JPH10219479A - Sealed contact material - Google Patents

Sealed contact material

Info

Publication number
JPH10219479A
JPH10219479A JP1857597A JP1857597A JPH10219479A JP H10219479 A JPH10219479 A JP H10219479A JP 1857597 A JP1857597 A JP 1857597A JP 1857597 A JP1857597 A JP 1857597A JP H10219479 A JPH10219479 A JP H10219479A
Authority
JP
Japan
Prior art keywords
coating layer
contact
contact material
layer
encapsulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1857597A
Other languages
Japanese (ja)
Inventor
Takeshi Hirasawa
壮史 平澤
Kiyoshi Yamamoto
潔 山本
Yasukazu Ohashi
泰和 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1857597A priority Critical patent/JPH10219479A/en
Publication of JPH10219479A publication Critical patent/JPH10219479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive sealed contact material having a long contact service life even under a highly loaded conditions. SOLUTION: This material is the one in which a coating layer having >=0.1μm thickness is formed on a contact base material, and this coating layer has a compsn. contg. at least one element among Zn, Cd, In, Tl, Sn, Pb, As, Sb and Bi by 0.5 to 50at%, contg. at least one element of C and Si by 5 to 50at%, contg. 0 to 40at% O (oxygen), and the balance >=30at% Cu or Ag. Since the material contains adhesion reducing elements such as Zn, Cd, In, Tl, Sn, Pb, As, Sb, Bi or the like and furthermore contains arc damage dispersing elements of C or Si, adhesion does not occur between contacts even under high loads in which arc discharge is generated, and a good contact service life can be obtd. Moreover, it is inexpensive since expensive Rh, Ru, etc., are not used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非酸化性雰囲気中
で開閉を行う封入型のリ−ドスイッチ、リレーなどの電
極に適した、開閉動作が長期間安定して行われる、安価
な封入接点材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inexpensive encapsulation which is suitable for an electrode of an encapsulation type lead switch, relay, etc. which opens and closes in a non-oxidizing atmosphere, in which the opening and closing operation is performed stably for a long period of time. Regarding contact materials.

【0002】[0002]

【従来の技術】封入接点は、非酸化性雰囲気としたガラ
スやプラスチック製の密閉容器内で開閉を行う電極であ
り、従来よりNi−Fe系合金基材上にAg、Au、C
uなどのめっき層を形成し、その上に、高融点で、電気
伝導度、硬度、耐消耗性に優れるRhまたはRuの層を
被覆した材料が多用されている。前記Ag、Au、Cu
などのめっき層は、接点の開閉動作時のジュール熱で、
被覆層のRhやRuが基材に拡散するのを防止し、また
RhまたはRuの被覆層と接点基材との密着性を改善す
る作用も果たす。
2. Description of the Related Art A sealed contact is an electrode that opens and closes in a glass or plastic sealed container in a non-oxidizing atmosphere, and has conventionally been made of Ag, Au, C on a Ni-Fe alloy base material.
A material in which a plating layer of u or the like is formed and a layer of Rh or Ru having a high melting point and excellent in electrical conductivity, hardness, and wear resistance is coated thereon is often used. Ag, Au, Cu
The plating layers such as
It also serves to prevent Rh or Ru of the coating layer from diffusing into the base material and to improve the adhesion between the Rh or Ru coating layer and the contact base material.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記の封入接
点材料は、高価なRhやRuを用いるためコスト高にな
るという問題があった。そこで、Ni−Fe系合金基材
上にCu−Ni拡散層を形成した封入接点材料が提案さ
れた。しかし、この材料はアーク放電が発生するような
高負荷条件では接点間に開閉不良が起きるため、やはり
RhやRuを被覆する必要があった。
However, the above-mentioned encapsulated contact material has a problem that the cost is high because expensive Rh or Ru is used. Therefore, an encapsulated contact material in which a Cu-Ni diffusion layer is formed on a Ni-Fe alloy base material has been proposed. However, this material needs to be coated with Rh or Ru because high-load conditions such as arc discharge cause switching failure between contacts.

【0004】このようなことから、本発明者等は高負荷
条件でも適用可能な接点材料について鋭意研究を行い、
Zn、Cd、In、Tl、Sn、Pb、As、Sb、B
iなどの低融点元素を添加すると接点間での粘着が抑え
られること、CやSiなどの元素を添加するとアークに
よる損傷が分散されることを見出し、さらに研究を進め
て本発明を完成させるに至った。本発明は、接点の開閉
が高負荷条件でも長期間安定してなされ、且つ安価な封
入接点材料の提供を目的とする。
[0004] From the above, the present inventors have conducted intensive research on contact materials that can be applied even under high load conditions.
Zn, Cd, In, Tl, Sn, Pb, As, Sb, B
It has been found that the addition of a low-melting element such as i suppresses the adhesion between the contacts, and that the addition of elements such as C and Si disperses the damage caused by the arc. Reached. SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive encapsulated contact material that can stably open and close contacts for a long period of time even under high load conditions.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
接点基材上に厚さ0.1μm以上の被覆層が形成され、
前記被覆層が、CuまたはAgのうちの少なくとも1元
素を30at%以上、Zn、Cd、In、Tl、Sn、P
b、As、Sb、またはBiのうちの少なくとも1元素
を0.5〜50at%、CまたはSiのうちの少なくとも
1元素を0.5〜50at%、O(酸素)を0〜40at%
含み、残部が不可避不純物からなることを特徴とする封
入接点材料である。
According to the first aspect of the present invention,
A coating layer having a thickness of 0.1 μm or more is formed on the contact substrate,
The coating layer contains at least one element of Cu or Ag in an amount of at least 30 at%, Zn, Cd, In, Tl, Sn, P
0.5 to 50 at% of at least one element of b, As, Sb or Bi, 0.5 to 50 at% of at least one element of C or Si, and 0 to 40 at% of O (oxygen)
An encapsulated contact material, characterized in that it includes an inevitable impurity and the remainder consists of unavoidable impurities.

【0006】請求項2記載の発明は、被覆層の厚さ方向
の各合金元素の濃度変動が±5at%以下であることを特
徴とする請求項1記載の封入接点材料である。
According to a second aspect of the present invention, there is provided the encapsulated contact material according to the first aspect, wherein a concentration variation of each alloy element in a thickness direction of the coating layer is ± 5 at% or less.

【0007】請求項3記載の発明は、組成の異なる被覆
層が2層以上に形成されていることを特徴とする請求項
1、2のいずれかに記載の封入接点材料である。
A third aspect of the present invention is the encapsulated contact material according to any one of the first and second aspects, wherein two or more coating layers having different compositions are formed.

【0008】請求項4記載の発明は、被覆層が2層に形
成され、一方の被覆層(i)が、CuまたはAgのうち
の少なくとも1元素を30at%以上、Zn、Cd、I
n、Tl、Sn、Pb、As、Sb、またはBiのうち
の少なくとも1元素を0〜50at%、CまたはSiのう
ちの少なくとも1元素を0〜50at%、O(酸素)を0
〜40at%含み、残部が不可避不純物からなり、他方の
層(t)が、CuまたはAgの少なくとも1元素を20
at%以上、Zn、Cd、In、Tl、Sn、Pb、A
s、Sb、またはBiのうちの少なくとも1元素を50
〜80at%、CまたはSiのうちの少なくとも1元素を
0〜50at%、Oを0〜40at%含み、残部が不可避不
純物からなることを特徴とする請求項3記載の封入接点
材料である。
According to a fourth aspect of the present invention, the coating layer is formed in two layers, and one of the coating layers (i) contains at least one element of Cu or Ag in an amount of 30 at% or more, and contains Zn, Cd, and I.
0 to 50 at% of at least one element of n, Tl, Sn, Pb, As, Sb or Bi; 0 to 50 at% of at least one element of C or Si;
-40 at%, the remainder is made of unavoidable impurities, and the other layer (t) contains at least one element of Cu or Ag by 20%.
at% or more, Zn, Cd, In, Tl, Sn, Pb, A
at least one element of s, Sb, or Bi is 50
4. The encapsulated contact material according to claim 3, wherein the material contains 0 to 50 at% of at least one element of C or Si, 0 to 40 at% of O, and 0 to 40 at% of O, with the balance being unavoidable impurities.

【0009】請求項5記載の発明は、被覆層に、Zn、
Cd、In、Tl、Sn、Pb、As、Sb、またはB
iのうちの少なくとも1元素が被覆層の厚さ方向に濃度
勾配を有して含まれていることを特徴とする請求項1、
2、3、4のいずれかに記載の封入接点材料である。
According to a fifth aspect of the present invention, the coating layer includes Zn,
Cd, In, Tl, Sn, Pb, As, Sb, or B
2. The method according to claim 1, wherein at least one element of i is contained with a concentration gradient in a thickness direction of the coating layer.
2. The encapsulated contact material according to any one of 2, 3, and 4.

【0010】請求項6記載の発明は、被覆層に、Cまた
はSiのうちの少なくとも1元素が被覆層の厚さ方向に
濃度勾配を有して含まれていることを特徴とする請求項
1、2、3、4、5のいずれかに記載の封入接点材料で
ある。
According to a sixth aspect of the present invention, the coating layer contains at least one element of C or Si with a concentration gradient in the thickness direction of the coating layer. 2. The encapsulated contact material according to any one of 2, 3, 4, and 5.

【0011】[0011]

【発明の実施の形態】本発明において、接点基材には、
強度と導電性を有する任意の金属材料が用いられる。例
えば、Fe、Ni、Co、Ni−Fe系合金、Co−F
e−Nb系合金、Co−Fe−V 系合金、Fe−Ni
−Al−Ti系合金、Fe−Co−Ni系合金、炭素
鋼、リン青銅、洋白、黄銅、ステンレス鋼、Cu−Ni
−Sn系合金、Cu−Ti系合金などが用いられる。本
発明では、接点基材上にNiなどの下地層を設けると、
接点基材の被覆層への拡散が抑制され、良好な接点特性
がより長期間安定して得られるようになる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a contact base material includes:
Any metal material having strength and conductivity is used. For example, Fe, Ni, Co, Ni-Fe alloy, Co-F
e-Nb alloy, Co-Fe-V alloy, Fe-Ni
-Al-Ti alloy, Fe-Co-Ni alloy, carbon steel, phosphor bronze, nickel silver, brass, stainless steel, Cu-Ni
-Sn-based alloys, Cu-Ti-based alloys and the like are used. In the present invention, when a base layer such as Ni is provided on the contact base material,
Diffusion of the contact base material into the coating layer is suppressed, and good contact characteristics can be stably obtained for a longer period.

【0012】本発明において、被覆層を形成するCuま
たはAgは、被覆層のベースとなる金属元素で、被覆層
に導電性を付与する。その含有量を30at%以上に規定
した理由は、30at%未満では十分な導電性が得られな
いためである。
In the present invention, Cu or Ag forming the coating layer is a metal element serving as a base of the coating layer, and imparts conductivity to the coating layer. The reason why the content is specified to be 30 at% or more is that if it is less than 30 at%, sufficient conductivity cannot be obtained.

【0013】Zn、Cd、In、Tl、Sn、Pb、A
s、Sb、またはBiはアーク放電が発生する高負荷条
件において、接点間の粘着性を低減する。また耐消耗性
をも高める。その含有量を0.5〜50at%に規定した
理由は、0.5at%未満ではその効果が十分に得られ
ず、50at%を超えると融点が低下して接点の消耗が激
しくなるためである。以後、前記Znなどの諸元素は粘
着性低減元素と称する。
Zn, Cd, In, Tl, Sn, Pb, A
s, Sb, or Bi reduces stickiness between contacts under high load conditions where arcing occurs. It also increases wear resistance. The reason why the content is specified in the range of 0.5 to 50 at% is that if the content is less than 0.5 at%, the effect cannot be sufficiently obtained, and if it exceeds 50 at%, the melting point is lowered and the contact is greatly consumed. . Hereinafter, various elements such as Zn are referred to as tackiness reducing elements.

【0014】CまたはSiはアーク放電を接点部全体に
分散させる作用を有する。その含有量を0.5〜50at
%に規定した理由は、0.5at%未満ではその効果が十
分に得られず、50at%を超えると、被覆層が脆くな
り、表面が膜状に剥がれ易くなるためである。以後Cま
たはSiはアーク損傷分散元素と称する。適量のO(酸
素)は、被覆層の融点と硬度を高めて耐消耗性を向上さ
せる。その含有量を0〜40at%に規定した理由は、4
0at%を超えると被覆層がポーラスになり、また脆くな
って接点寿命が低下するためである。本発明において、
被覆層の厚さを0.1μm以上に規定した理由は、0.
1μm未満では十分な接点寿命が得られないためであ
る。
C or Si has the function of dispersing the arc discharge over the entire contact portion. 0.5 ~ 50at
The reason why the content is specified in% is that if the content is less than 0.5 at%, the effect cannot be sufficiently obtained, and if it exceeds 50 at%, the coating layer becomes brittle and the surface is easily peeled off in a film form. Hereinafter, C or Si is referred to as an arc damage dispersing element. An appropriate amount of O (oxygen) increases the melting point and hardness of the coating layer to improve wear resistance. The reason for defining the content to be 0 to 40 at% is as follows.
If the content exceeds 0 at%, the coating layer becomes porous, becomes brittle, and the contact life is shortened. In the present invention,
The reason why the thickness of the coating layer is specified to be 0.1 μm or more is as follows.
If the thickness is less than 1 μm, a sufficient contact life cannot be obtained.

【0015】請求項2記載の発明は、被覆層の各元素の
厚さ方向の濃度のばらつきを低く抑えて、つまり被覆層
を均質化して、接点特性の経時的変動を低減させたもの
である。前記濃度のばらつきは±5at%以下において、
特にその効果が顕著となる。
According to a second aspect of the present invention, the variation in the concentration of each element in the coating layer in the thickness direction is suppressed to a low level, that is, the coating layer is homogenized to reduce the variation over time of the contact characteristics. . When the concentration variation is ± 5at% or less,
In particular, the effect is remarkable.

【0016】請求項3記載の発明は、基材上に組成の異
なる被覆層を2層以上に形成した封入接点材料で、例え
ば、被覆層の基材側を基材との密着性の良いベース金属
の多い組成とし、表面側を粘着性低減元素の多い組成と
することにより、高寿命で接点特性に優れる封入接点材
料が得られる。
According to a third aspect of the present invention, there is provided an encapsulated contact material in which two or more coating layers having different compositions are formed on a base material. For example, the base material side of the coating layer has good adhesion to the base material. By using a composition with a large amount of metal and a composition with a large amount of an element for reducing adhesion on the surface side, a sealed contact material having a long life and excellent contact characteristics can be obtained.

【0017】請求項4記載の発明は、請求項3記載の発
明の具体例で、粘着性低減元素を0〜50at%に少なく
規定したi層を基材側に、粘着性低減元素量を50〜8
0at%に多く規定したt層を表面側に形成すると、基材
との密着性に優れ且つ接点間に粘着が生じ難い材料が得
られる。また前記t層を基材側に形成しi層を表面側に
形成すると、使用中に粘着性低減元素が徐々に表面に拡
散してくるようになり長期間安定した接点寿命が得られ
る。ここで、被覆層全体の粘着性低減元素の濃度は0.
5〜50at%になるように調整する。またアーク損傷分
散元素(Cなど)の濃度は、i層およびt層とも0〜5
0at%としたが、例えばi層の濃度が0.5at%未満の
場合は、t層に0.5at%を超える量添加して、被覆層
全体のアーク損傷分散元素の濃度が0.5at%以上にな
るように調整する。ベース金属(Cuなど)の場合も、
i層のベース金属が30at%未満の場合は、t層のベー
ス金属の量を増やして、被覆層全体のベース金属濃度が
30at%以上になるようにする。
According to a fourth aspect of the present invention, in the specific example of the third aspect, the i-layer in which the amount of the tackiness reducing element is specified as small as 0 to 50 at% is provided on the substrate side, and the amount of the tackiness reducing element is 50%. ~ 8
By forming a t-layer, which is specified as 0 at%, on the surface side, it is possible to obtain a material having excellent adhesion to the base material and hardly causing adhesion between the contacts. Further, when the t layer is formed on the substrate side and the i layer is formed on the surface side, the stickiness reducing element gradually diffuses to the surface during use, so that a long-term stable contact life can be obtained. Here, the concentration of the tackiness reducing element in the entire coating layer is 0.1.
Adjust so as to be 5 to 50 at%. The concentration of the arc damage dispersing element (such as C) is 0 to 5 for both the i-layer and the t-layer.
However, when the concentration of the i-layer is less than 0.5 at%, for example, when the concentration of the arc damage dispersing element in the entire coating layer is 0.5 at%, it is added to the t-layer in an amount exceeding 0.5 at%. Adjust so that it is above. In the case of base metal (such as Cu),
When the base metal of the i-layer is less than 30 at%, the amount of the base metal of the t-layer is increased so that the base metal concentration of the entire coating layer becomes 30 at% or more.

【0018】請求項5記載の発明は、粘着性低減元素
が、被覆層の厚さ方向に濃度勾配を有している材料で、
例えば、粘着性低減元素の濃度が表面側で高くなるよう
に勾配を付けたものは、少量の粘着性低減元素で接点間
の粘着を防止できる。また粘着性低減元素の濃度が表面
側で低くなるように勾配を付けたものは、使用中に粘着
性低減元素が被覆層表面に徐々に拡散して、所要量の粘
着性低減元素が被覆層表面に長期に渡り保持される。
According to a fifth aspect of the present invention, there is provided a material wherein the tackiness reducing element has a concentration gradient in the thickness direction of the coating layer,
For example, in the case where the concentration of the tackiness reducing element is increased so as to be higher on the surface side, sticking between the contacts can be prevented with a small amount of the tackiness reducing element. In the case where the concentration of the tackiness reducing element is graded so as to become lower on the surface side, the tackiness reducing element gradually diffuses to the surface of the coating layer during use, and a required amount of the tackiness reducing element is applied to the coating layer. Long-lasting on the surface.

【0019】請求項6記載の発明は、アーク損傷分散元
素が、被覆層の厚さ方向に濃度勾配を有している材料
で、例えば、アーク損傷分散元素の濃度が表面側で高く
なるように勾配を付けたものは、少量のアーク損傷分散
元素で接点間のアーク損傷を防止できる。またアーク損
傷分散元素の濃度が表面側で低くなるように勾配を付け
たものは、使用中にアーク損傷分散元素が被覆層表面に
徐々に拡散して、所要量のアーク損傷分散元素が被覆層
表面に長期に渡り保持される。本発明において、被覆層
の形成には、スパッタリング法などの気相成長法が好便
である。
The invention according to claim 6 is a material in which the arc damage dispersing element has a concentration gradient in the thickness direction of the coating layer, for example, such that the concentration of the arc damage dispersing element increases on the surface side. The graded one can prevent arc damage between contacts with a small amount of arc damage dispersing element. In the case where the concentration of the arc damage dispersing element is reduced so that it is lower on the surface side, the arc damage dispersing element gradually diffuses to the surface of the coating layer during use, and a required amount of the arc damage dispersing element is removed from the coating layer. Long-lasting on the surface. In the present invention, a vapor phase growth method such as a sputtering method is convenient for forming the coating layer.

【0020】[0020]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)Ni−48at%Fe合金板 (1×1×0.2m
m)を接点基材に用いて封入接点を作製した。先ず、前記
接点基材の表面をアセトンで5分間超音波洗浄し、更に
リン酸を用いた電解研磨により洗浄した。次にこの接点
基材を真空チャンバ内にセットし、チャンバ内を2×1
-4Pa以下まで真空排気したのち、真空ポンプのバル
ブを半開状態にして排気コンダクタンスを小さくしなが
らArガスを導入してチャンバ内を1×10-1Paに安
定させた。次に、接点基材に−400Vの電圧を印加
し、チャンバ内の高周波アンテナから0.2KWの高周
波を発生させ、Arイオンでイオンボンバード処理を行
って接点基材の表面を清浄化した。次にチャンバ内を
0.66PaのArまたはAr+ O2 ガス雰囲気とし、
400℃に保持した接点基材表面に被覆層を1層形成し
た。前記被覆層は3元直流マグネトロンスパッタ法によ
り形成した。ターゲットにはベース金属元素、アーク損
傷分散元素、粘着性低減元素の中からそれぞれ少なくと
も1元素を用いた。O量は雰囲気中の酸素分圧を変える
ことにより制御した。蒸着レートは種々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) Ni-48 at% Fe alloy plate (1 x 1 x 0.2 m
m) was used as a contact base material to produce a sealed contact. First, the surface of the contact substrate was ultrasonically cleaned with acetone for 5 minutes, and further cleaned by electrolytic polishing using phosphoric acid. Next, this contact base material is set in a vacuum chamber, and the inside of the chamber is 2 × 1
After evacuating to 0 -4 Pa or less, the vacuum pump valve was half-opened, and Ar gas was introduced while reducing the exhaust conductance to stabilize the inside of the chamber at 1 × 10 -1 Pa. Next, a voltage of -400 V was applied to the contact base material, a high frequency of 0.2 KW was generated from a high-frequency antenna in the chamber, and ion bombardment treatment was performed with Ar ions to clean the surface of the contact base material. Next, the inside of the chamber was set to an Ar or Ar + O 2 gas atmosphere of 0.66 Pa,
One coating layer was formed on the surface of the contact substrate maintained at 400 ° C. The coating layer was formed by a ternary DC magnetron sputtering method. As the target, at least one of each of a base metal element, an arc damage dispersing element, and an adhesion reducing element was used. The amount of O was controlled by changing the oxygen partial pressure in the atmosphere. The deposition rate was varied.

【0021】このようにして得られた各々の封入接点を
用いて、N2 ガス封入のリードスイッチを作製し、これ
らリードスイッチの開閉接点寿命を室温下で試験した。
開閉接点寿命は、電極間にアーク放電が発生する高負荷
(100V-0.5A-10Hz)下で、40Ampere Turn の駆動磁界
により開閉動作を反復させ、開閉不良が生じるまでの動
作回数(接点寿命)で現した。試験本数は各10本ずつ
(n=10)とした。結果を表1、2に示す。表1、2
で、突発的動作不良が発生したものは数値にアンダーラ
インを付した。
Using each of the sealed contacts thus obtained, N 2 gas-filled reed switches were manufactured, and the switching contact life of these reed switches was tested at room temperature.
The life of switching contacts is limited by the high load at which arc discharge occurs between the electrodes.
The switching operation was repeated under a driving magnetic field of 40 Ampere Turn under (100 V-0.5 A-10 Hz), and the number of operations (contact life) until the opening / closing failure occurred was expressed. The number of test tubes was 10 (n = 10) each. The results are shown in Tables 1 and 2. Tables 1 and 2
In cases where sudden malfunctions occurred, the numerical values are underlined.

【0022】[0022]

【表1】 (注)#残部。*単位at%。 [Table 1] (Note) # remainder. * Unit at%.

【0023】[0023]

【表2】 (注)#残部。*単位at%。[Table 2] (Note) # remainder. * Unit at%.

【0024】表1、2より明らかなように、本発明例
(No.1〜15) は、接点寿命が長く、また突発的動作不良
も発生しなかった。他方、比較例のNo.1〜3 はアーク損
傷分散元素が添加されていないため、No.4〜6 は粘着性
低減元素が添加されていないため、No.7は粘着性低減元
素が多いため、No.8はアーク損傷低減元素が多いため、
No.9,10 は被覆層の厚さが薄いため、いずれも接点寿命
が短かった。中には突発的動作不良を起こすものもあっ
た。
As is clear from Tables 1 and 2, the present invention example
(Nos. 1 to 15) had a long contact life and no sudden malfunction. On the other hand, Nos. 1 to 3 of the comparative examples do not contain the arc damage dispersing element, and Nos. 4 to 6 do not contain the tackiness reducing element. , No. 8 has many arc damage reduction elements,
No. 9 and No. 10 had a short contact life because of the thin coating layer. Some of them caused sudden malfunctions.

【0025】(実施例2)接点基材上に被覆層を2層に
形成した他は、実施例1と同じ方法により封入接点材料
を製造し、実施例1と同じ方法で接点寿命を試験した。
結果を表3〜5に示す。
(Example 2) An encapsulated contact material was produced in the same manner as in Example 1 except that the coating layer was formed in two layers on the contact substrate, and the contact life was tested in the same manner as in Example 1. .
The results are shown in Tables 3 to 5.

【0026】[0026]

【表3】 (注)♭表:表面側、基:基材側。#残部。*単位at%。 [Table 3] (Note) Table: Surface side, group: Base material side. # Rest. * Unit at%.

【0027】[0027]

【表4】 (注)♭表:表面側、基:基材側。#残部。*単位at%。 [Table 4] (Note) Table: Surface side, group: Base material side. # Rest. * Unit at%.

【0028】[0028]

【表5】 (注)♭表:表面側、基:基材側。#残部。*単位at%。 [Table 5] (Note) Table: Surface side, group: Base material side. # Rest. * Unit at%.

【0029】表3〜5より明らかなように、本発明例(N
o.16〜29) は接点寿命が長く、また突発的動作不良も発
生しなかった。被覆層厚さなどが同じ場合は、被覆層を
1層に形成した実施例1に較べて接点寿命が長めであ
り、2層に形成した効果が認められる。これに対し、比
較例のNo.11.12は含有酸素量が多いため、No.13 はアー
ク損傷分散元素および粘着性低減元素が添加されていな
いため、No14,17 は被覆層の厚さが薄いため、No.15 は
表面側のアーク損傷分散元素が多いため、No.16 はベー
ス金属元素が全く添加されていないため、いずれも接点
寿命が短かった。中には突発的動作不良を起こすものも
あった。
As is clear from Tables 3 to 5, the examples of the present invention (N
o.16 to 29) had a long contact life and no sudden malfunction. When the thickness of the coating layer is the same, the contact life is longer than in Example 1 in which the coating layer is formed as a single layer, and the effect of forming the coating layer in two layers is recognized. On the other hand, No.11.12 of the comparative example has a large oxygen content, No.13 has no added arc damage dispersing element and adhesion reducing element, and No.14,17 has a thin coating layer thickness. No. 15 had a large number of arc damage dispersing elements on the surface side, and No. 16 had no contact metal life because no base metal element was added at all. Some of them caused sudden malfunctions.

【0030】(実施例3)接点基材上に被覆層を合金元
素に濃度勾配を付けて形成した他は、実施例1と同じ方
法により封入接点を製造し、得られた封入接点につい
て、実施例1と同じ方法で接点寿命を試験した。結果を
表6に示す。
(Example 3) An encapsulated contact was manufactured in the same manner as in Example 1 except that a coating layer was formed on the contact base material by giving a concentration gradient to the alloy element. The contact life was tested in the same manner as in Example 1. Table 6 shows the results.

【0031】[0031]

【表6】 (注)♭表:表面、裏:裏面。#残部。*単位at%。 [Table 6] (Note) ♭ table: front side, back side: back side. # Rest. * Unit at%.

【0032】表6より明らかなように、本発明例の No.
30〜36はいずれも接点寿命が長く、また突発的動作不良
も発生しなかった。被覆層厚さなどが同じ場合は、被覆
層を1層に形成した実施例1に較べて接点寿命が長めで
あり、粘着性低減元素または/およびアーク損傷分散元
素に濃度勾配を付けた効果が認められる。
As is clear from Table 6, No. 1
Nos. 30 to 36 had a long contact life and no sudden malfunction. When the thickness of the coating layer is the same, the contact life is longer than in Example 1 in which the coating layer is formed as a single layer, and the effect of imparting a concentration gradient to the adhesion reducing element and / or the arc damage dispersing element is obtained. Is recognized.

【0033】以上、接点サイズの基材上に被覆層を形成
する場合について説明したが、本発明は、大型基材上に
被覆層を形成し、これを接点サイズにサイジングして封
入接点としても同様の効果が得られる。また本発明の封
入接点材料は、封入型リレー、封入型スイッチなど様々
な分野に使用できる。ベース金属のCuまたはAgが大
気中の硫化物と反応して接点特性が劣化しない環境下で
あれば、大気中で用いる通常のリードスイッチにも適用
できる。
Although the case where the coating layer is formed on the substrate having the contact size has been described above, the present invention is also applicable to the case where the coating layer is formed on a large-sized substrate and sized to the contact size to obtain an encapsulated contact. Similar effects can be obtained. The encapsulated contact material of the present invention can be used in various fields such as an encapsulated relay and an encapsulated switch. In an environment where Cu or Ag of the base metal does not react with sulfide in the atmosphere to deteriorate the contact characteristics, the present invention can be applied to a normal reed switch used in the atmosphere.

【0034】[0034]

【発明の効果】以上に説明したように、本発明の封入接
点材料は、Zn、Cd、In、Tl、Sn、Pb、A
s、Sb、Biなどの粘着性低減元素を含み、またCま
たはSiのアーク損傷分散元素を含むため、アーク放電
が発生する高負荷条件でも接点間に粘着が生じ難く、良
好な接点寿命が得られる。また高価なRhやRuなどを
用いないので安価である。依って工業上顕著な効果を奏
する。
As described above, the encapsulated contact material of the present invention is made of Zn, Cd, In, Tl, Sn, Pb, and A.
Since it contains an adhesion-reducing element such as s, Sb, and Bi, and contains an arc damage dispersing element of C or Si, adhesion does not easily occur between contacts even under high load conditions in which arc discharge occurs, and a good contact life is obtained. Can be Also, since expensive Rh and Ru are not used, the cost is low. Therefore, there is an industrially significant effect.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 接点基材上に厚さ0.1μm以上の被覆
層が形成され、前記被覆層が、CuまたはAgのうちの
少なくとも1元素を30at%以上、Zn、Cd、In、
Tl、Sn、Pb、As、Sb、またはBiのうちの少
なくとも1元素を0.5〜50at%、CまたはSiのう
ちの少なくとも1元素を0.5〜50at%、O(酸素)
を0〜40at%含み、残部が不可避不純物からなること
を特徴とする封入接点材料。
1. A coating layer having a thickness of 0.1 μm or more is formed on a contact base material, said coating layer containing at least one element of Cu or Ag in an amount of 30 at% or more, Zn, Cd, In,
0.5 to 50 at% of at least one element of Tl, Sn, Pb, As, Sb or Bi, 0.5 to 50 at% of at least one element of C or Si, O (oxygen)
, And the balance is composed of unavoidable impurities.
【請求項2】 被覆層の厚さ方向の各合金元素の濃度変
動が±5at%以下であることを特徴とする請求項1記載
の封入接点材料。
2. The encapsulated contact material according to claim 1, wherein a concentration variation of each alloy element in a thickness direction of the coating layer is ± 5 at% or less.
【請求項3】 組成の異なる被覆層が2層以上に形成さ
れていることを特徴とする請求項1、2のいずれかに記
載の封入接点材料。
3. The encapsulated contact material according to claim 1, wherein two or more coating layers having different compositions are formed.
【請求項4】 被覆層が2層に形成され、一方の被覆層
(i)が、CuまたはAgのうちの少なくとも1元素を
30at%以上、Zn、Cd、In、Tl、Sn、Pb、
As、Sb、またはBiのうちの少なくとも1元素を0
〜50at%、CまたはSiのうちの少なくとも1元素を
0〜50at%、O(酸素)を0〜40at%含み、残部が
不可避不純物からなり、他方の層(t)が、Cuまたは
Agの少なくとも1元素を20at%以上、Zn、Cd、
In、Tl、Sn、Pb、As、Sb、またはBiのう
ちの少なくとも1元素を50〜80at%、CまたはSi
のうちの少なくとも1元素を0〜50at%、Oを0〜4
0at%含み、残部が不可避不純物からなることを特徴と
する請求項3記載の封入接点材料。
4. A coating layer is formed in two layers, and one of the coating layers (i) contains at least one element of Cu or Ag in an amount of 30 at% or more, and contains Zn, Cd, In, Tl, Sn, Pb,
At least one element of As, Sb, or Bi is set to 0
0 to 50 at%, 0 to 50 at% of at least one element of C or Si, 0 to 40 at% of O (oxygen), the remainder is made of unavoidable impurities, and the other layer (t) is made of at least Cu or Ag. 20 at% or more of one element, Zn, Cd,
50 to 80 at% of at least one element of In, Tl, Sn, Pb, As, Sb, or Bi, C or Si
0 to 50 at% of at least one element and 0 to 4 of O
4. The encapsulated contact material according to claim 3, comprising 0 at%, with the balance being unavoidable impurities.
【請求項5】 被覆層に、Zn、Cd、In、Tl、S
n、Pb、As、Sb、またはBiのうちの少なくとも
1元素が被覆層の厚さ方向に濃度勾配を有して含まれて
いることを特徴とする請求項1、2、3、4のいずれか
に記載の封入接点材料。
5. The coating layer includes Zn, Cd, In, Tl, and S.
5. The method according to claim 1, wherein at least one of n, Pb, As, Sb, and Bi is contained with a concentration gradient in a thickness direction of the coating layer. An encapsulated contact material according to any one of the above.
【請求項6】 被覆層に、CまたはSiのうちの少なく
とも1元素が被覆層の厚さ方向に濃度勾配を有して含ま
れていることを特徴とする請求項1、2、3、4、5の
いずれかに記載の封入接点材料。
6. The coating layer according to claim 1, wherein at least one element of C or Si is contained with a concentration gradient in a thickness direction of the coating layer. 5. The encapsulated contact material according to any one of the above items 5.
JP1857597A 1997-01-31 1997-01-31 Sealed contact material Pending JPH10219479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1857597A JPH10219479A (en) 1997-01-31 1997-01-31 Sealed contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1857597A JPH10219479A (en) 1997-01-31 1997-01-31 Sealed contact material

Publications (1)

Publication Number Publication Date
JPH10219479A true JPH10219479A (en) 1998-08-18

Family

ID=11975429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1857597A Pending JPH10219479A (en) 1997-01-31 1997-01-31 Sealed contact material

Country Status (1)

Country Link
JP (1) JPH10219479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187831A (en) * 2003-12-24 2005-07-14 Kobe Steel Ltd Material for electric relay contact having excellent consumption-proof
JP2008231540A (en) * 2007-03-22 2008-10-02 Nikko Kinzoku Kk Metastable austenitic stainless steel strip superior in sulfidization resistance
US7867625B2 (en) * 2002-06-13 2011-01-11 Nihon New Chrome Co., Ltd. Copper-tin-oxygen alloy plating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867625B2 (en) * 2002-06-13 2011-01-11 Nihon New Chrome Co., Ltd. Copper-tin-oxygen alloy plating
JP2005187831A (en) * 2003-12-24 2005-07-14 Kobe Steel Ltd Material for electric relay contact having excellent consumption-proof
JP2008231540A (en) * 2007-03-22 2008-10-02 Nikko Kinzoku Kk Metastable austenitic stainless steel strip superior in sulfidization resistance

Similar Documents

Publication Publication Date Title
US6923692B2 (en) Electrical connectors incorporating low friction coatings and methods for making them
US4016061A (en) Method of making resistive films
US4162160A (en) Electrical contact material and method for making the same
US20150037710A1 (en) Coating with conductive and corrosion resistance characteristics
JPS61214312A (en) Composite body for electric contact member and making thereof
JPS62294163A (en) Production of low contact resistance composition
Cheng et al. Vapor deposited thin gold coatings for high temperature electrical contacts
US5892424A (en) Encapsulated contact material and a manufacturing method therefor, and a manufacturing method and a using method for an encapsulated contact
JPH10219479A (en) Sealed contact material
US3616406A (en) Preparation of glue layer for bonding gold to a substrate
EP0929088A2 (en) Contact material
JPH10228828A (en) Sealed contact material and sealed contact with electrode made thereof
JPH11126531A (en) Contact material and contact point
JPH113624A (en) Sealed contact material, and sealed contact with electrode using the same material
EP0612085A2 (en) Encapsulated contact material and process for producing the same
JPH1040764A (en) Sealed electric contact material
US4129765A (en) Electrical switching contact
JPH1021772A (en) Sealed contact material
JPH1040763A (en) Sealed electric contact material
JPH04354144A (en) Electrode
JP3154253B2 (en) Encapsulated contact material and its manufacturing method
JP2555270B2 (en) Encapsulated contact material and manufacturing method thereof
JPH10241479A (en) Sealed contact material and sealed contact using this material in electrode
JPH07220788A (en) Ic socket use terminal and manufacture thereof
EP0017404B1 (en) A rhodium electrical contact of a switch particularly a reed switch