixed, the better the thermal stability is. Note that acid resistance when Y2O3-CeO2 is used as a stabilizer has also been confirmed.

このように、ZrO2中にY2O3またはY2O3−C
eO2を安定化剤して含有する焼結体中に混在するアル
ミニウム系成分およびマグネシウム系成分の全体に対す
る重量比、これら両系成分の互の混合モル比を特定する
ことにより、高強度かつ耐酸性で熱安定性に1憂れたジ
ルコニアセラミックスを提供することができる。
In this way, Y2O3 or Y2O3-C in ZrO2
By specifying the weight ratio of the aluminum-based component and magnesium-based component to the total mixed in the sintered body containing eO2 as a stabilizer, and the molar ratio of these two components to each other, high strength and acid resistance can be achieved. This makes it possible to provide zirconia ceramics with poor thermal stability.

(実施例) 原JIL涜− 塩水溶液から加水分解法により得られたZr02−Y2
03共沈物を900℃にて仮焼し、粒径1μm以下のジ
ルコニア混合粉末を得な。この混合粉末にA1□03粉
末、MgO粉末を添加してボットミルで粉砕混合し、噴
霧乾燥して出発原料とした。
(Example) Original JIL - Zr02-Y2 obtained from a salt aqueous solution by a hydrolysis method
Calcinate the 03 coprecipitate at 900°C to obtain a zirconia mixed powder with a particle size of 1 μm or less. A1□03 powder and MgO powder were added to this mixed powder, pulverized and mixed in a bot mill, and spray-dried to obtain a starting material.

K1へ1糺 得られた各種の出発原料を用いてこれらを200kg/
cm2の圧力で予備成形し、次いでラバープレス法にて
3ton/cm2の圧力で成形して60X 60x 8
(mn+)の各種の角板を得た。これらの角板を常圧焼
成法にて1400℃で5時間焼成し、試料とした。
Using the various starting materials obtained, 200 kg/g of these were added to K1.
Preforming at a pressure of cm2, then molding using a rubber press method at a pressure of 3 tons/cm2 to form 60x 60x 8
(mn+) various square plates were obtained. These square plates were fired at 1400° C. for 5 hours using an ordinary pressure firing method, and used as samples.

j劇1 (1)曲げ強度試験: JIS−RI601.4点曲げ
強さの試験法に基づく(にgf/mm”)。但し、試料
は3×4X 40(mm)、クロスヘツドスピード0.
5mm/win 、上部スパン10mm、下部スパン3
0Il111゜(2)耐酸性:試験片および36wt%
HCI溶液を密封容器に入れ、150℃で200時間放
置したときの重量を゛測定し、単位面積当たりの重量減
を算出(+sg/cm2)。
J Drama 1 (1) Bending strength test: Based on the JIS-RI601.4-point bending strength test method (gf/mm"). However, the sample was 3 x 4 x 40 (mm) and the crosshead speed was 0.
5mm/win, upper span 10mm, lower span 3
0Il111゜(2) Acid resistance: test piece and 36wt%
The HCI solution was placed in a sealed container and left at 150°C for 200 hours.The weight was measured and the weight loss per unit area was calculated (+sg/cm2).

LLL1 2試験片の試験結果を第1表および第2表に示すととも
に、これら各表に示した試験結果を第1図および第2図
に示す。
The test results for the LLL1 2 test piece are shown in Tables 1 and 2, and the test results shown in these tables are shown in FIGS. 1 and 2.

N001〜N0.27の試験結果は安定化剤のモル比(
Y2O3/ZrO2・3/97)を一定とし、焼結助剤
間の混合モル比(AI□(b/Mg0)または同焼結助
剤の添加量(wt%)を変化させた試験片に基づくもの
である。
The test results for N001 to N0.27 are based on the molar ratio of the stabilizer (
Based on test pieces in which the mixing molar ratio between the sintering aids (AI□(b/Mg0) or the added amount (wt%) of the sintering aids was varied while Y2O3/ZrO2・3/97) was kept constant. It is something.

また、第1図はかかる試験結果のうち焼結助剤の添加量
(・2wt%)を一定にして同焼結助剤間の混合モル比
を変化させた試験片のものであり、かつ第2図はかかる
試験結果のうち焼結助剤間のモル比(40/60、TO
/30.90/10)を一定にして同焼結助剤の添加量
を変化させた試験片のものである。
Figure 1 shows the test results for test pieces in which the amount of sintering aid added (2wt%) was kept constant and the molar ratio of the sintering aid was varied. Figure 2 shows the molar ratio between sintering aids (40/60, TO
/30.90/10) were kept constant and the amount of the sintering aid added was varied.

なお、各図における1点鎖線の直線は焼結助剤が混在し
ない試験片の曲げ強度および耐酸性の値を示している。
In addition, the straight dashed-dotted line in each figure shows the bending strength and acid resistance values of the test piece in which no sintering aid was mixed.

これらの結果から明らかなように、耐酸性については本
発明に係る焼結助剤が混在している試験片は著しく向上
し、特に同焼結助剤間の混合モル比30〜60を越える
とその傾向が顕著である。一方、曲げ強度については、
焼結助剤間の混合モル比が略40/60.70/30.
90/10においてピークが認められ、特に同温合モル
比が35〜45/65〜55.60〜75/40〜25
.85〜99/15〜1の範囲において増加しているこ
とが認められる。また、焼結助剤の添加量が20wt%
以下、好ましくは10wt%以下において曲げ強度の増
加が認められる。
As is clear from these results, the acid resistance of the test piece containing the sintering aid according to the present invention is significantly improved, especially when the molar ratio of the sintering aid exceeds 30 to 60. This tendency is remarkable. On the other hand, regarding bending strength,
The mixing molar ratio between the sintering aids is approximately 40/60.70/30.
A peak was observed at 90/10, especially when the same temperature molar ratio was 35-45/65-55.60-75/40-25
.. An increase is observed in the range of 85 to 99/15 to 1. In addition, the amount of sintering aid added is 20wt%.
An increase in bending strength is observed below, preferably at 10 wt% or less.

第2表のNo、28〜No、43の試験結果は、安定化
剤のモル比(1,5/9g、5.2/98.5/95)
および焼結助剤の添加量(2wt%、5wt%)をそれ
ぞれ一定にして同焼結助剤間の混合モル比を変化させた
試験片のものであり、これらのすべての曲げ強度および
耐酸性は同焼結助剤が混在しない試験片に比して向上し
ている。
The test results for No. 28 to No. 43 in Table 2 are the molar ratio of the stabilizer (1.5/9g, 5.2/98.5/95)
and test pieces in which the amounts of sintering aids added (2wt%, 5wt%) were kept constant and the mixing molar ratio of the sintering aids was varied, and the bending strength and acid resistance of all of these is improved compared to the test piece that does not contain the same sintering aid.

このように、本発明に係るジルコニアセラミックスは高
強度でかつ高耐酸性のジルコニアセラミックスであり、
特に高い耐酸性が要求される機械構造材料として有用で
ある。
As described above, the zirconia ceramic according to the present invention is a high-strength and highly acid-resistant zirconia ceramic,
It is particularly useful as a mechanical structural material that requires high acid resistance.

なお、本実施例においては焼結助剤として、アルミニウ
ム系成分を含む化合物として^1203粉末を用いかつ
マグネシウム系成分を含む化合物としてMgO粉末を用
いたが、これらの成分の量は焼成後のセラミックスを4
4μm以下に粉砕して蛍光X線分析法にて測定したアル
ミニウム系成分、マグネシウム系成分の値とほぼ一致し
ている。従って、セラミックス中に混在するアルミニウ
ム系成分、マグネシウム系成分の人1□0. 、 Mg
Oに換算した値は焼結助剤として用いたAl2O3、M
gOの添加量にほぼ一致しているなめ、同添加量を混在
量の値とした。
In this example, as a sintering aid, ^1203 powder was used as a compound containing an aluminum component, and MgO powder was used as a compound containing a magnesium component, but the amounts of these components varied depending on the ceramic after firing. 4
The values almost match those of the aluminum-based components and magnesium-based components measured by X-ray fluorescence analysis after pulverizing to 4 μm or less. Therefore, people with aluminum-based components and magnesium-based components mixed in ceramics 1□0. , Mg
The value converted to O is Al2O3, M used as a sintering aid.
Since it almost matched the amount of gO added, the same amount was taken as the value of the mixed amount.

なお、本実施例のジルコニアセラミックスにおいては、
蛍光X線分析法により下記の不純物5i02:2.0w
t%以下、T!02:2.0wt%以下、CaO:0.
5wt%以下、に20:0.5wt%以下、Na2O:
0.5wt%以下、’1foz:3.Owt%以下を含
有していることが確認された。
In addition, in the zirconia ceramic of this example,
The following impurity 5i02:2.0w was detected by fluorescent X-ray analysis.
Less than t%, T! 02: 2.0wt% or less, CaO: 0.
5 wt% or less, 20: 0.5 wt% or less, Na2O:
0.5wt% or less, '1foz: 3. It was confirmed that the content was less than Owt%.

(実施例2) 原1 塩水溶液から加水分解法により得られZrO□−Y2O
3−ceo□共沈物を900℃にて仮焼し、粒径1μm
以下のジルコニア混合粉末を得な。こ、の混合粉末に^
1203粉末およびMgO粉末を添加してボットミルで
切砕混合し、これを噴霧乾燥して出発原料とした。
(Example 2) Raw material 1 ZrO□-Y2O obtained from a salt aqueous solution by a hydrolysis method
3-ceo□ Co-precipitate was calcined at 900℃, and the particle size was 1 μm.
Obtain the following zirconia mixed powder. This mixed powder ^
1203 powder and MgO powder were added, chopped and mixed using a bot mill, and this was spray-dried to obtain a starting material.

■1ノ日U【 原料をプレス機にて金型内で200J/cm2の圧力で
予備成形して60X 60X 8(mIll)の角板と
し、これをラバープレス法にて、3ton/cm2の圧
力で成形した。
■1 day Molded with.

得られた角板を常圧焼成法にて1400℃で5hr焼成
し試料とした。
The obtained square plate was fired at 1400° C. for 5 hours using an ordinary pressure firing method to prepare a sample.

(1)曲げ強度試験: JIS−RI601.4点曲げ
強さの試験法に基づく(にgr/mm2)。但し、試料
は3×4X40(mm)、クロスヘツドスピード0.5
mm/win 、上部スパン10mm、下部スパン30
IIIIIl。
(1) Bending strength test: Based on JIS-RI601.4-point bending strength test method (in gr/mm2). However, the sample size is 3 x 4 x 40 (mm), and the crosshead speed is 0.5.
mm/win, upper span 10mm, lower span 30
IIIIIIl.

(2)熱劣化試験:特開昭60−350号公報に開示さ
れた「セラミックスの試験方法」に基づき、試料をオー
トクレーブ内の熱水中(熱水温度250℃、オートクレ
ーブ内蒸気圧約39kg/c+++2)で50hr熱処
理し、下記の方法により試料中における正方晶および立
方晶の単斜晶への転移率(%)を算出する。
(2) Thermal deterioration test: Based on the "Test method for ceramics" disclosed in Japanese Patent Application Laid-open No. 60-350, the sample was placed in hot water in an autoclave (hot water temperature 250°C, steam pressure inside the autoclave approximately 39 kg/c++2 ) for 50 hours, and the transition rate (%) of tetragonal and cubic crystals to monoclinic crystals in the sample is calculated by the following method.

試料を予めダイヤモンドペーストにて鏡面研磨してX線
回折し、単斜晶の(111)面の回折ピークの積分強度
IMに対し正方晶の(111)面と立方晶の(111)
面の回折ピークの積分強度との和(IT+IC)から正
方晶および立方晶ff1(VO)をVo=(IT+IC
)バIM+IT+IC)により算出する。
The sample was mirror-polished with diamond paste in advance and subjected to X-ray diffraction.
From the sum of the integrated intensity of the diffraction peak of the surface (IT+IC), the tetragonal and cubic crystals ff1(VO) are calculated as Vo=(IT+IC)
)BaIM+IT+IC).

また、熱処理後の試料をX線回折に付して上記と同様に
正方晶および立方晶fi(V+)を算出し、これらV 
O、V 1から転移率(%) = (Vo−V+ )/
V。
In addition, the sample after heat treatment was subjected to X-ray diffraction to calculate the tetragonal and cubic fi(V+) in the same manner as above, and these V
O, V 1 to transition rate (%) = (Vo-V+)/
V.

xlOOを算出する。Calculate xlOO.

L1隨l 各試料の試験結果を第3表〜第11表に示すとともに、
同結果の一部を第3図〜第7図に示す。
The test results for each sample are shown in Tables 3 to 11, and
Part of the results are shown in FIGS. 3 to 7.

これらの試験結果中、曲げ強度の良否の判定基準値を7
0Kgf/lerm2とし、がっ熱安定性の良否の判定
基準値(転移率)25%とした。
Among these test results, the standard value for determining bending strength was set at 7.
The temperature was set at 0 Kgf/lerm2, and the criterion value (transition rate) for determining thermal stability was set at 25%.

第3図はジルコニアセラミックス中のY2O3の混合f
fi(mol%)と曲げ強度との関係を示しており、同
図においては強度の判定基準値70Kgf/mm2の近
傍またはこれより低い範囲において(^)〜((()の
8つの群が認められる。A群〜D群はZrO2が82〜
85 n+o1%、Y2O,とCeO2を合わせた量が
15mol%を越えるもの、E群およびF群はZrO2
が85mo 1%、Y2O,とCeO2を合わせた量が
1511o1%のもの、O1洋はY2O3が5n+o 
I%のもの、H群はY2O3が7mo I%のものをそ
れぞれ含んでいる。また、第4図はY2O3が3n+o
 I%、Al2O3とMgOを合わせた量が2wt%で
あるジルコニアセラミックス中のCeO2混在fi(+
++o1%)と曲げ強度との関係を示しており、強度は
CeO2の混在量が所定の値を越えると漸次低下し、1
2mol%を越えると急激に低下する傾向にある。これ
ら両図の結県からすれば、曲げ強度の高いジルコニアセ
ラミックスを得るには、ZrO□中にY2O3が0 、
5〜5mo I %、CeO2が0.5〜12mol%
の範囲内にてこれら両者が合わせて1.0〜15+eo
1%混在するとともに、Al2O3とMgOが混在して
いることが必要である。
Figure 3 shows the mixture f of Y2O3 in zirconia ceramics.
It shows the relationship between fi (mol%) and bending strength, and in the figure, eight groups from (^) to (( Groups A to D have ZrO2 of 82 to
85 n+o1%, Y2O, and those in which the combined amount of CeO2 exceeds 15 mol%, Group E and Group F are ZrO2
is 85mo 1%, the combined amount of Y2O, and CeO2 is 1511o1%, O1 is 5n+o of Y2O3
Group I% and Group H contain 7 mo I% of Y2O3, respectively. Also, in Figure 4, Y2O3 is 3n+o
I%, CeO2 mixed fi(+
++o1%) and bending strength, and the strength gradually decreases as the amount of CeO2 exceeds a predetermined value, and
When it exceeds 2 mol%, it tends to decrease rapidly. Considering the results of these two figures, in order to obtain zirconia ceramics with high bending strength, Y2O3 in ZrO□ must be 0,
5-5mol%, CeO2 0.5-12mol%
Both of these together within the range of 1.0 to 15+eo
It is necessary that Al2O3 and MgO are mixed at 1% and Al2O3 and MgO are mixed.

第5図はY2O3が3m01%、CeO2が2mo I
%であるジルコニアセラミックス中の^120.とMg
Oの混在量(wt% ・・同混在量はアルミニウム系成
分、マグネシウム系成分をAl2O3= Mhoに換算
した値であり、本実施例においてはこれらの各値にAl
2O3、lllgoの添加量の値を充当した。)と曲げ
強度との関係を示しており、強度はAl2O3とMgO
両者の混在量が所定の値を越えると漸次低下し、30w
t%を越えると急激に低下する傾向にある。また、第6
図はY2O3が3n+o 1%、CeO2が2mo I
%、Al2O3とMgO両者が2wt%であるジルコニ
アセラミックス中のA1□03とMgOの混合モル比(
^h(b/Mg0)と曲げ強度との関係を示しており、
強度には混合モル比が略40/60.70/30.90
/10の値においてそれぞれピークが認められ、その良
好な範囲の第1は35〜45/65〜55、第2は60
〜75/40〜25、第3は85〜99/15〜1の範
囲である。これら両図の結果からすれば、曲げ強度の高
いジルコニアセラミックスを得るには、Al2O3とM
gO両者の混在量が30wt%以下であることが必要で
あり、かつこれら両者の混合モル比が下記(a) 、(
b) 、(c)(a):35〜45/65〜55(b)
=60〜75740〜25(c):85〜99/15〜
1 の範囲にあることが好ましい。
Figure 5 shows Y2O3 at 3m01% and CeO2 at 2moI.
%^120. in zirconia ceramics. and Mg
Mixed amount of O (wt%...The mixed amount is a value obtained by converting aluminum-based components and magnesium-based components into Al2O3 = Mho, and in this example, Al is added to each of these values.
The value of the addition amount of 2O3 and lllgo was applied. ) and bending strength, and the strength is between Al2O3 and MgO
When the amount of both mixed exceeds a predetermined value, it gradually decreases to 30w.
When it exceeds t%, it tends to decrease rapidly. Also, the 6th
The figure shows Y2O3 at 3n+o 1% and CeO2 at 2mo I
%, the mixing molar ratio of A1□03 and MgO in zirconia ceramics in which both Al2O3 and MgO are 2 wt% (
It shows the relationship between ^h(b/Mg0) and bending strength,
For strength, the mixing molar ratio is approximately 40/60.70/30.90
A peak is observed at each value of /10, and the first good range is 35-45/65-55, and the second is 60.
-75/40-25, and the third range is 85-99/15-1. Based on the results of these two figures, in order to obtain zirconia ceramics with high bending strength, Al2O3 and M
It is necessary that the mixed amount of both gO and O is 30 wt% or less, and the mixing molar ratio of both is as follows (a), (
b) , (c) (a): 35-45/65-55 (b)
=60~75740~25(c):85~99/15~
It is preferably in the range of 1.

また、第3図〜第5図から明らかなように、Y2O3が
2mo 1%、3mol%、CeO2が5mo 1%以
下、A1□0.とMgO両者が1〜5wt%混在するジ
ルコニアセラミックスにおいては、曲げ強度が特に高い
Further, as is clear from FIGS. 3 to 5, Y2O3 is 2mo 1% and 3mol%, CeO2 is 5mo 1% or less, A1□0. Zirconia ceramics containing 1 to 5 wt% of both MgO and MgO have particularly high bending strength.

第7図はAl□0.とMgO両者が2wt%でAl2O
3/ス中の所定のY2O3+oo I%におけるCeO
2両者 1%と正方晶および立方晶の転移率(%)との
関係を示しており、Y2O3とCeO2両者の混在量が
多い方が転移率が少ないこと、すなわち熱安定性の良好
なことを示している。
Figure 7 shows Al□0. and MgO are both 2wt% Al2O
3/CeO at a given Y2O3+oo I% in
2 shows the relationship between 1% of both and the transition rate (%) of tetragonal and cubic crystals, indicating that the larger the amount of both Y2O3 and CeO2 mixed, the lower the transition rate, that is, the better the thermal stability. It shows.

(実施例3) 原料調合を下記の方法で行った点を除き、実施例1.2
と同様に試料を作製しかつ試験を行って第12表〜第1
5表に示す結果を得た。
(Example 3) Example 1.2 except that the raw materials were prepared in the following manner.
Samples were prepared and tested in the same manner as in Tables 12 to 1.
The results shown in Table 5 were obtained.

」1乱鉦 アルミニウム系成分、マグネシウム系成分を含む化合1
勿として^+(oH)、 、AlCl3、^l (NO
3 )3、^1□(C204)5、Mg(OHh 、M
gCl□、Mg(NO3h、MgC204、MgC0,
を用い、これらの化合物を実施例1、2の方法にて得た
Zr02−Y2O3 = 7.r02− Y2O3−C
eO2の各粉末に、セラミックス中の上記各系成分がA
1□0, 、MgO換算で特定の値となるように添加し
混合する。得られた混合物を1000℃にて熱処理し、
ボットミルで粉砕して混合し、噴霧乾燥して出発原料と
した。
"1 Random Compound 1 containing an aluminum-based component and a magnesium-based component
Of course ^+ (oH), , AlCl3, ^l (NO
3)3,^1□(C204)5,Mg(OHh,M
gCl□, Mg(NO3h, MgC204, MgC0,
These compounds were obtained by the method of Examples 1 and 2 using Zr02-Y2O3 = 7. r02- Y2O3-C
Each of the above-mentioned components in the ceramics is added to each powder of eO2.
1□0, , is added and mixed to a specific value in terms of MgO. The resulting mixture was heat-treated at 1000°C,
The mixture was ground in a bot mill, mixed, and spray-dried to obtain a starting material.

仄呈瀦1 第12表〜第15表から明らかなように、焼結助剤とし
てアルミニウム系成分およびマグネシウム系成分を含む
塩水溶液を用いても、^120,粉末及びMgO粉末を
用いた場合と同様の効果を奏する。
Presentation 1 As is clear from Tables 12 to 15, even if an aqueous salt solution containing an aluminum-based component and a magnesium-based component is used as a sintering aid, the results will be lower than those using ^120 powder and MgO powder. It has a similar effect.

(実施例4) 原料調合を下記の(1) 、(2>の方法で行った点を
除き、実施例1.2と同様に試料を作製しかつ試験を行
って第16表に示す結果を得な。
(Example 4) Samples were prepared and tested in the same manner as in Example 1.2, except that the raw materials were prepared using the following methods (1) and (2>), and the results shown in Table 16 were obtained. Good value.

駆且1−合一 (11オキシ塩化ジルコニウムに塩化イツトリウムを加
え加水分解により得られたゾル溶液、またはオキシ塩化
ジルコニウムに塩化イツトリウム、塩化セリウムを加え
加水分解により得られたゾル溶液にA I (OH )
3とMg(OFlhをA1□O, 、MgO換算でAl
2O,/MgOが所定のモル比となるように添加し、1
000℃にて熱処理して得られた粉末をポットミルにて
粉砕し、噴霧乾燥して出発原料としたく第16表No.
1〜No.6に対応)。
(11) A sol solution obtained by adding yttrium chloride to zirconium oxychloride and hydrolysis, or a sol solution obtained by adding yttrium chloride and cerium chloride to zirconium oxychloride and hydrolyzing A I (OH )
3 and Mg (OFlh as A1□O, , Al in terms of MgO
2O,/MgO is added so as to have a predetermined molar ratio, and 1
The powder obtained by heat treatment at 000° C. was pulverized in a pot mill and spray-dried to obtain the starting material. Table 16 No.
1~No. 6).

12+上記(1)項にて得られた各ゾル溶液にAI(0
11)3をAl2O,換算で後述するMgOとのモル比
が90/Inとなるよう添加して熱処理し、得られた粉
末にMg。
12+ AI (0
11) Mg was added to the resulting powder by heat treatment by adding 3 so that the molar ratio with MgO (described later) in terms of Al2O was 90/In.

粉末を加えボットミルにて粉砕しく第16表No、7゜
8)、またはMgO粉末に換えてMgC+2溶液を添加
、熱処理したものを粉砕しく同表No、9.IO)、噴
霧乾すmして出発原料とした。
Add powder and pulverize in a bot mill (Table 16 No. 7゜8), or add MgC+2 solution instead of MgO powder and pulverize it with heat treatment. Table 16 No. 9. IO) was spray dried and used as a starting material.

左l胤1 第16表から明らかなように、出発原料を調合するため
にジルコニウムイオン、イツ!−リウムイオン、セリウ
ムイオンを含む混合塩水溶液を用いても、ZrO2Y2
O3、ZrO2Y2O3CeO2共沈物を用いた場合と
同様の効果を奏する。
Left Seed 1 As is clear from Table 16, zirconium ions are used to prepare the starting materials. - Even if a mixed salt aqueous solution containing lium ions and cerium ions is used, ZrO2Y2
The same effect as when using O3, ZrO2Y2O3CeO2 coprecipitate is achieved.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係るジルコニアセラミック
スにおける安定化剤のモル比および焼結助剤の混在量を
一定にした場合における同焼結助削間のモル比(AI□
’h/MgOモル比)と曲げ強度、耐酸性との関係を示
すグラフ、第2図は同セラミ・ソクスにおける安定化剤
のモル比および^1203 /JOモル比を一定にした
場合における同焼結助剤の混在量と曲げ強度、耐酸性と
の関係を示すグラフ、第3図は本発明の実施例2に係る
セラミックス中のY2O,混在量と曲げ強度との関係を
示すグラフ、第・1図は同セラミックス中のCeO2混
在量と曲げ強度との関係を示すグラフ、第5図はAl2
O.とM gO両昔の混在量と曲げ強度との関係を示す
グラフ、第6図は同セラミックスにおけるAl2O3/
JOモル比と曲げ強度との関係を示すグラフ、第7図は
同セラミックスにおけるY2O3、CeO2の混在)I
tと正方品および立方晶の転移率との関係を示すグラフ
である。 第1図 M2O(A)x(b  mol  ’/−)     
   AIJOj実線°曲実線変曲   破線 耐酸性
FIG. 1 shows the molar ratio between the sintering aids (AI□
Figure 2 is a graph showing the relationship between the molar ratio of h/MgO), bending strength, and acid resistance. Figure 3 is a graph showing the relationship between the amount of binder mixed in, bending strength, and acid resistance. Figure 1 is a graph showing the relationship between the amount of CeO2 mixed in the same ceramic and the bending strength, and Figure 5 is a graph showing the relationship between the amount of CeO2 mixed in the same ceramic and the bending strength.
O. Figure 6 is a graph showing the relationship between the amount of mixture of both Al2O3 and MgO in the past and bending strength.
A graph showing the relationship between JO molar ratio and bending strength, Figure 7 shows the mixture of Y2O3 and CeO2 in the same ceramic.
It is a graph showing the relationship between t and the transition rate of a tetragonal product and a cubic crystal. Figure 1 M2O(A)x(b mol'/-)
AIJOj solid line ° curve solid line inflection broken line acid resistance

Claims (6)

【特許請求の範囲】[Claims] (1)安定化剤としてY_2O_3を5mol%以下の
範囲で含有するZrO_2焼結体中に同焼結体を基準と
してアルミニウム系成分およびマグネシウム系成分がA
l_2O_3およびMgO換算で合せて1〜30wt%
混在していることを特徴とする高強度ジルコニアセラミ
ックス。
(1) In the ZrO_2 sintered body containing Y_2O_3 as a stabilizer in a range of 5 mol% or less, aluminum-based components and magnesium-based components are A
A total of 1 to 30 wt% in terms of l_2O_3 and MgO
High-strength zirconia ceramics characterized by being mixed.
(2)前記焼結体がY_2O_3を1.5〜5mol%
含有している特許請求の範囲第1項に記載の高強度ジル
コニアセラミックス。
(2) The sintered body contains 1.5 to 5 mol% of Y_2O_3
The high-strength zirconia ceramic according to claim 1, which contains the high-strength zirconia ceramic according to claim 1.
(3)前記焼結体がアルミニウム系成分およびマグネシ
ウム系成分をAl_2O_3およびMgO換算で1〜5
wt%混在している特許請求の範囲第2項に記載の高強
度ジルコニアセラミックス。
(3) The sintered body has an aluminum component and a magnesium component of 1 to 5 in terms of Al_2O_3 and MgO.
The high-strength zirconia ceramic according to claim 2, in which wt% is mixed.
(4)安定化剤としてY_2O_3を0.5〜5mol
%、CeO_2を0.5〜12mol%の範囲内にてこ
れら両者を1.0〜15mol%含有するZrO_2焼
結体中に同焼結体を基準としてアルミニウム系成分およ
びマグネシウム系成分がAl_2O_3およびMgO換
算で合わせて1〜30wt%混在していることを特徴と
する高強度ジルコニアセラミックス。
(4) 0.5-5 mol of Y_2O_3 as a stabilizer
%, CeO_2 in the range of 0.5 to 12 mol%, and in the ZrO_2 sintered body containing both of these in the range of 1.0 to 15 mol%, based on the same sintered body, aluminum-based components and magnesium-based components are Al_2O_3 and MgO. A high-strength zirconia ceramic characterized by containing a total of 1 to 30 wt% in terms of conversion.
(5)前記焼結体がアルミニウム系成分およびマグネシ
ウム系成分をAl_2O_3およびMgO換算で1〜5
wt%混在している特許請求の範囲第4項に記載の高強
度ジルコニアセラミックス。
(5) The sintered body has an aluminum component and a magnesium component of 1 to 5 in terms of Al_2O_3 and MgO.
The high-strength zirconia ceramic according to claim 4, in which wt% is mixed.
(6)アルミニウム系成分とマグネシウム系成分の混合
モル比がAl_2O_3およびMgO換算(Al_2O
_3/MgO)で下記(a)、(b)、(c) (a):35〜45/65〜55(b):60〜75/
40〜25(c):85〜99/15〜1 のいずれかの範囲内にある特許請求の範囲第1項、第2
項、第3項、第4項または第5項に記載の高強度ジルコ
ニアセラミックス。
(6) The mixing molar ratio of aluminum-based components and magnesium-based components is Al_2O_3 and MgO equivalent (Al_2O
_3/MgO) below (a), (b), (c) (a): 35-45/65-55 (b): 60-75/
40-25(c): Claims 1 and 2 falling within the range of 85-99/15-1
The high-strength zirconia ceramic according to item 3, item 4, or item 5.
JP62-201315A 1986-08-18 1987-08-12 High strength zirconia ceramics Granted JPH013071A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62-201315A JPH013071A (en) 1986-08-18 1987-08-12 High strength zirconia ceramics
US07/086,388 US4820667A (en) 1986-08-18 1987-08-17 High strength zirconia ceramic
EP87307289A EP0257963B1 (en) 1986-08-18 1987-08-18 High strength zirconia ceramic
DE3789583T DE3789583T2 (en) 1986-08-18 1987-08-18 High-strength zirconium oxide ceramic.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP19318086 1986-08-18
JP61-193180 1986-08-18
JP62-70072 1987-03-24
JP62-201315A JPH013071A (en) 1986-08-18 1987-08-12 High strength zirconia ceramics

Publications (3)

Publication Number Publication Date
JPS643071A JPS643071A (en) 1989-01-06
JPH013071A true JPH013071A (en) 1989-01-06
JPH037623B2 JPH037623B2 (en) 1991-02-04

Family

ID=

Similar Documents

Publication Publication Date Title
EP0257963A2 (en) High strength zirconia ceramic
JP2533992B2 (en) Aluminum titanate ceramics and manufacturing method thereof
JPH10101418A (en) Zirconia-based composite ceramic sintered compact and its production
CN100522870C (en) Composite ceramic and method for producing same
JPS59162173A (en) Zirconia sintered body
JPS62153173A (en) Aluminum nitride sintered body and manufacture
JPS6126562A (en) Zirconia sintered body
JPH0535103B2 (en)
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPH013071A (en) High strength zirconia ceramics
JPH0755855B2 (en) Spinel ceramics
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
JPS63156063A (en) High temperature strength and hot water stability zirconia base ceramics
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
JP2517253B2 (en) Manufacturing method of high strength zirconia sintered body
JPS63162570A (en) Thermal degradation-resistant high strength zirconia-alumina ceramics and manufacture
JPH037623B2 (en)
JPH0478581B2 (en)
JPH0710746B2 (en) High toughness zirconia sintered body
JP3157600B2 (en) Composite sintered body
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JP3177534B2 (en) Spinel ultrafine powder and production method thereof
AU601999B2 (en) High strength zirconia ceramic
JPH0696471B2 (en) Method for manufacturing zirconia ceramics
JPH06219831A (en) High toughness zirconia-based sintered compact