JPH0230370B2 - DENKISETSUTENZAIRYONOSEIZOHO - Google Patents

DENKISETSUTENZAIRYONOSEIZOHO

Info

Publication number
JPH0230370B2
JPH0230370B2 JP12127481A JP12127481A JPH0230370B2 JP H0230370 B2 JPH0230370 B2 JP H0230370B2 JP 12127481 A JP12127481 A JP 12127481A JP 12127481 A JP12127481 A JP 12127481A JP H0230370 B2 JPH0230370 B2 JP H0230370B2
Authority
JP
Japan
Prior art keywords
metal
silver
weight
iron group
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12127481A
Other languages
Japanese (ja)
Other versions
JPS5823119A (en
Inventor
Akira Fukui
Yoshinari Amano
Mitsuo Osada
Atsushi Kuroishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12127481A priority Critical patent/JPH0230370B2/en
Priority to DE19823213265 priority patent/DE3213265A1/en
Priority to FR8206295A priority patent/FR2503926B1/en
Priority to US06/367,603 priority patent/US4457780A/en
Publication of JPS5823119A publication Critical patent/JPS5823119A/en
Publication of JPH0230370B2 publication Critical patent/JPH0230370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電流を通電開閉する機器に使用する電
気接点材料の製造法に関するものである。 また特にAg−炭化物系合金の特性向上を目的
としたものである。Ag−炭化物系合金の中でも
Ag−WC系合金は従来そのすぐれた耐アーク性、
耐溶着性のため気中しや断器、開閉器等の機器の
接点として広く使用されている。 しかるに最近、ノーヒユーズブレーカを始めと
する気中しや断器や開閉器等の機器は小型、高性
能化のすう勢にあり、これに伴つて接点材料への
負荷が厳しくなり、接点性能の向上が強く要請さ
れている。又機器の小型化により接点寸法の小型
化、接触圧力の低下の傾向にあり、これによつて
電流しや断時に生ずる消耗、飛散が増大し接点の
溶着や機器の絶縁劣化、さらに定格電流開閉時に
温度上昇が起り易いといつた問題が生じている。
このような特性改善の要望に答えるものの一つと
してAg−WC合金にグラフアイト(Gr)を添加
した接点が開発された。この接点は開閉時発生し
たアーク熱でGrが還元ガスとなりWCの酸化を防
止して温度上昇を抑え、かつGrの潤滑性により
耐溶着性を高める効果がある。しかし乍ら、Gr
の添加によつて逆に消耗、絶縁特性が低下する欠
点があつた。このため小型高性能のしや断器や開
閉器では可動接点にはAg−WC接点、固定接点
にはAg−WC−Gr接点という組合せで使用せざ
るを得なかつた。しかし、可動部と固定部で材質
を変えて組合せることは部品管理が極めて面倒な
ことである。更にこのような組合せによる使用法
でも最近の小型高性能の機器では接触圧力が小さ
く、開閉時に発生するアーク熱によつて異常な温
度上昇、消耗、絶縁劣化、溶着が多発し更に接点
性能の改善が要望されている。 本発明は以上の点に鑑みてなされたものであり
耐溶着性、耐消耗性、耐絶縁性を併せて具備し、
かつ温度上昇が低い実用性に優れた接点合金の製
造法を提供するものである。更に本発明合金の製
造法は高価な銀量を可成り少くしても接点として
使用可能な安価な接点合金の製造法を提供するも
のである。 本発明による合金の製造法は、鉄族金属、銀、
a、a、a、a族の金属(A)及びグラフア
イトの混合粉末を成形し、銀の融点以上で焼結
し、焼結時、金属(A)の1部もしくは全部を炭化物
として銀及び鉄族金属中に分散せしめたことを特
徴とするものである。 以下本発明による合金の製造法について説明す
る。 発明者等は銀に鉄族金属と銀に固溶しがたく高
融点のa、a、a、a族の金属(A)を添加
した合金の検討を種々行つた結果、該鉄族金属中
に金属(A)の炭化物の1部または全部が分散した合
金が電流の開閉時に発生するアーク熱での消耗、
飛散が極端に少く、機器の絶縁劣化や溶着の少い
効果を示すことを見出した。鉄族金属中で金属(A)
の炭化物が分散したものは高温度での強度や結合
度に優れていることは耐熱合金等の分野では知ら
れているが、発明者らはAgとGrとの組合せた合
金にすると接点としての性能が著しく向上するこ
とを見出したものである。 金属(A)とGrは反応し炭化物を形成し、さらに
鉄族金属と反応する傾向にあるが、これら反応は
一般に高温でしか起らないが、Agが存在すると
焼結時Agが液相となり、この液相を介して反応
が促進されることが判明した。金属(A)のGr及び
鉄族金属との反応は、焼結温度及び時間に依存
し、たとえば1100℃では5時間以上の焼結で金属
(A)は全て炭化物になる。 しかし乍ら、鉄族金属や金属(A)あるいは金属(A)
の炭化物は耐酸化性が悪く開閉時に発生するアー
ク熱によつて酸化し、接触抵抗を増大させ機器の
温度上昇が高くなる欠点がある。このため鉄族金
属や金属(A)あるいは金属(A)の炭化物の酸化防止と
して還元性に優れたGrを上記接点合金に添加せ
しめると、Grは電気開閉時の熱で分解して還元
ガスを発生し鉄族金属や金属(A)あるいは金属(A)の
炭化物を酸化から防止し接触抵抗を小さく抑え、
機器の温度上昇を低下せしめると共にGrの潤滑
性により耐溶着性を高めることがわかつた。 即ち、銀中に、高温度での機械強度や結合強度
の優れた鉄族金属に金属(A)の炭化物を分散せしめ
て耐消耗性や耐溶着性を向上し、更に還元性と潤
滑性の優れたGrを添加することにより、従来の
Ag−WC系やAg−WC−Gr系接点では期待でき
なかつた高性能の耐溶着性、耐消耗性、耐絶縁
性、温度上昇特性を共に具備した合金を得ること
ができた。 鉄族金属はFe、Co、Ni等であり、5〜60重量
%であり好ましくは20〜50重量%が適当である。
5重量%以下では鉄族金属が銀中に分散し、金属
(A)の炭化物の分散が起きず耐消耗性が向上しな
い。また60重量%以上ではGrを添加しても接触
抵抗が低下せず温度上昇特性の向上効果がない。 金属(A)としてはW、Mo、Ta、Nb、Ti、Cr、
Mn、V等のa、a、a、a族の金属(A)
が効果があり、その量としては5〜70重量%が好
ましく、特に20〜50重量%が特性が良い。金属(A)
が5重量%以下ではAg中の金属(A)あるいは金属
(A)の炭化物が少な過ぎて耐溶着性が不充分であ
り、70重量%以上ではGrを添加しても接触抵抗
が低下せず、温度上昇特性の向上が認められな
い。次にGrの有効範囲は1〜11重量%であり好
ましくは3〜7重量%である。 1重量%以下では鉄族金属や金属(A)あるいは金
属(A)の炭化物が上記範囲内であつても温度上昇特
性の向上が認められず、また11重量%以上では合
金製造が困難であり実用性がない。尚、本発明の
目的を害しない0.1重量%程度のAl、Si、Se、
Te、Bi、Zn、Cd、In、Sn、Ca、Na等の金属元
素が入つても差しつかえない。 以上の合金は、銀の融点以上で焼結することに
より得られる。雰囲気はH2CO、アンモニア分解
ガス等還元性ガスが望ましい。 次に実施例によつて本発明による接点合金の特
徴を具体的に説明する。 実施例 1 第1表、第2表、第3表及び第4表に示した割
合で各粉末を配合し、混合後成形体を作り、該成
形体を水素雰囲気中で1100℃の温度で焼結した。
1時間焼結したものは、1部が炭化物として銀あ
るいは鉄族金属中に分散していた。5時間焼結し
たものは、全部が炭化物となり銀及び鉄族金属中
に分散していた。 A1、A3、A5、A7、A9は1時間、A2、A4、
A6、A8、A10は5時間焼結した。第2表、第3
表の合金は5時間焼結した。この焼結体を再加圧
して気孔率が殆んど零の合金を作製した。合金中
第4表のものは比較材としての従来の合金であ
る。
The present invention relates to a method for manufacturing electrical contact materials used in devices that conduct electrical current to open and close devices. Moreover, it is particularly aimed at improving the properties of Ag-carbide alloys. Among Ag-carbide alloys
Ag-WC alloys have traditionally had excellent arc resistance,
Because of its welding resistance, it is widely used as contacts in devices such as air vents, disconnectors, and switches. However, in recent years, devices such as no-fuse breakers, disconnectors, switches, and other devices have become smaller and more sophisticated, and as a result, the load on contact materials has become severer, requiring improvements in contact performance. is strongly requested. Furthermore, due to the miniaturization of devices, there is a tendency for contact dimensions to become smaller and contact pressure to decrease, resulting in increased wear and tear that occurs when current is interrupted, increased wear and tear, welding of contacts, deterioration of equipment insulation, and even lower rated current switching. Problems have arisen, such as the tendency for temperature rises to occur at times.
A contact made by adding graphite (Gr) to an Ag-WC alloy was developed as one way to meet the demand for improved characteristics. In this contact, the arc heat generated during opening and closing turns Gr into a reducing gas, preventing oxidation of WC and suppressing temperature rise, and the lubricity of Gr has the effect of increasing welding resistance. However, Gr.
On the other hand, the addition of oxides had the disadvantage of causing consumption and deterioration of the insulation properties. For this reason, small, high-performance circuit breakers and switches have had to use a combination of Ag-WC contacts for the movable contacts and Ag-WC-Gr contacts for the fixed contacts. However, changing and combining materials for the movable part and the fixed part makes parts management extremely troublesome. Furthermore, even when using such a combination, the contact pressure is small in recent small, high-performance devices, and the arc heat generated during opening and closing often causes abnormal temperature rises, wear, insulation deterioration, and welding, and further improves contact performance. is requested. The present invention has been made in view of the above points, and has welding resistance, wear resistance, and insulation resistance.
The present invention also provides a method for manufacturing a contact alloy that has low temperature rise and is highly practical. Furthermore, the method for producing the alloy of the present invention provides a method for producing an inexpensive contact alloy that can be used as a contact even when the amount of expensive silver is considerably reduced. The method for producing the alloy according to the present invention includes iron group metals, silver,
A mixed powder of group a, a, a, a metal (A) and graphite is molded and sintered at a temperature higher than the melting point of silver, and during sintering, part or all of the metal (A) is converted into carbide to form silver and It is characterized by being dispersed in iron group metals. The method for manufacturing the alloy according to the present invention will be explained below. The inventors conducted various studies on alloys in which iron group metals and metals (A) of groups A, A, A, and A, which are difficult to dissolve solidly in silver and have high melting points, were added to silver. The alloy in which some or all of the carbides of metal (A) are dispersed is consumed by the arc heat generated when the current is switched on and off.
It has been found that there is extremely little scattering, and that it has the effect of reducing insulation deterioration and welding of equipment. Metal (A) in iron group metals
It is known in the field of heat-resistant alloys that carbides in which Ag is dispersed have excellent strength and bonding at high temperatures. It was discovered that the performance was significantly improved. Metal (A) and Gr tend to react to form carbides and further react with iron group metals, but these reactions generally only occur at high temperatures, but when Ag is present, Ag becomes a liquid phase during sintering. It was found that the reaction was promoted through this liquid phase. The reaction of metal (A) with Gr and iron group metals depends on the sintering temperature and time.
(A) is all carbide. However, iron group metals and metals (A) or metals (A)
Carbide has poor oxidation resistance and is oxidized by the arc heat generated during opening and closing, increasing contact resistance and increasing the temperature of the equipment. Therefore, when Gr, which has excellent reducing properties, is added to the above contact alloy to prevent the oxidation of iron group metals, metals (A), or carbides of metals (A), Gr decomposes with the heat generated during electrical switching and releases reducing gas. Prevents oxidation of iron group metals, metal (A), or carbides of metal (A) that occur, and reduces contact resistance.
It was found that it lowers the temperature rise of the equipment and improves welding resistance due to the lubricity of Gr. In other words, carbide of metal (A) is dispersed in silver, which is an iron group metal with excellent mechanical strength and bonding strength at high temperatures, to improve wear resistance and welding resistance, and to improve reducing and lubricity. By adding excellent Gr, the conventional
We were able to obtain an alloy that has high performance welding resistance, wear resistance, insulation resistance, and temperature rise characteristics that could not be expected from Ag-WC or Ag-WC-Gr contacts. Iron group metals include Fe, Co, Ni, etc., and are suitably 5 to 60% by weight, preferably 20 to 50% by weight.
At 5% by weight or less, iron group metals are dispersed in silver, and the metal
Dispersion of carbides (A) does not occur and wear resistance does not improve. Further, if Gr is added in an amount of 60% by weight or more, the contact resistance does not decrease and there is no effect of improving temperature rise characteristics. Metals (A) include W, Mo, Ta, Nb, Ti, Cr,
Metals of group a, a, a, a, such as Mn, V, etc. (A)
is effective, and the amount thereof is preferably 5 to 70% by weight, and particularly 20 to 50% by weight has good properties. Metal(A)
is less than 5% by weight, metal (A) in Ag or metal
There is too little carbide in (A) and the welding resistance is insufficient, and even if Gr is added in an amount of 70% by weight or more, the contact resistance does not decrease and no improvement in temperature rise characteristics is observed. Next, the effective range of Gr is 1 to 11% by weight, preferably 3 to 7% by weight. If it is less than 1% by weight, no improvement in temperature rise characteristics is observed even if the iron group metal, metal (A), or carbide of metal (A) is within the above range, and if it is more than 11% by weight, it is difficult to manufacture the alloy. It's not practical. In addition, approximately 0.1% by weight of Al, Si, Se,
There is no problem even if metal elements such as Te, Bi, Zn, Cd, In, Sn, Ca, Na, etc. are included. The above alloys can be obtained by sintering at a temperature higher than the melting point of silver. The atmosphere is preferably a reducing gas such as H 2 CO or ammonia decomposition gas. Next, the characteristics of the contact alloy according to the present invention will be specifically explained with reference to Examples. Example 1 Each powder was blended in the proportions shown in Tables 1, 2, 3, and 4, and after mixing, a molded body was made, and the molded body was sintered at a temperature of 1100°C in a hydrogen atmosphere. concluded.
When sintered for 1 hour, a portion was dispersed as carbide in the silver or iron group metal. After sintering for 5 hours, all of the material turned into carbide and was dispersed in silver and iron group metals. A1, A3, A5, A7, A9 is 1 hour, A2, A4,
A6, A8, and A10 were sintered for 5 hours. Table 2, 3
The alloys shown were sintered for 5 hours. This sintered body was pressurized again to produce an alloy with almost zero porosity. Among the alloys, those in Table 4 are conventional alloys as comparative materials.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上述のようにして作成した合金について
ASTM試験機により通電特性と消耗特性の評価
を行つた。条件としては、AC100V、50A、
Pf1.0、接触圧力200gr、開離力200gr、接点形状
5×5×1.5tmmとし、2万回の開閉を行つた。2
万回開閉での電圧のバラツキ巾と消耗量の結果を
第5表に示す。
[Table] About the alloys made as described above
The current carrying characteristics and wear characteristics were evaluated using an ASTM testing machine. The conditions are AC100V, 50A,
Pf1.0, contact pressure 200gr, opening force 200gr, contact shape 5x5x1.5tmm, and opened and closed 20,000 times. 2
Table 5 shows the results of voltage variation and amount of wear after 10,000 times of opening and closing.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1で作成した合金、A6、B2、C2及び比
較材D1、D2、D3、D4の合金から可動接点4×
7×2mmの寸法に、固定接点8×8×2mmの寸法
に切削加工したのち台金に抵抗鑞付けで接合せし
めこれを50A定格の配線用しや断器に組込み下記
に示す試験条件にて接点性能評価をした結果、第
6表を得た。 試験条件: 過負荷試験:AC220V、200Apf50回 耐久試験:AC220V、50Apf54回 温度上昇試験:AC220V、50A 2H 短絡試験:AC220V、7.5KA pf0.5 1PO−CO、2PO−CO
[Table] Example 2 Movable contacts 4× were made from the alloys prepared in Example 1, A6, B2, C2, and comparative materials D1, D2, D3, and D4.
The fixed contact was cut to a size of 7 x 2 mm and the fixed contact was cut to a size of 8 x 8 x 2 mm, and then bonded to the base metal using resistance brazing. This was then assembled into a 50A rated wiring disconnector under the test conditions shown below. As a result of contact performance evaluation, Table 6 was obtained. Test conditions: Overload test: AC220V, 200Apf 50 times Endurance test: AC220V, 50Apf 54 times Temperature rise test: AC220V, 50A 2H Short circuit test: AC220V, 7.5KA pf0.5 1PO−CO, 2PO−CO

【表】 第6表で示すように本発明合金は消耗量が少く
温度上昇が低く、絶縁耐圧も高く高性能の接点特
性を有していることがわかる。 本発明合金は上述の通り接点性能が優れている
のみでなく、鉄族金属、金属(A)を多量に含有して
おり高価な銀量を大巾に節減できるので工業的価
値の高いものである。
[Table] As shown in Table 6, it can be seen that the alloy of the present invention has low wear, low temperature rise, high dielectric strength, and high performance contact characteristics. The alloy of the present invention not only has excellent contact performance as mentioned above, but also contains a large amount of iron group metals and metal (A), and can greatly reduce the amount of expensive silver, so it is of high industrial value. be.

Claims (1)

【特許請求の範囲】 1 元素周期律表のa、a、a、a族の
金属(A)が5〜70重量%、グラフアイト1〜11重量
%、鉄族金属5〜60重量%、残部銀からなる粉末
混合物を成形し、銀の融点以上で焼結し、焼結
時、金属(A)の1部又は全部を炭化物として銀もし
くは鉄族金属中に分散せしめたことを特徴とする
電気接点材料の製造法。 2 金属(A)がタングステン、モリブデン、タンタ
ル、ニオブ、チタン、クロム、マンガン、バナジ
ウムのうち少くとも1種の金属(A)であることを特
徴とする特許請求の範囲第1項記載の電気接点材
料の製造法。 3 鉄族金属がニツケル、鉄、コバルトのうち少
くとも1種であることを特徴とする特許請求の範
囲第1項記載の電気接点材料の製造法。
[Scope of Claims] 1 5 to 70% by weight of metals (A) of groups a, a, a, and a of the periodic table of elements, 1 to 11% by weight of graphite, 5 to 60% by weight of iron group metals, and the balance An electric device characterized in that a powder mixture made of silver is molded and sintered at a temperature higher than the melting point of silver, and during sintering, part or all of the metal (A) is dispersed as a carbide in silver or an iron group metal. Method of manufacturing contact materials. 2. The electrical contact according to claim 1, wherein the metal (A) is at least one metal (A) among tungsten, molybdenum, tantalum, niobium, titanium, chromium, manganese, and vanadium. Method of manufacturing materials. 3. The method for producing an electrical contact material according to claim 1, wherein the iron group metal is at least one of nickel, iron, and cobalt.
JP12127481A 1981-04-10 1981-07-31 DENKISETSUTENZAIRYONOSEIZOHO Expired - Lifetime JPH0230370B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12127481A JPH0230370B2 (en) 1981-07-31 1981-07-31 DENKISETSUTENZAIRYONOSEIZOHO
DE19823213265 DE3213265A1 (en) 1981-04-10 1982-04-08 ELECTRICAL CONTACT MATERIAL
FR8206295A FR2503926B1 (en) 1981-04-10 1982-04-09 ELECTRIC CONTACT MATERIALS
US06/367,603 US4457780A (en) 1981-04-10 1982-04-12 Electric contact materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12127481A JPH0230370B2 (en) 1981-07-31 1981-07-31 DENKISETSUTENZAIRYONOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS5823119A JPS5823119A (en) 1983-02-10
JPH0230370B2 true JPH0230370B2 (en) 1990-07-05

Family

ID=14807190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12127481A Expired - Lifetime JPH0230370B2 (en) 1981-04-10 1981-07-31 DENKISETSUTENZAIRYONOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0230370B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799459B2 (en) * 1989-03-31 1998-09-17 アイシン精機株式会社 Embroidery sewing machine
JPH0426445A (en) * 1990-05-22 1992-01-29 Juki Corp Automatic sewing machine for sewing collar cloth

Also Published As

Publication number Publication date
JPS5823119A (en) 1983-02-10

Similar Documents

Publication Publication Date Title
JPS589954A (en) Electrical contact material
JPH0230370B2 (en) DENKISETSUTENZAIRYONOSEIZOHO
JPH036211B2 (en)
JPH0151530B2 (en)
JPH0313295B2 (en)
JPH0241572B2 (en)
JP4129304B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JPS63118032A (en) Contact material for vacuum circuit breaker
JPH0241571B2 (en)
JP2001351451A (en) Contact element material and contact element
WO2002008481A1 (en) Make break contact material comprising ag-ni based alloy having ni metal particles dispersed and relay using the same
JPS5929301A (en) Electric contact material
JPS6059978B2 (en) electrical contact materials
JPS5884939A (en) Electrical contact material
JPS58100650A (en) Electrical contact material
JPS5884942A (en) Electrical contact material
JPS5884937A (en) Electrical contact material
JPS5884938A (en) Electrical contact material
JPS5884948A (en) Electrical contact material
JPS5884947A (en) Electrical contact material
JPH0135906B2 (en)
JPH0250971B2 (en)
JPS5884945A (en) Electrical contact material
JPS58207348A (en) Electrical contact material for sealing
JPH0250972B2 (en)