JP2008231540A - Metastable austenitic stainless steel strip superior in sulfidization resistance - Google Patents

Metastable austenitic stainless steel strip superior in sulfidization resistance Download PDF

Info

Publication number
JP2008231540A
JP2008231540A JP2007075303A JP2007075303A JP2008231540A JP 2008231540 A JP2008231540 A JP 2008231540A JP 2007075303 A JP2007075303 A JP 2007075303A JP 2007075303 A JP2007075303 A JP 2007075303A JP 2008231540 A JP2008231540 A JP 2008231540A
Authority
JP
Japan
Prior art keywords
film
stainless steel
austenitic stainless
resistance
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007075303A
Other languages
Japanese (ja)
Inventor
Ikuya Kurosaki
郁也 黒▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2007075303A priority Critical patent/JP2008231540A/en
Publication of JP2008231540A publication Critical patent/JP2008231540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material superior in sulfidization resistance and fatigue characteristics, which is suitable for a component that is required to have repetitive spring properties, and for a component to be used in a switch part of various electronic equipment, particularly a metal dome component for a switch. <P>SOLUTION: The metastable austenitic stainless steel strip superior in sulfidization resistance has an Ag film on metastable austenitic stainless steel, and further has an Ru film with a thickness of 1 to 100 nm formed thereon. At least one of the films is formed by using a dry-film-forming technique. The metal dome component for the switch is made from the above stainless steel strip. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、携帯端末や家電製品等のスイッチ部分に使用されるメタルドーム用準安定オーステナイト系ステンレス鋼帯に関する。   The present invention relates to a metastable austenitic stainless steel strip for a metal dome used for a switch portion of a portable terminal, a home appliance, or the like.

近年、携帯電話、パソコンなどの電子機器の小型化が進展し、電気的接点や接触部であるスイッチ部分に使用されるメタルドームも小型化が進展している。たとえ小型化されてもスイッチに求められるクリック感や耐久性が大きく変化することは無いため、結果的にこれら小型化スイッチに使用される材料にかかる応力は上昇している。従って、小型化スイッチの耐久性、すなわち材料の疲労特性には、より高い性能が要求されている。   In recent years, electronic devices such as mobile phones and personal computers have been reduced in size, and metal domes used for switch portions that are electrical contacts and contact portions have also been reduced in size. Even if the switch is downsized, the click feeling and durability required for the switch do not change greatly. As a result, the stress applied to the material used for the downsized switch is increased. Therefore, higher performance is required for the durability of the miniaturized switch, that is, the fatigue characteristics of the material.

良好なクリック感と高い耐久性を同時に満足する材料として、準安定オーステナイト系ステンレス鋼帯であるSUS301ステンレス鋼が多く使用されている。準安定オーステナイト系ステンレス鋼では、加工によりマルテンサイト変態が起こり、材料中にマルテンサイトが生成することで高強度化し、耐久性が改善される。   As a material that satisfies both a good click feeling and high durability at the same time, SUS301 stainless steel, which is a metastable austenitic stainless steel strip, is often used. In the metastable austenitic stainless steel, martensite transformation occurs by processing, and martensite is generated in the material to increase the strength and improve the durability.

一方、上記の電気的接点や接触部分に使用されるスイッチは、スイッチのON、OFFを精度良く認識するために低い接触抵抗が求められるが、ステンレス鋼は導電性が悪く接触抵抗が高いため、通常は導電性の良い材料をステンレス鋼の表面にめっきして使用される。ステンレス鋼の接触抵抗改善のために広く用いられている材料はAgであるが、Agは大気中で硫化により変色し易いため、工業的には防錆処理を施したものが使用されている。Agの硫化を防止する他の方法としては、Agを合金化する方法、例えば、AgとIn及び/又はSnと合金化して得られる熱伝導率が高く酸化しても反射率が低下しない反射層用銀合金(特許文献1)、AgとGeの合金化により得られる耐硫化性のスパッタリングターゲット材銀合金(特許文献2)、AgとRuを合金化して耐硫化性の焼結銀合金を製造する方法(非特許文献1)が公開されている。   On the other hand, the switches used for the electrical contacts and contact parts described above are required to have low contact resistance in order to accurately recognize ON / OFF of the switch, but stainless steel has poor conductivity and high contact resistance. Usually, a material having good conductivity is plated on the surface of stainless steel. A widely used material for improving the contact resistance of stainless steel is Ag. However, since Ag is easily discolored by sulfidation in the atmosphere, an industrially rust-proofed material is used. As another method for preventing the sulfidation of Ag, a method of alloying Ag, for example, a reflective layer obtained by alloying with Ag and In and / or Sn has a high thermal conductivity and does not decrease its reflectivity even when oxidized. Silver alloy (Patent Document 1), a sulfur-resistant sputtering target material silver alloy obtained by alloying Ag and Ge (Patent Document 2), and Ag and Ru are alloyed to produce a sulfide-resistant sintered silver alloy A method (Non-patent Document 1) is disclosed.

また、ステンレス鋼表面へAgめっきする場合のデメリットとしては、めっき時に発生した水素がめっき膜又は母材中に進入し、材料を脆化させることで耐久性を著しく低下させることが指摘されている(特許文献3「0005」)。このようなめっきによる耐久性の低下を回避する方法としては、めっきをしないでステンレス鋼の素材表面の粗さを調整する方法(特許文献4)が公開されている。
特開2004−192702号公報 特開2006−37169号公報 特開2003−123586号公報 特開2003−272466号公報 加賀寿、「ルテニウム−銀焼結合金の接触抵抗特性」、北海道立工業技術センター研究報告No.1、1990年、p.25−29
Further, as a demerit when Ag plating is performed on the surface of stainless steel, it has been pointed out that hydrogen generated at the time of plating enters the plating film or the base material and causes the material to become brittle, thereby significantly reducing the durability. (Patent Document 3 “0005”). As a method for avoiding such a decrease in durability due to plating, a method (Patent Document 4) for adjusting the roughness of the surface of a stainless steel material without plating is disclosed.
JP 2004-192702 A JP 2006-37169 A JP 2003-123586 A JP 2003-272466 A Kaga Kotobuki, “Contact resistance characteristics of ruthenium-silver sintered alloy”, Hokkaido Industrial Technology Center research report No. 1, 1990, p. 25-29

接点部品に用いられる材料は、接触抵抗が安定して低いことおよびスイッチとしての特性を維持する耐久性が重要であり、接触電気抵抗が低いAg等の金属層をステンレス鋼上に形成する場合、Ag膜は耐久性が低い欠点がある。一方、耐久性の維持を優先してめっきをしない場合には、安定した低い電気的接触抵抗を得ることは困難である。
安定した低い接触抵抗と耐久性の低下防止を同時に達成する方法としては、耐硫化性を持つAg合金層をスパッタリング等で形成することが考えられるが、Ag合金層用スパッタリングターゲットの作製にはコストがかかり、かつ合金化により電気抵抗が上昇する。そして、Ag膜を形成した後に防錆処理を施す場合には、通常湿式であるためスパッタリング(乾式)と防錆処理(湿式)の工程が混在してしまい工業的実施には費用がかかり有益ではない。
本研究者らは、以上の課題、すなわちステンレス鋼帯に低い接触抵抗および耐硫化性を付与し、さらに耐久性低下を防止できる方法を鋭意検討したところ、ステンレス鋼表面にAg膜を、さらにその上にRu膜を形成し、かつ上記膜のいずれかを乾式成膜法で形成することで達成できることを見出した。
For the material used for the contact parts, it is important that the contact resistance is stable and low and durability for maintaining the characteristics as a switch. When a metal layer such as Ag having a low contact electric resistance is formed on stainless steel, The Ag film has a drawback of low durability. On the other hand, when plating is not performed in order to maintain durability, it is difficult to obtain a stable low electrical contact resistance.
As a method for simultaneously achieving stable low contact resistance and prevention of deterioration of durability, it is conceivable to form an Ag alloy layer having sulfidation resistance by sputtering or the like. However, it is costly to produce a sputtering target for Ag alloy layer. And the electrical resistance increases due to alloying. And, when the rust prevention treatment is performed after the Ag film is formed, since it is usually wet, sputtering (dry) and rust prevention treatment (wet) processes are mixed, which is expensive and useful for industrial implementation. Absent.
The present inventors have made extensive studies on the above problems, that is, a method for imparting low contact resistance and sulfidation resistance to the stainless steel strip and further preventing a decrease in durability. It was found that this can be achieved by forming a Ru film on top and forming any one of the above films by a dry film formation method.

すなわち、本発明は、
(1)準安定オーステナイト系ステンレス鋼上にAg膜を乾式成膜法で形成し、更に乾式成膜法又は乾式成膜法で厚さ1〜100nmのRu膜を形成して得られる、耐硫化性及び疲労特性に優れた準安定オーステナイト系ステンレス鋼帯、
(2)準安定オーステナイト系ステンレス鋼を湿式成膜法でAg膜を形成し、更に乾式成膜法で厚さ1〜100nmのRu膜を形成して得られる、耐硫化性及び疲労特性に優れた準安定オーステナイト系ステンレス鋼帯、
(3)上記(1)又は(2)に記載の準安定オーステナイト系ステンレス鋼帯からなるスイッチ用メタルドーム部品、
に関する。
なお、本発明における「成膜法」は、金属帯(本発明では準安定オーステナイト系ステンレス鋼帯)に、厚さ1nm〜数μm(数千nm)の金属膜を形成する方法をいい、乾式成膜法と湿式成膜法に大別する。具体的な方法として、乾式成膜法ではスパッタリング、真空蒸着、イオンプレーティング等、湿式成膜法では、電気めっきが挙げられる。
That is, the present invention
(1) Sulfide resistance obtained by forming an Ag film on a metastable austenitic stainless steel by a dry film forming method, and further forming a Ru film having a thickness of 1 to 100 nm by a dry film forming method or a dry film forming method. Metastable austenitic stainless steel strips with excellent fatigue and fatigue properties,
(2) Excellent resistance to sulfidation and fatigue obtained by forming an Ag film from metastable austenitic stainless steel by a wet film formation method and further forming a Ru film having a thickness of 1 to 100 nm by a dry film formation method. Metastable austenitic stainless steel strip,
(3) A metal dome part for a switch comprising the metastable austenitic stainless steel strip according to (1) or (2) above,
About.
The “film formation method” in the present invention refers to a method of forming a metal film having a thickness of 1 nm to several μm (several thousand nm) on a metal band (in the present invention, a metastable austenitic stainless steel band). Broadly divided into film-forming methods and wet film-forming methods. Specific examples of the method include sputtering, vacuum deposition, ion plating and the like in the dry film forming method, and electroplating in the wet film forming method.

本発明の準安定オーステナイト系ステンレス鋼帯は、繰返しのばね性が必要な部品に好適であり、各種電子機器のスイッチ部分に使用される部品、特にスイッチ用メタルドーム部品に好適な耐硫化性及び疲労特性の優れた材料である。   The metastable austenitic stainless steel strip of the present invention is suitable for parts that require repetitive spring properties, and is suitable for parts used for switch parts of various electronic devices, particularly for metal dome parts for switches, It is a material with excellent fatigue characteristics.

以下に本発明の構成要件を説明する。
(1)Ag膜:
Agは導電性が良く、ステンレス鋼の高い接触電気抵抗をスイッチング機能を確保できる程度まで低下させるために使用される。形成されたAg膜は、繰返しスイッチングにより磨耗して一部は剥離するため、安定して低い接触電気抵抗が得られるように、ある程度の厚さが必要である。膜厚は500〜1000nmの範囲が広く用いられている。
本発明のAg膜の形成は、耐久性を確保するためスパッタリング、真空蒸着、イオンプレーティング等の乾式成膜法で行われるが、Ru膜を乾式成膜法で形成する場合に限り、Agを湿式成膜法である電気めっきにて形成することも可能である。乾式成膜法を採用されるターゲット組成又は真空蒸着用素合金としては、99.9%以上のAgが挙げられる。その他の条件は密着性が得られれば良いため特に制限はないが、前処理として逆スパッタ、又はNiやCrを10〜100nm程度シード層としてスパッタリング等により形成することで必要な密着性が得られる。また、湿式電気めっきでは、工業的に広く用いられているシアン化銀、シアン化カリウムを用いたシアン浴での膜形成が可能である。
The constituent features of the present invention will be described below.
(1) Ag film:
Ag has good conductivity and is used to reduce the high contact electric resistance of stainless steel to the extent that a switching function can be secured. The formed Ag film is worn away by repeated switching and partly peels off. Therefore, a certain thickness is required so that a low contact electric resistance can be stably obtained. A film thickness of 500 to 1000 nm is widely used.
The formation of the Ag film of the present invention is performed by a dry film forming method such as sputtering, vacuum deposition, or ion plating in order to ensure durability, but Ag is formed only when the Ru film is formed by a dry film forming method. It can also be formed by electroplating, which is a wet film formation method. Examples of the target composition or the elemental alloy for vacuum vapor deposition that employs the dry film forming method include 99.9% or more of Ag. Other conditions are not particularly limited as long as adhesion can be obtained. However, necessary adhesion can be obtained by reverse sputtering as a pretreatment or sputtering using Ni or Cr as a seed layer of about 10 to 100 nm. . Further, in wet electroplating, a film can be formed in a cyan bath using silver cyanide and potassium cyanide widely used in industry.

(2)Ru膜:
Ru膜はAgに耐硫化性を付与するために設けられており、この機能を有する限りRu合金膜での代替も可能である。
形成されたRu膜の厚さが1nm未満の場合、十分な耐硫化性を付与することができないため、1nm以上の厚さが必要である。また、厚さの上限は、製造コストの観点から100nm以下であるが、Ag膜に耐硫化性を付与する厚さであれば充分である。なお、Ru膜を形成しても接触抵抗は増大しないため、スイッチ接点として使用する場合には膜厚さが増大しても問題になることはない。Ruの膜厚さは、好ましくは3〜50nm、更に好ましくは10〜20nmで耐硫化性及び製造コストのバランスに優れるものとなる。
Ru膜の形成は、スパッタリング、真空蒸着等の乾式成膜法又はめっき浴を使用した電気めっきの湿式成膜法で行われる。Ag膜形成が電気めっきの場合にはRu膜形成は乾式成膜法で行われる。乾式成膜法による膜形成は良好な耐久性を付与する効果があり、理論によって本発明を限定するものではないが、電気めっきによるAg膜形成の際にめっき膜中に取り込まれて耐久性に悪影響を及ぼす水素が、乾式成膜法ではRu膜形成時に材料温度が上昇するため拡散、放出されることにより、耐久性が改善されるためであると推定される。尚、平均膜厚さ1nm以上であれば、たとえRu膜に水素放出等により生じる微細孔が存在していても本発明の効果が得られる。
乾式成膜法として採用されるターゲット又は真空蒸着用素合金組成としては、99%以上のRuを用いることが好ましい。めっき浴としては、例えば硫酸浴(めっき浴組成:硫酸ルテニウム10g/L、スルファミン酸100g/L)が挙げられ、好ましくは浴温度60〜70℃、電流密度5〜6A/dm2である。
(2) Ru film:
The Ru film is provided for imparting sulfidation resistance to Ag, and a Ru alloy film can be substituted as long as it has this function.
When the thickness of the formed Ru film is less than 1 nm, sufficient sulfidation resistance cannot be imparted, so that a thickness of 1 nm or more is necessary. Moreover, although the upper limit of thickness is 100 nm or less from a viewpoint of manufacturing cost, the thickness which provides sulfidation resistance to Ag film | membrane is enough. Note that even if a Ru film is formed, the contact resistance does not increase, so that when used as a switch contact, there is no problem even if the film thickness increases. The film thickness of Ru is preferably 3 to 50 nm, and more preferably 10 to 20 nm, and has an excellent balance between sulfidation resistance and production cost.
The Ru film is formed by a dry film formation method such as sputtering or vacuum vapor deposition or an electroplating wet film formation method using a plating bath. When the Ag film is formed by electroplating, the Ru film is formed by a dry film forming method. Film formation by dry film formation has the effect of imparting good durability, and the present invention is not limited by theory, but it is incorporated into the plating film during the formation of an Ag film by electroplating, and durability is improved. It is presumed that hydrogen having an adverse effect is improved in durability by diffusion and release because the material temperature rises at the time of Ru film formation in the dry film formation method. If the average film thickness is 1 nm or more, the effect of the present invention can be obtained even if the Ru film has micropores caused by hydrogen release or the like.
It is preferable to use 99% or more of Ru as a target employed as a dry film-forming method or an elementary alloy composition for vacuum deposition. Examples of the plating bath include a sulfuric acid bath (plating bath composition: ruthenium sulfate 10 g / L, sulfamic acid 100 g / L), preferably a bath temperature of 60 to 70 ° C. and a current density of 5 to 6 A / dm 2 .

(3)準安定オーステナイト系ステンレス鋼
準安定オーステナイト系ステンレス鋼は、冷間加工により生ずる加工誘起マルテンサイトにより容易に高強度が得られる高強度ステンレス鋼であり、具体的にはSUS304、SUS301及びSUS631が挙げられる。準安定オーステナイト系ステンレス鋼は、ばね性に優れており、本発明では良好なクリック感と高い耐久性を同時に満足する小型スイッチ用材料としても好適に使用される。
(4)耐硫化性
本明細書において「優れた耐硫化性」とは、下記耐硫化性試験で「○」の評価を得る特性をいう。
(5)疲労特性
本明細書において「優れた疲労特性」とは、下記耐久性試験で「◎」又は「○」の評価を得る特性をいう。
(3) Metastable austenitic stainless steel Metastable austenitic stainless steel is a high-strength stainless steel that can easily obtain high strength due to work-induced martensite generated by cold working. Specifically, SUS304, SUS301, and SUS631. Is mentioned. Metastable austenitic stainless steel is excellent in springiness, and in the present invention, it is also suitably used as a small switch material that satisfies both a good click feeling and high durability.
(4) Sulfurization resistance In this specification, “excellent sulfidation resistance” refers to a characteristic that obtains an evaluation of “◯” in the following sulfidation resistance test.
(5) Fatigue properties In this specification, “excellent fatigue properties” refers to properties that obtain an evaluation of “◎” or “◯” in the following durability test.

板厚60μm、幅200mmのSUS301ステンレス鋼箔上にAg膜を500nm厚さで形成した。乾式成膜法として、シード層としてNi膜をスパッタリングにより50nm厚さに形成し、スパッタリングターゲットとして、99.95%のAgを使用したスパッタリング(Ar雰囲気5×10-4Pa以下)を行った。電気めっきでは下地としてNi膜を電気めっき形成した後に、シアン浴(めっき浴組成:シアン化銀50g/L、シアン化カリウム60g/L、炭酸カリウム30g/L、浴温度22〜28℃、電流密度1A/dm2)を用いてAg膜を電気めっきで形成した。
得られたAg膜上にRu膜形成を行った。乾式成膜法は、スパッタリングターゲットとして99.95%のRuを使用したスパッタリング(Ar雰囲気5×10-4Pa以下)を行い、湿式成膜法は硫酸浴電気めっき(めっき浴組成:硫酸ルテニウム10g/L、スルファミン酸100g/L、浴温度60〜70℃、電流密度5A/dm2)を行った。得られたサンプル材料を規定の大きさに切り出して耐硫化性試験、接触電気抵抗測定を実施した。また、材料をメタルドームに加工して耐久試験を実施した結果を表1に示す。なお、試験条件の詳細を以下に示す。
An Ag film having a thickness of 500 nm was formed on a SUS301 stainless steel foil having a plate thickness of 60 μm and a width of 200 mm. As a dry film-forming method, a Ni film was formed as a seed layer by sputtering to a thickness of 50 nm, and sputtering using 99.95% Ag as a sputtering target (Ar atmosphere 5 × 10 −4 Pa or less) was performed. In electroplating, a Ni film is electroplated as a base, and then a cyan bath (plating bath composition: silver cyanide 50 g / L, potassium cyanide 60 g / L, potassium carbonate 30 g / L, bath temperature 22 to 28 ° C., current density 1 A / Ag film was formed by electroplating using dm 2 ).
A Ru film was formed on the obtained Ag film. The dry film forming method performs sputtering (Ar atmosphere 5 × 10 −4 Pa or less) using 99.95% Ru as a sputtering target, and the wet film forming method uses sulfuric acid bath electroplating (plating bath composition: ruthenium sulfate 10 g). / L, sulfamic acid 100 g / L, bath temperature 60 to 70 ° C., current density 5 A / dm 2 ). The obtained sample material was cut out to a specified size and subjected to a sulfidation resistance test and a contact electric resistance measurement. Table 1 shows the results of endurance tests performed on the metal dome. Details of the test conditions are shown below.

(1)耐硫化性試験
試料を10mm×50mmの大きさに切り出し、H2S濃度3±0.5ppm、温度40℃、湿度50%の環境下で24時間保持した後、試験前後の表面を目視により観察して耐硫化性を判定した。判定は、試験前後で変化が認められない場合「○」、試験後に一部変色が認められる場合「△」、試験後に全面変色が認められる場合「×」とした。
(2)接触電気抵抗
山崎試験機製の電気接点シミュレータCR−1にて金プローブ、10gfの接圧にて400点測定した。接触電気抵抗は、実施例1〜7、比較例8〜12のサンプル全て5〜20mΩの範囲内であった。
(3)耐久性(疲労特性)
材料をプレスによりメタルドームに加工した。メタルドームの仕様は直径4mm、スイッチ荷重250±10gf、クリック率50±5%とし、押し棒の先端径1.5mmの平型、荷重500gf、スイッチング速度3回/秒の条件で各試料10個のメタルドームについて繰返しスイッチングを実施して、耐久試験を実施した。耐久性の評価は、200万回のスイッチングにより割れが発生したドームの個数が0個の場合「◎」、1個の場合「○」、2個以上の場合「×」とした。
(1) Sulfurization resistance test A sample was cut into a size of 10 mm x 50 mm and kept for 24 hours in an environment of H 2 S concentration 3 ± 0.5 ppm, temperature 40 ° C, humidity 50%. The sulfidation resistance was judged by visual observation. The judgment was “◯” when no change was observed before and after the test, “Δ” when partial discoloration was observed after the test, and “X” when discoloration was observed after the test.
(2) Contact electrical resistance 400 points were measured with a gold probe and a contact pressure of 10 gf using an electrical contact simulator CR-1 manufactured by Yamazaki Tester. The contact electric resistance was in the range of 5 to 20 mΩ for all the samples of Examples 1 to 7 and Comparative Examples 8 to 12.
(3) Durability (fatigue properties)
The material was processed into a metal dome by pressing. The specification of the metal dome is 4 mm in diameter, switch load 250 ± 10 gf, click rate 50 ± 5%, push rod 1.5 mm flat tip, load 500 gf, switching speed 3 times / second, 10 samples each. The endurance test was conducted by repeatedly switching the metal dome. The durability was evaluated as “◎” when the number of dome cracked due to switching 2 million times was 0, “◯” when 1 and “x” when 2 or more.

Figure 2008231540
Figure 2008231540

実施例1〜7はAg膜形成をスパッタリングで行い、Ru膜の厚さが1〜100nmであるので、耐硫化性、耐久性が全て良好である。
一方、比較例8〜10は、Ag膜形成をスパッタリングで行ったため耐久性は良好であるが、Ru膜の厚さが1nm未満又はRu膜が形成されていないため耐硫化性に劣る。
比較例11では、Ru膜の厚さが1nm以上であるために耐硫化性は良好であるが、Ag膜形成とRu膜形成が共に電気めっきであるため耐久性に劣る。
比較例12では、Ag膜形成が電気めっきのみであるため耐久性に劣り、Ru膜が形成されていないため耐硫化性にも劣る。
In Examples 1 to 7, the Ag film is formed by sputtering, and the Ru film has a thickness of 1 to 100 nm. Therefore, the resistance to sulfidation and durability are all good.
On the other hand, Comparative Examples 8 to 10 have good durability because the Ag film was formed by sputtering, but the Ru film thickness was less than 1 nm or the Ru film was not formed.
In Comparative Example 11, since the thickness of the Ru film is 1 nm or more, the sulfidation resistance is good, but the durability is inferior because both the Ag film formation and the Ru film formation are electroplating.
In Comparative Example 12, since the Ag film formation is only electroplating, the durability is inferior, and since the Ru film is not formed, the sulfidation resistance is also inferior.

Claims (3)

準安定オーステナイト系ステンレス鋼上にAg膜を乾式成膜法で形成し、更に乾式成膜法又は湿式成膜法で厚さ1〜100nmのRu膜を形成して得られる、耐硫化性及び疲労特性に優れた準安定オーステナイト系ステンレス鋼帯。   Sulfide resistance and fatigue obtained by forming an Ag film on a metastable austenitic stainless steel by a dry film forming method, and further forming a Ru film having a thickness of 1 to 100 nm by a dry film forming method or a wet film forming method. Metastable austenitic stainless steel strip with excellent properties. 準安定オーステナイト系ステンレス鋼上にAg膜を湿式成膜法で形成し、更に乾式成膜法で厚さ1〜100nmのRu膜を形成して得られる、耐硫化性及び疲労特性に優れた準安定オーステナイト系ステンレス鋼帯。   A semi-stable austenitic stainless steel formed by a wet film formation method and further formed by forming a 1-100 nm thick Ru film by a dry film formation method. Stable austenitic stainless steel strip. 請求項1又は2に記載の準安定オーステナイト系ステンレス鋼帯からなるスイッチ用メタルドーム部品。   A metal dome part for a switch comprising the metastable austenitic stainless steel strip according to claim 1 or 2.
JP2007075303A 2007-03-22 2007-03-22 Metastable austenitic stainless steel strip superior in sulfidization resistance Pending JP2008231540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075303A JP2008231540A (en) 2007-03-22 2007-03-22 Metastable austenitic stainless steel strip superior in sulfidization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075303A JP2008231540A (en) 2007-03-22 2007-03-22 Metastable austenitic stainless steel strip superior in sulfidization resistance

Publications (1)

Publication Number Publication Date
JP2008231540A true JP2008231540A (en) 2008-10-02

Family

ID=39904694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075303A Pending JP2008231540A (en) 2007-03-22 2007-03-22 Metastable austenitic stainless steel strip superior in sulfidization resistance

Country Status (1)

Country Link
JP (1) JP2008231540A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307114A (en) * 1988-06-06 1989-12-12 Techno Porisu Hakodate Gijutsu Shinko Kyokai Anti-sulfidization contact material and manufacture thereof
JPH10219479A (en) * 1997-01-31 1998-08-18 Furukawa Electric Co Ltd:The Sealed contact material
JPH11193493A (en) * 1997-12-29 1999-07-21 Takamatsu Mekki Kogyo Kk Nickel-less plated product
JPH11232950A (en) * 1998-02-12 1999-08-27 Furukawa Electric Co Ltd:The Coned disc spring contact made of palladium covered stainless steel and switch using the same
JP2003123586A (en) * 2001-10-05 2003-04-25 Fujikura Ltd Dome type metal spring
JP2006283140A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk Sus301 stainless steel band for metal dome
JP2006303069A (en) * 2005-04-19 2006-11-02 Sumitomo Metal Electronics Devices Inc Package for mounting light emitting element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307114A (en) * 1988-06-06 1989-12-12 Techno Porisu Hakodate Gijutsu Shinko Kyokai Anti-sulfidization contact material and manufacture thereof
JPH10219479A (en) * 1997-01-31 1998-08-18 Furukawa Electric Co Ltd:The Sealed contact material
JPH11193493A (en) * 1997-12-29 1999-07-21 Takamatsu Mekki Kogyo Kk Nickel-less plated product
JPH11232950A (en) * 1998-02-12 1999-08-27 Furukawa Electric Co Ltd:The Coned disc spring contact made of palladium covered stainless steel and switch using the same
JP2003123586A (en) * 2001-10-05 2003-04-25 Fujikura Ltd Dome type metal spring
JP2006283140A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk Sus301 stainless steel band for metal dome
JP2006303069A (en) * 2005-04-19 2006-11-02 Sumitomo Metal Electronics Devices Inc Package for mounting light emitting element

Similar Documents

Publication Publication Date Title
KR101784023B1 (en) Silver-coated composite material for movable contact component, method for producing same, and movable contact component
JP4834023B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
US7923651B2 (en) Silver-coated stainless steel strip for movable contacts and method of producing the same
JP2008270192A (en) Silver coating material for movable contact component, and manufacturing method thereof
JP4279285B2 (en) Silver-coated stainless steel strip for movable contact and method for producing the same
JP5077479B1 (en) Contacts and electronic parts using the same
JP2010146926A (en) Silver coating material for movable contact component and method of manufacturing the same
JP5854574B2 (en) Metal materials for electrical contact parts
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
JP2008231540A (en) Metastable austenitic stainless steel strip superior in sulfidization resistance
EP3070726B1 (en) Silver coating material and method for manufacturing same
JP2007291509A (en) Silver coated composite material for movable contact and method for producing the same
JP2009099550A (en) Silver-clad composite material for movable contact and its manufacturing method
KR101863465B1 (en) Electrical contact structure comprising movable contact part and fixed contact part
JP5391214B2 (en) Silver coated stainless steel strip for movable contacts and switch using the same
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
JP2006351255A (en) Dome type pushing switch
WO2007116717A1 (en) Silver coated composite material for movable contact and method for producing same
JPS6348151B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080922

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A02