JPH01307114A - Anti-sulfidization contact material and manufacture thereof - Google Patents

Anti-sulfidization contact material and manufacture thereof

Info

Publication number
JPH01307114A
JPH01307114A JP63137410A JP13741088A JPH01307114A JP H01307114 A JPH01307114 A JP H01307114A JP 63137410 A JP63137410 A JP 63137410A JP 13741088 A JP13741088 A JP 13741088A JP H01307114 A JPH01307114 A JP H01307114A
Authority
JP
Japan
Prior art keywords
ruthenium
silver
torr
contact material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137410A
Other languages
Japanese (ja)
Inventor
Hisashi Kaga
壽 加賀
Hajime Konishi
哉 小西
Keiichi Katsuyo
勝世 敬一
Takumi Takamura
巧 高村
Hiroshi Sasaki
廣 佐々木
Makoto Nishiie
西家 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO PORISU HAKODATE GIJUTSU SHINKO KYOKAI
YOUYOU ENG KK
Original Assignee
TECHNO PORISU HAKODATE GIJUTSU SHINKO KYOKAI
YOUYOU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO PORISU HAKODATE GIJUTSU SHINKO KYOKAI, YOUYOU ENG KK filed Critical TECHNO PORISU HAKODATE GIJUTSU SHINKO KYOKAI
Priority to JP63137410A priority Critical patent/JPH01307114A/en
Publication of JPH01307114A publication Critical patent/JPH01307114A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To improve anti-sulfidization characteristic of contact material by including ruthenium particles of a specified ratio, as being scattered, in a sintered body of silver and forming a layer of ruthenium oxide on the face of the sintered body. CONSTITUTION:Ruthenium particles of 0.1 to 30wt.% is included, as being scattered, in silver or silver alloy and a layer of ruthenium oxide is formed on the face of the silver or silver alloy. If including quantity of ruthenium is less than 0.1wt.%, anti-sulfidization due to the ruthenium oxide on the face of the material is not improved. And if more than 30wt.%, contact resistance of the ruthenium oxide is extremely increased, when compared to silver. Furthermore, practical processability is degraded. Accordingly, anti-sulfidization characteristic of contact material is improved without degrading excellent characteristics of silver and ruthenium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電気、電子装置において広く用いられる
高導電性の接点材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to highly conductive contact materials widely used in various electrical and electronic devices.

(従来の技術) 従来、電気回路中の接点の材料として1例えば、特開昭
57−140841号公報に記載されたものが知られて
いる。この接点材料は、銀(Ag)と。
(Prior Art) Conventionally, materials for contacts in electric circuits are known, for example, those described in Japanese Patent Application Laid-Open No. 140841/1983. This contact material is silver (Ag).

ルテニウム(Ru)との焼結合金であるとされている。It is said to be a sintered alloy with ruthenium (Ru).

即ち、接触抵抗が小さく安定であり、耐放電消耗特性、
耐溶着特性が共に優れるが、固くて脆い欠点を有するル
テニウムを、銀と焼結合金化することによって、その欠
点を除去し、優れた接点材料を得ようとするものである
In other words, the contact resistance is small and stable, and the discharge and wear resistance properties are excellent.
Ruthenium, which has excellent welding resistance but has the drawback of being hard and brittle, is made into a sintered alloy with silver, thereby eliminating the drawbacks and producing an excellent contact material.

(発明が解決しようとする課題) 上記特開昭57−140841号公報の記載にもかかわ
らず、一般に、銀とルテニウムとは互いに融点差が大き
く、かつ相互に固溶度を有しないため、焼結による合金
化は不可能である。実際に、出願人が、上記公報に記載
された実施例の方法に従って行った焼結実験によっても
、相互拡散を伴う銀−ルテニウム合金を製造することが
できなかった。即ち、上記実施例の方法に従って焼結を
行うと、単に銀にルテニウムが分散した状態となり、相
互溶解を伴う銀とルテニウムとの合金はできなかった。
(Problems to be Solved by the Invention) Despite the description in JP-A No. 57-140841, in general, silver and ruthenium have a large difference in melting point and do not have solid solubility with each other. Alloying by bonding is not possible. In fact, even in the sintering experiments conducted by the applicant according to the method of the Examples described in the above-mentioned publication, it was not possible to produce a silver-ruthenium alloy accompanied by interdiffusion. That is, when sintering was performed according to the method of the above example, ruthenium was simply dispersed in silver, and an alloy of silver and ruthenium with mutual dissolution was not formed.

そして、この材料は、耐硫化特性が、従来の銀糸接点材
料と大差なく、硫化感受性が非常に高いものであって、
使用により表面に非導電性の硫化層を生じやすい。即ち
、銀にルテニウムを分散させても、耐硫化特性の改善は
認められない。
The sulfurization resistance of this material is not much different from that of conventional silver thread contact materials, and it is extremely sensitive to sulfurization.
Due to use, a non-conductive sulfide layer tends to form on the surface. That is, even if ruthenium is dispersed in silver, no improvement in sulfidation resistance is observed.

従って、本発明は、ルテニウム酸化物を銀または銀合金
の表面に分散させて一体化することにより、銀とルテニ
ウム夫々の優れた特性を損なうことなく、耐硫化特性を
大幅に改善して優れた接点材料を提供しようとするもの
である。
Therefore, by dispersing and integrating ruthenium oxide on the surface of silver or silver alloy, the present invention significantly improves the sulfidation resistance without impairing the excellent properties of silver and ruthenium. The aim is to provide contact materials.

(課題を解決するための手段) 本発明は、上記課題を解決するため、接点材料として、
銀(Ag)または銀合金中にルテニウム(Ru)粒子を
0.1〜30wt%分散含有し、かつ表面にルテニウム
(Ru)酸化物の層を形成した耐硫化性材料を採用した
。ルテニウム(Ru)の含有量が、0゜1wt%以下で
あると、材料の表面部のルテニウム(Ru)酸化物によ
る耐硫化性の改善が認められず、また301+lt%以
上であると、銀に比べ接触抵抗の増大が著しいと共に、
実用的加工性が損なわれる。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides, as a contact material,
A sulfide-resistant material containing 0.1 to 30 wt % of ruthenium (Ru) particles dispersed in silver (Ag) or a silver alloy and having a ruthenium (Ru) oxide layer formed on the surface was used. If the ruthenium (Ru) content is 0°1 wt% or less, no improvement in sulfidation resistance is observed due to ruthenium (Ru) oxide on the surface of the material, and if it is 301+lt% or more, silver There is a significant increase in contact resistance compared to
Practical workability is impaired.

そして1本発明においては、この接点材料を製造するた
め、銀(Ag)粉末と、ルテニウム(Ru)I末、ある
いはこれらにさらにチタニウム(Ti)、クロム(Cr
)、ニッケル(Ni) 、モリブデン(MO)、タング
ステン(ltl)、銅(Cu)の内の少なくとも一種の
金属粉末を添加して混合し、圧縮成型したものを10−
6Torr〜10−6Torrの弱酸化性雰囲気下にて
、650℃〜960℃で焼結することにより、焼結体表
面に分散したルテニウム粒子を酸化させ、あるいは圧縮
成型したものを焼結した後、10−6Torr〜10−
6Torrの弱酸化性雰囲気下にて、500℃〜960
’Cで熱処理することにより、焼結体表面に分散したル
テニウム(Ru)粒子を酸化させる方法を採用した。な
お、雰囲気真空度が、10−6Torr〜10−6To
rrの範囲で良好な接触抵抗を示し、これより低いとル
テニウムのみならず他の金属が酸化されるために接触抵
抗が著しく大きくなり、またこれより高いとルテニウム
の酸化が十分でないために硫化しやすく、硫化に伴い、
接触抵抗が著しく大きくなる。銀の量を相対的に少なく
するための増量材として添加されるチタニウム(Ti)
、クロム(Cr)、ニッケル(Ni) 、モリブデン(
MO)、タングステン(w)、銅(Cu)の内の少なく
とも一種の金属が、15wt%以上であると、導電性が
損なわれる。
In the present invention, in order to manufacture this contact material, silver (Ag) powder, ruthenium (Ru) I powder, or titanium (Ti), chromium (Cr)
10-
After oxidizing the ruthenium particles dispersed on the surface of the sintered body by sintering at 650°C to 960°C in a weakly oxidizing atmosphere of 6 Torr to 10-6 Torr, or sintering the compression molded product, 10-6Torr~10-
Under a weakly oxidizing atmosphere of 6 Torr, 500°C to 960°C
A method was adopted in which ruthenium (Ru) particles dispersed on the surface of the sintered body were oxidized by heat treatment with 'C. In addition, the atmospheric vacuum degree is 10-6Torr to 10-6Torr.
It shows good contact resistance in the range of rr; if it is lower than this, not only the ruthenium but other metals are oxidized, so the contact resistance becomes extremely large, and if it is higher than this, the oxidation of ruthenium is not sufficient and the contact resistance becomes sulfurized. easy to sulfurize,
Contact resistance increases significantly. Titanium (Ti) added as an extender to relatively reduce the amount of silver
, chromium (Cr), nickel (Ni), molybdenum (
If at least one metal among MO), tungsten (W), and copper (Cu) is 15 wt% or more, conductivity will be impaired.

(作 用) 本発明において、銀(Ag)を含む接点材料の表面に分
散するルテニウム(Ru)粒子を酸化させることによる
具体的作用機構自体は明かでない。しかしながら、この
場合には、銀(Ag)または銀合金中に、単にルテニウ
ム(Ru)粒子を分散含有させる場合に比較して、極め
て優れた耐硫化特性を示す。これは、材料表面のルテニ
ウム粒子を酸化物にすることにより、硫化に対する局部
電池作用が小さくなることによるものと推定される。
(Function) In the present invention, the specific mechanism of action by oxidizing the ruthenium (Ru) particles dispersed on the surface of the contact material containing silver (Ag) is not clear. However, in this case, extremely excellent sulfidation resistance is exhibited compared to the case where ruthenium (Ru) particles are simply dispersed and contained in silver (Ag) or a silver alloy. This is presumed to be due to the fact that by making the ruthenium particles on the surface of the material into oxides, the local battery effect on sulfidation is reduced.

(実施例) (1) A g −0、I Ru、(2)Ag−IRu
、(3)Ag  3Ru、(4)Ag−10Ru。
(Example) (1) A g -0, I Ru, (2) Ag-IRu
, (3) Ag 3Ru, (4) Ag-10Ru.

(5)Ag−30Ru、(6)Ag−5Ru−5Cu、
(7)Ag  5Ru−5Cr、(8)Ag−IRu−
5Ti−5Cu、 (9)Ag−IRu−5Mo−10
Cu、   (10)  A  g ’二・・、〇 二
  5Ru10Tiの各混合粉末をプレス成型する。そ
して、これらの材料を、夫々10−6Torr〜10−
’T、。
(5) Ag-30Ru, (6) Ag-5Ru-5Cu,
(7) Ag 5Ru-5Cr, (8) Ag-IRu-
5Ti-5Cu, (9)Ag-IRu-5Mo-10
The mixed powders of Cu, (10) A g '2..., 〇2 5Ru10Ti are press-molded. Then, these materials were heated to 10-6 Torr to 10-
'T.

rrの弱酸化性雰囲気下にて、650℃〜960℃で焼
結することにより、接点材料(1)−(10)を作製し
た。これらの接点材料について、初期表面接触抵抗、及
び1時間硫化水素(H2S)曝露後の表面接触抵抗を夫
々4端子法により測定した結果を第1表に示す。第1表
において、接点材料(11)−(15)は、比較のため
に試供した従来のもので、接点材料(11)は純Ag、
接点材料(12)は、Ag−12Au−25Pd、接点
材料(13)は、Ag−12CdO1接点材料(14)
は、Ag−7,5Cu、接点材料(15)は、特開昭5
7−140841号公報に記載された方法により、銀焼
結体中にルテニウム粒子を分散含有させたA g −5
Ru焼結体で、表面未酸化のものである。(以下余白) 第1表 H2S環境下での接触抵抗測定結果 第1表によれば、接点材料(1)〜(10)は、ルテニ
ウムの含有量により、初期並びに1時間H,S曝露後の
接触抵抗が若干具なるものの、従来の接点材料(11)
、(15)に比べて、H,S曝露後の接触抵抗の増加は
明かに小さく、大幅な耐硫化特性の改善が認められる。
Contact materials (1) to (10) were produced by sintering at 650°C to 960°C in a weakly oxidizing atmosphere of rr. Table 1 shows the results of measuring the initial surface contact resistance and the surface contact resistance after exposure to hydrogen sulfide (H2S) for 1 hour using the four-probe method for these contact materials. In Table 1, contact materials (11) to (15) are conventional materials sampled for comparison, and contact material (11) is pure Ag,
Contact material (12) is Ag-12Au-25Pd, contact material (13) is Ag-12CdO1 contact material (14)
is Ag-7,5Cu, contact material (15) is JP-A-5
A g -5 in which ruthenium particles are dispersed and contained in a silver sintered body by the method described in Publication No. 7-140841.
It is a Ru sintered body with an unoxidized surface. (Leaving space below) Table 1 Contact resistance measurement results under H2S environment According to Table 1, contact materials (1) to (10) differ depending on the ruthenium content, both initially and after 1 hour of H, S exposure. Conventional contact material (11), although contact resistance is slightly higher
, (15), the increase in contact resistance after exposure to H,S is clearly small, and a significant improvement in sulfidation resistance is observed.

゛ 接点材料(1)−(10)について、表面を一部研
磨してH,Sに曝露すると、研磨部分だけが著しく硫−
化することが認められる。これは、接点材料の表面部の
ルテニやムが酸化されているためであると判断される。
゛ When part of the surface of contact materials (1) to (10) is polished and exposed to H and S, only the polished part becomes noticeably sulfur-sulfur.
It is allowed to change. This is considered to be because the ruthenium on the surface of the contact material is oxidized.

また、上記接点材料(3)について、真空または真空引
き後、不活性ガス置換の弱酸化性雰囲気下“で焼結を行
った。そして、その真空度を種々変えた場合に、109
P園のH,S環境下に1時間曝露後の表面接触抵抗にど
のような影響を及ぼすかを調べた。その結果を第、1図
のグラフに示す。なお、  −測定方法は第1表におけ
ると同様であり、焼結温度は900℃とした。このグラ
フによれば、真空度により接触抵抗が異なり、10−1
Torr〜10−6Torrの領域で接触抵抗の著しい
増加は認められない。雰囲気真空度が、10−6Tor
r未満であると。
In addition, the contact material (3) was sintered in a vacuum or in a weakly oxidizing atmosphere with inert gas replacement after evacuation.When the degree of vacuum was varied, 109
We investigated the effect on surface contact resistance after 1 hour of exposure to H and S environments in P garden. The results are shown in the graph of FIG. The measurement method was the same as in Table 1, and the sintering temperature was 900°C. According to this graph, the contact resistance varies depending on the degree of vacuum, and is 10-1
No significant increase in contact resistance was observed in the range of Torr to 10-6 Torr. Atmosphere vacuum degree is 10-6 Tor
It is less than r.

ルテニウムのみならず他の金属が酸化されるために接触
抵抗が著しく大きくなり、また1 0−6Torrより
高いとルテニウムの酸化が十分でないために耐硫化特性
が改善されず、硫化により接触抵抗が著しく大きくなる
Not only ruthenium but also other metals are oxidized, resulting in a significant increase in contact resistance.If the temperature is higher than 10-6 Torr, oxidation of ruthenium is not sufficient, so sulfidation resistance is not improved, and contact resistance increases significantly due to sulfidation. growing.

なお、弱酸化性雰囲気における焼結に代えて、焼結後に
、同様の弱酸化性雰囲気において500℃〜960℃で
熱処理しても略同等の結果が得られる。この場合には、
熱処理前の焼結工程で極力酸化を防ぐように条件設定す
るか、あるいは焼結後に過剰に酸化した表面を研磨する
必要がある。
Note that, instead of sintering in a weakly oxidizing atmosphere, substantially the same result can be obtained by heat-treating at 500° C. to 960° C. in a similar weakly oxidizing atmosphere after sintering. In this case,
It is necessary to set conditions to prevent oxidation as much as possible in the sintering process before heat treatment, or to polish the excessively oxidized surface after sintering.

(発明の効果) 以上のように、本発明によれば、ルテニウム酸化物を銀
または銀合金の表面に分散させて一体化することにより
、銀とルテニウム夫々の優れた特性を損なうことなく、
耐硫化特性を大幅に改善して優れた接点材料を提供する
ことができる。
(Effects of the Invention) As described above, according to the present invention, by dispersing and integrating ruthenium oxide on the surface of silver or silver alloy, it is possible to
It is possible to provide an excellent contact material with significantly improved sulfurization resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、材料を1(、Sに曝した後の表面接触抵抗に
及ぼす真空度の影響を示すグラフである。
FIG. 1 is a graph showing the effect of vacuum on surface contact resistance after exposing the material to 1 (S).

Claims (7)

【特許請求の範囲】[Claims] (1)銀(Ag)の焼結体中に、0.1〜30wt%の
ルテニウム(Ru)粒子を分散含有し、かつ表面に、ル
テニウム(Ru)酸化物の層が形成されていることを特
徴とする耐硫化性接点材料。
(1) A sintered body of silver (Ag) contains 0.1 to 30 wt% of ruthenium (Ru) particles dispersed therein, and a layer of ruthenium (Ru) oxide is formed on the surface. Characteristic sulfide-resistant contact material.
(2)銀(Ag)粉末と、0.1〜30wt%のルテニ
ウム(Ru)粉末とを混合して圧縮成型したものを10
^−^1Torr〜10^−^6Torrの弱酸化性雰
囲気下にて、650℃〜960℃で焼結することにより
、焼結体表面に分散したルテニウム粒子を酸化させるこ
とを特徴とする耐硫化性接点材料の製造方法。
(2) Silver (Ag) powder and 0.1 to 30 wt% ruthenium (Ru) powder were mixed and compression molded to 10
Sulfuration resistance characterized by oxidizing the ruthenium particles dispersed on the surface of the sintered body by sintering at 650°C to 960°C in a weakly oxidizing atmosphere of ^-^1 Torr to 10^-^6 Torr. Method for manufacturing sexual contact material.
(3)銀(Ag)粉末と、0.1〜30wt%のルテニ
ウム(Ru)粉末とを混合して圧縮成型したものを焼結
した後、10^−^1Torr〜10^−^6Torr
の弱酸化性雰囲気下にて、500℃〜960℃で熱処理
することにより、焼結体表面に分散したルテニウム(R
u)粒子を酸化させることを特徴とする耐硫化性接点材
料の製造方法。
(3) After sintering a mixture of silver (Ag) powder and 0.1 to 30 wt% ruthenium (Ru) powder and compression molding, it is heated to 10^-^1 Torr to 10^-^6 Torr.
Ruthenium (R
u) A method for producing a sulfidation-resistant contact material, which comprises oxidizing particles.
(4)銀(Ag)中に、0.1〜30wt%のルテニウ
ム(Ru)酸化物粒子と、15wt%以下のチタニウム
(Ti)、クロム(Cr)、ニッケル(Ni)、モリブ
デン(Mo)、タングステン(w)、銅(Cu)の内の
少なくとも一種の金属粒子とを分散含有し、かつ表面に
ルテニウム(Ru)酸化物の層が形成されていることを
特徴とする耐硫化性接点材料。
(4) In silver (Ag), 0.1 to 30 wt% of ruthenium (Ru) oxide particles and 15 wt% or less of titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), A sulfide-resistant contact material characterized by containing dispersed metal particles of at least one of tungsten (W) and copper (Cu), and having a ruthenium (Ru) oxide layer formed on the surface.
(5)銀(Ag)粉末と、0.1〜30wt%のルテニ
ウム粉末と、15wt%以下のチタニウム(Ti)、ク
ロム(Cr)、ニッケル(Ni)、モリブデン(Mo)
、タングステン(w)、銅(Cu)の内の少なくとも一
種の金属粉末と混合して圧縮成型したものを10^−^
1Torr〜10^−^6Torrの弱酸化性雰囲気下
にて、650℃〜960℃で焼結することにより、焼結
体表面に分散したルテニウム(Ru)粒子を酸化させる
ことを特徴とする耐硫化性接点材料の製造方法。
(5) Silver (Ag) powder, 0.1 to 30 wt% ruthenium powder, and 15 wt% or less of titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo)
, tungsten (W), copper (Cu) mixed with at least one kind of metal powder and compression molded.
A sulfur-resistant product characterized by oxidizing ruthenium (Ru) particles dispersed on the surface of the sintered body by sintering at 650°C to 960°C in a weakly oxidizing atmosphere of 1 Torr to 10^-^6 Torr. Method for manufacturing sexual contact material.
(6)銀(Ag)粉末と、0.1〜30wt%のルテニ
ウム(Ru)粉末と、15wt%以下のチタニウム(T
i)、クロム(Cr)、ニッケル(Ni)、モリブデン
(Mo)、タングステン(w)、銅(Cu)の内の少な
くとも一種の金属粉末と混合して圧縮成型したものを焼
結した後、10^−^1Torr〜10^−^6Tor
rの弱酸化性雰囲気下にて、500℃〜960℃で熱処
理することにより、焼結体表面に分散したルテニウム(
Ru)粒子を酸化させることを特徴とする耐硫化性接点
材料の製造方法。
(6) Silver (Ag) powder, 0.1 to 30 wt% ruthenium (Ru) powder, and 15 wt% or less titanium (T
i) After sintering the mixture with at least one metal powder of chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (w), and copper (Cu) and compression molding, 10 ^-^1 Torr ~ 10^-^6 Torr
Ruthenium (
A method for producing a sulfidation-resistant contact material, which comprises oxidizing Ru) particles.
(7)特許請求の範囲第(2)、(3)、(5)、(6
)項の何れかに記載の方法において、10^−^1To
rr〜10^−^6Torrに真空吸引後、不活性ガス
置換を行って弱酸化性雰囲気を作製することを特徴とす
る耐硫化性接点材料の製造方法。
(7) Claims Nos. (2), (3), (5), (6)
), in the method described in any of paragraphs 10^-^1To
A method for producing a sulfidation-resistant contact material, which comprises creating a weakly oxidizing atmosphere by vacuum suction to rr~10^-^6 Torr and then replacing with an inert gas.
JP63137410A 1988-06-06 1988-06-06 Anti-sulfidization contact material and manufacture thereof Pending JPH01307114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137410A JPH01307114A (en) 1988-06-06 1988-06-06 Anti-sulfidization contact material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137410A JPH01307114A (en) 1988-06-06 1988-06-06 Anti-sulfidization contact material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01307114A true JPH01307114A (en) 1989-12-12

Family

ID=15197989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137410A Pending JPH01307114A (en) 1988-06-06 1988-06-06 Anti-sulfidization contact material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01307114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231540A (en) * 2007-03-22 2008-10-02 Nikko Kinzoku Kk Metastable austenitic stainless steel strip superior in sulfidization resistance
US10804237B2 (en) 2016-11-10 2020-10-13 Denso Corporation Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128556A (en) * 1979-03-28 1980-10-04 Nippon Telegr & Teleph Corp <Ntt> Electric contact-point material and producing the same
JPS57140841A (en) * 1981-02-26 1982-08-31 Nec Corp Contact material and its manufacture
JPS58110642A (en) * 1981-12-24 1983-07-01 Tanaka Kikinzoku Kogyo Kk Sliding contact material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128556A (en) * 1979-03-28 1980-10-04 Nippon Telegr & Teleph Corp <Ntt> Electric contact-point material and producing the same
JPS57140841A (en) * 1981-02-26 1982-08-31 Nec Corp Contact material and its manufacture
JPS58110642A (en) * 1981-12-24 1983-07-01 Tanaka Kikinzoku Kogyo Kk Sliding contact material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231540A (en) * 2007-03-22 2008-10-02 Nikko Kinzoku Kk Metastable austenitic stainless steel strip superior in sulfidization resistance
US10804237B2 (en) 2016-11-10 2020-10-13 Denso Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
US4486631A (en) Contact for vacuum circuit breaker
JP2012007203A (en) Method of manufacturing electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker
US2470034A (en) Electric contact formed of a ruthenium composition
WO2016091216A1 (en) Silver-metal oxide electrical contact tip material preparation method, device and application
US4551301A (en) Sintered compound material for electrical contacts and method for its production
JPH0896643A (en) Electric contact point material
JPH01307114A (en) Anti-sulfidization contact material and manufacture thereof
TW320728B (en)
US2664618A (en) Electrical contact
JPS5848323A (en) Vacuum switch contact
JPH01298125A (en) Sulfurization resistant contact material and production thereof
JPS6082646A (en) Sintered alloy and its manufacture
JPH036211B2 (en)
JPS6031891B2 (en) conductive material
JPH06102813B2 (en) Electric contact material and manufacturing method thereof
JP2003077375A (en) Contact material for vacuum valve and vacuum valve
US4249944A (en) Method of making electrical contact material
JPS58117844A (en) Electrical contact material
JPS5948943B2 (en) conductive material
JPH09111371A (en) Ag-tin oxide-molybdenum trioxide electrical contact material excellent in deposition resistance and consumption resistance
JPS6021302A (en) Production of electrical contact point material
JPS6354770B2 (en)
JPH0230370B2 (en) DENKISETSUTENZAIRYONOSEIZOHO
JPH04131353A (en) Fe-based sintered current collecting and sliding material having excellent wear resistance