JPS5948943B2 - conductive material - Google Patents

conductive material

Info

Publication number
JPS5948943B2
JPS5948943B2 JP53059276A JP5927678A JPS5948943B2 JP S5948943 B2 JPS5948943 B2 JP S5948943B2 JP 53059276 A JP53059276 A JP 53059276A JP 5927678 A JP5927678 A JP 5927678A JP S5948943 B2 JPS5948943 B2 JP S5948943B2
Authority
JP
Japan
Prior art keywords
tungsten
weight
particles
solid solution
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53059276A
Other languages
Japanese (ja)
Other versions
JPS54150319A (en
Inventor
良成 天野
雅也 三宅
昭夫 原
昌宏 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP53059276A priority Critical patent/JPS5948943B2/en
Publication of JPS54150319A publication Critical patent/JPS54150319A/en
Publication of JPS5948943B2 publication Critical patent/JPS5948943B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明はAg−W、Cu−W等の導電材料の改良に関す
るもので、従来この種の導電材料は例えば放電加工用電
極、気中接点、油中接点、SF。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in conductive materials such as Ag-W and Cu-W. Conventionally, these types of conductive materials have been used, for example, in electrical discharge machining electrodes, air contacts, oil contacts, and SF.

ガス中接点、真空接点等に種々利用されている。この種
の導電材料は、放電を伴う用途に使用さ、れるものであ
るから、その放電によつて導電材料が次第に消耗変形す
ることはやむを得ないことであるが、その消耗のできる
だけ少ない材料を用いることが必要であり、又導電材料
の抵抗を少なくするため接触性、導電性の優れたものが
必要であノる。この他放電加工用電極には、特に加工性
能(加工速度、面粗度)が優れたものが良いとされてい
る。又接点には使用中放電などの加熱による温度上昇に
よつて、表面が酸化し、その酸化物が堆積しないことが
必要とされている。従来、導電性、消耗性等の観点から
、導電性、熱伝導性に富むAgあるいはCuに、硬質な
高融点のWを含有したAg−W合金あるいはCu−W合
金が多く使用されているが、放電加工電極としてはさら
に加工速度大で電極消耗の少ないもの、又接点としては
導電性(通電性)にすぐれる材料が望まれている。
It is used for various purposes such as gas contacts and vacuum contacts. Since this type of conductive material is used for applications that involve electric discharge, it is unavoidable that the conductive material gradually wears out and deforms due to the electric discharge, but it is necessary to use a material with as little wear and tear as possible. In addition, in order to reduce the resistance of the conductive material, a material with excellent contact and conductivity is required. In addition, electrodes for electrical discharge machining are said to have particularly good machining performance (machining speed, surface roughness). It is also necessary that the surface of the contact will not be oxidized due to temperature rise due to heating such as discharge during use, and that oxides will not be deposited thereon. Conventionally, from the viewpoint of electrical conductivity and consumability, Ag-W alloys or Cu-W alloys containing hard, high-melting-point W in Ag or Cu, which are highly conductive and thermally conductive, have been often used. For electrical discharge machining electrodes, it is desirable to have higher machining speeds and less wear and tear on the electrodes, and for contacts, materials with excellent electrical conductivity (current conductivity) are desired.

本発明はAg−WあるいはCu−Wのまだ十分でなかつ
たこれらの性能をより向上せしめる材料を提供するもの
である。
The present invention provides a material that further improves the performance of Ag-W or Cu-W, which is still insufficient.

本発明はCuあるいはAg中にMO対Wの重量比率かM
O/W=0.005〜10からなるタングステン−モリ
ブデン全率固溶体(MOxWy)粒子を20〜80重量
%、タングステン粒子を5〜50重量%含有し、かつM
OxWy固溶体粒子とタングステン粒子の合計量が30
〜90重量%となるように構成すると共に鉄族元素をO
〜5重量%含有分散させて導電材料を構成したものであ
る。
The present invention focuses on the weight ratio of MO to W in Cu or Ag.
Contains 20 to 80% by weight of tungsten-molybdenum total solid solution (MOxWy) particles consisting of O/W = 0.005 to 10, 5 to 50% by weight of tungsten particles, and M
The total amount of OxWy solid solution particles and tungsten particles is 30
~90% by weight, and the iron group elements are O
The conductive material is made by dispersing it in an amount of up to 5% by weight.

タングステン−モリブデン全率固溶体粒子を20〜80
重量%、タングステン粒子を5〜50重量%をその合計
量の30〜90重量%となるように構成した本発明材料
は、後述する実施例で示すごとく、放電時においてより
優れた耐消耗特性を有する特徴があり、放電加工電極と
しては電極の消耗量を減じ、被加工材の加工速度を向上
せしめることが出来、接点としては低消耗を維持し、か
つ開閉後の導電性(通電性)を低く維持することが可能
である。
Tungsten-molybdenum total solid solution particles 20-80
The material of the present invention, in which the tungsten particles are comprised in a proportion of 5 to 50% by weight, making up 30 to 90% by weight of the total amount, exhibits superior wear resistance during discharge, as shown in the examples below. As an electrical discharge machining electrode, it can reduce the amount of electrode wear and increase the machining speed of the workpiece, and as a contact, it maintains low wear and has good conductivity after opening and closing. It is possible to keep it low.

本発明材は電子仕事函数の低いタングステンモリブデン
固溶体と耐熱性、耐アーク性に最も富んだタングステン
とを上述の如く適量共添することにより電極、接点など
の総合特性が著しく向上することを見い出したものであ
る。
It has been found that the overall properties of electrodes, contacts, etc. of the material of the present invention can be significantly improved by co-adding appropriate amounts of tungsten-molybdenum solid solution, which has a low electronic work function, and tungsten, which has the highest heat resistance and arc resistance, as described above. It is something.

放電加工は、電極と被加工材との間に過度のアーク放電
を発生させ、その熱エネルギーによつて電極および被加
工材を溶融し、これら溶融物をアークによる絶縁油の熱
分解によつて生成した高圧ガスによつて吹きとばし、こ
れを繰返しながら加.工を行なうものである。
Electrical discharge machining generates excessive arc discharge between an electrode and the workpiece, the resulting thermal energy melts the electrode and the workpiece, and the melt is decomposed by thermal decomposition of the insulating oil by the arc. Blow it out with the generated high-pressure gas, and add it while repeating this process. It is something that carries out construction work.

一般に電極および被加工材の消耗量は消耗量=放電回数
X1回の放電当りの消耗量として表わされる。
Generally, the amount of wear of the electrode and the workpiece is expressed as amount of consumption=number of discharges x amount of consumption per discharge.

この放電1回当りの消耗量は、主として1回当・りの放
電エネルギーに略比例するといわれ、回路によつて略定
まるものである。
The consumption amount per discharge is said to be approximately proportional to the discharge energy per discharge, and is approximately determined by the circuit.

この放電エネルギーは、電極(Wa)、放電極(We)
、被加工材(Wc)に供給される。本発明材の構成要素
の一つであるタングステン−モリブデン全率固溶体は、
第1図に示す如く、タングステンに比べ仕事函数が小さ
く、放電加工用電極として特に有効な作用を奏するもの
であるが、タングステンに比べると融点が低いため電極
のアーク消耗量をより低く抑えるためにタングステンに
よる耐熱性、耐アーク性の強化は、本発明材においては
タングステン−モリブデン固溶体との組合せで極めて有
効である。
This discharge energy is distributed between the electrode (Wa) and the discharge electrode (We).
, is supplied to the workpiece (Wc). The tungsten-molybdenum solid solution, which is one of the constituent elements of the material of the present invention, is
As shown in Figure 1, it has a smaller work function than tungsten and is particularly effective as an electrode for electrical discharge machining, but since it has a lower melting point than tungsten, it is necessary to keep the arc wear of the electrode to a lower level. The enhancement of heat resistance and arc resistance by tungsten is extremely effective in the material of the present invention in combination with a tungsten-molybdenum solid solution.

タングステン−モリブデン全率固溶体は、タングステン
よりも仕事函数が小なるため、電極よりの電子放出量を
増加せしめ、1回当りの放電エネルギーのWcのエネル
ギーが多くなり、一方Waのエネルギーが少なくなるた
めに、被加工材の溶融量を多くせしめ、かつ電極自身は
適量のタングステン−モリブデン固溶体とタングステン
による構成によつて耐アーク性を充分強化してあるため
、電極の溶融量が一段と少なくなり、加工速度の向上と
共に、電極の消耗比が著しく小になるものである。
Since the tungsten-molybdenum total solid solution has a smaller work function than tungsten, it increases the amount of electrons emitted from the electrode, and the energy of Wc in the discharge energy per discharge increases, while the energy of Wa decreases. In addition, since the amount of melting of the workpiece material is increased, and the electrode itself has sufficiently strengthened arc resistance by being composed of an appropriate amount of tungsten-molybdenum solid solution and tungsten, the amount of melting of the electrode is further reduced, making it easier to process. As speed increases, the rate of electrode wear is significantly reduced.

一方、接点においても本発明材はバランスのとれた性能
を発揮する。
On the other hand, the material of the present invention also exhibits well-balanced performance at the contact point.

まず導電性(通電性)の安定化は次のように推定される
。アークを伴なう開閉を行なうと、特に気中の場合には
、高温度にさらされるために酸化がより助長されること
になる。タングステンは周知の如くWO2、WO2.7
2、WO3等の酸化物になり、このタングステン酸化物
は1100℃以上の高温にならないと揮発しない。
First, stabilization of conductivity (current conductivity) is estimated as follows. When opening and closing accompanied by an arc, especially in air, oxidation is further promoted due to exposure to high temperatures. As is well known, tungsten is WO2, WO2.7
2. It becomes an oxide such as WO3, and this tungsten oxide does not volatilize unless the temperature reaches a high temperature of 1100° C. or higher.

これは電流容量の小さい接点では余り表面温度が上昇し
ないので、開閉回数の増大と共に、表面部分に多量の酸
化物が残り、被膜を形成することになる。しかもこの酸
化物は銅あるいは銀と反応してさらに強固な低融点のガ
ラスを形成するため、導電性を阻害することになる。一
方MOはアーク下で酸化反応するがこれらの酸化物は6
00℃から揮発し、揮発量はタングステン酸化物の10
0倍以上である。本発明材の構成要素の一つであるタン
グステン−モリブデンの全率固溶体は、その酸化特性が
モリブデン的であることによつて、その導電性(通電性
)を向上せしめているものと考える。又タングステン−
モリブデン固溶体含有による融点の低下、即ち耐熱性、
耐アーク性の低下分はタングステンが補つて接点消耗を
充分低く維持して接点としてのバランスのとれた性能を
発揮する。タングステン−モリブデン全率固溶体粒子の
組成は重量比でMO/W=0.005〜10が適当であ
る。
This is because the surface temperature of a contact with a small current capacity does not rise much, so as the number of openings and closings increases, a large amount of oxide remains on the surface and forms a film. Furthermore, this oxide reacts with copper or silver to form a stronger glass with a low melting point, which impedes electrical conductivity. On the other hand, MO undergoes an oxidation reaction under an arc, but these oxides
It volatilizes from 00℃, and the amount of volatilization is 10% of that of tungsten oxide.
It is 0 times or more. It is believed that the tungsten-molybdenum solid solution, which is one of the constituent elements of the material of the present invention, improves its electrical conductivity (current conductivity) because its oxidation properties are similar to molybdenum. Also tungsten
Lower melting point due to molybdenum solid solution content, i.e. heat resistance,
Tungsten compensates for the decrease in arc resistance and maintains contact wear at a sufficiently low level to provide well-balanced performance as a contact. The composition of the tungsten-molybdenum solid solution particles is preferably MO/W=0.005 to 10 by weight.

MO/W=0.005以下になると、仕事函数値および
耐酸化性の面で純Wと同等になり、耐消耗性、および導
電性が顕著に向上しないためである。又MO/W=10
以上になると、接点として導電性(通電性)は優れるも
ののタングステン−モリブデン全率固溶体粒子の溶融点
が低下し、耐熱性に劣り、耐消耗性が劣化して好ましく
ない。放電加工電極用としてはMO/Wの重量比率が0
.005〜2.5の範囲が特に好ましく、接点用として
はMO/Wの重量比率が0.25〜10の範囲が特に好
ましい。本発明においてタングステン−モリブデン全率
固溶体粒子の量は20〜80重量%、タングステン粒子
の量は5〜50重量%、タングステン−モリブデン全率
固溶体粒子とタングステン粒子量の和は30〜90重量
%が適当である。
This is because when MO/W is less than 0.005, the work function value and oxidation resistance become equivalent to pure W, and the wear resistance and conductivity do not improve significantly. Also MO/W=10
If this is the case, although the conductivity (electrical conductivity) as a contact point is excellent, the melting point of the tungsten-molybdenum solid solution particles is lowered, the heat resistance is inferior, and the wear resistance is deteriorated, which is not preferable. For electrical discharge machining electrodes, the MO/W weight ratio is 0.
.. The MO/W weight ratio is particularly preferably in the range of 0.005 to 2.5, and for contacts, the MO/W weight ratio is particularly preferably in the range of 0.25 to 10. In the present invention, the amount of tungsten-molybdenum solid solution particles is 20 to 80% by weight, the amount of tungsten particles is 5 to 50% by weight, and the sum of the tungsten-molybdenum solid solution particles and tungsten particles is 30 to 90% by weight. Appropriate.

合計量が30重量%以下では、導電材料の硬度が低下し
、耐熱性が低下し、耐消耗性が劣るようになるためであ
り、90重量%以上では、硬度は向上するものの、導電
性が低下しアーク発生熱量を十分に伝導できなくなり、
逆に耐消耗性が劣化するためである。これらタングステ
ン−モリブデン全率固溶体粒子とタングステン粒子量の
合計は、望ましくは50〜80重量%である。
If the total amount is less than 30% by weight, the hardness of the conductive material decreases, heat resistance decreases, and wear resistance becomes inferior. If the total amount exceeds 90% by weight, the hardness improves but the conductivity decreases. The amount of heat generated by the arc can no longer be sufficiently conducted.
On the contrary, this is because the wear resistance deteriorates. The total amount of these tungsten-molybdenum solid solution particles and tungsten particles is preferably 50 to 80% by weight.

これら導電材料は一般の粉末冶金的手法で製造されるも
のであるが、タングステン−モリブデン全率溶体粒子も
タングステンと同様、銀あるいは銅と濡れが悪く、密度
が上がらず、巣を形成しやすい合金である。
These conductive materials are manufactured using general powder metallurgical methods, but like tungsten, tungsten-molybdenum solution particles have poor wettability with silver or copper, do not have high density, and are easily formed by cavities. It is.

鉄族元素はこの濡れを改善する作用があり、建全な合金
を合成するために添加されるものである。しかし多量に
なると導電性を低下させるので、5重量%以下とするこ
とが必要である。以下実施例によつて本発明の効果につ
き述べる。
Iron group elements have the effect of improving this wetting, and are added to synthesize a sound alloy. However, if the amount is too large, the conductivity decreases, so it is necessary to keep it at 5% by weight or less. The effects of the present invention will be described below with reference to Examples.

実施例 1 M0粉末およびW粉末の割合が重量比でMO/W=1.
17、0.11からなる混合粉末を28%アンモニア水
に溶解した。
Example 1 The weight ratio of M0 powder and W powder is MO/W=1.
A mixed powder consisting of 17 and 0.11 was dissolved in 28% aqueous ammonia.

このアンモニウム塩を塩酸で徐々に中和して針状の結晶
を析出させた。この共沈したWO3とMOO3を空気中
で800℃で焼結した。この混合粉末をNiボートに装
入し、ボートに蓋をかぶせてH2気流中1000℃で還
元して4μの合金粉末を得た。この粉末をX線回折した
ところ、いずれも1相の固溶体であつた。この合金粉末
、銅粉末、銀粉末、タングステン粉末、ニツケル粉末を
第1表の割合で配合し、振動ボールミルで処理後、バイ
ンダーを入れて型押圧力約3t0n/CIn2で型押体
を作成し、700℃でバインダー抜きを行なつた後、目
的とする第1表の最終組成になるように銅および銀溶浸
媒を夫々上置きして、銀にあつては1000℃、銅にあ
つては1150℃で約2時間水素雰囲気中でそれぞれ溶
浸を行なつて合金体を作成した。
This ammonium salt was gradually neutralized with hydrochloric acid to precipitate needle-shaped crystals. The co-precipitated WO3 and MOO3 were sintered in air at 800°C. This mixed powder was charged into a Ni boat, and the boat was covered with a lid and reduced at 1000° C. in an H2 stream to obtain a 4 μm alloy powder. When this powder was subjected to X-ray diffraction, it was found that each powder was a one-phase solid solution. This alloy powder, copper powder, silver powder, tungsten powder, and nickel powder were mixed in the proportions shown in Table 1, and after processing in a vibrating ball mill, a binder was added and a stamped body was created with a stamping force of about 3t0n/CIn2. After removing the binder at 700°C, copper and silver infiltration media were placed on top of each other to achieve the desired final composition shown in Table 1, and the temperature was 1000°C for silver and 1000°C for copper. Infiltration was performed in a hydrogen atmosphere at 1150° C. for about 2 hours to prepare alloy bodies.

この焼結体を7×7×5mmに切出し、放電加工機(D
−104BH)により放電加工試験を行なつた。放電加
工条件は加工区分子Ap2、加工液日石ゼネオイル噴流
圧0.2kg/Cm、被加工材SKD−11.被加工材
形状13φ×5φ×20mm、加工時間10分間で行な
つた。又、比較のため一般のCu−Wを加え、同一条件
で放電加工を行なつた。これらの結果を第2図に示す。
加工速度、消耗比共に従来のCu−Wに比べ優れている
ことが明らかである。さらに、加工後の電極のコーナー
部の消耗が少なく、エツジが鋭どかつた。実施例 2 実施列1で作成した焼結体の3、5を所定の形状に切出
し、Cu台金にろう付けして第2表に示す条件で2種類
の試験を行なつた。
This sintered body was cut into a size of 7 x 7 x 5 mm, and an electric discharge machine (D
-104BH) was used to conduct electrical discharge machining tests. The electrical discharge machining conditions were: machining zone molecule Ap2, machining fluid Nisseki Gene Oil jet pressure 0.2 kg/Cm, and workpiece material SKD-11. The shape of the workpiece was 13φ x 5φ x 20mm, and the processing time was 10 minutes. Further, for comparison, ordinary Cu-W was added and electrical discharge machining was performed under the same conditions. These results are shown in FIG.
It is clear that both processing speed and wear ratio are superior to conventional Cu-W. Furthermore, there was little wear on the corners of the electrode after processing, and the edges were sharp. Example 2 Sintered bodies 3 and 5 prepared in Example 1 were cut into predetermined shapes and brazed to a Cu base metal, and two types of tests were conducted under the conditions shown in Table 2.

又、比較のために一般のAg−W(35Ag一65W)
およびCu−W(30Cu−70W)を加えた。
Also, for comparison, general Ag-W (35Ag-65W)
and Cu-W (30Cu-70W) were added.

導電性試験結果を第3図に示す。本発明材は、従来材に
比べ約半分の電圧降下値を示し、多数回開閉時の導電性
が優れていることが明らかである。消耗試験結果を第3
表に示す。本発明材は、従来材並み以上の耐消耗性を示
した。以上の如く本発明になる導電材料は、電極、接点
材料として耐消耗性、導電性に優れ、さらに低コストの
ため、工業的価値の高いものである。
The conductivity test results are shown in Figure 3. The material of the present invention exhibits a voltage drop value that is about half that of the conventional material, and it is clear that the material has excellent conductivity when opened and closed many times. The results of the wear test are shown in the third
Shown in the table. The material of the present invention exhibited wear resistance that was higher than that of conventional materials. As described above, the conductive material of the present invention has excellent wear resistance and conductivity as an electrode and contact material, and is low in cost, so it has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタングステン−モリブデン全率固溶体における
MO/W比の変化に対する仕事函数の変化を示す図、第
2図は実施例1における試験結果を示す図、第3図は実
施例2の導電性試験結果を示す図である。
Figure 1 shows the change in work function with respect to the MO/W ratio in a tungsten-molybdenum solid solution, Figure 2 shows the test results in Example 1, and Figure 3 shows the conductivity in Example 2. It is a figure showing a test result.

Claims (1)

【特許請求の範囲】 1 銅あるいは銀中にタングステンに対するモリブデン
の重量比Mo/Wが0.005〜10であるタングステ
ン−モリブデン全率固溶体(Mo_xW_y)粒子を2
0〜80重量%、タングステン粒子を5〜50重量%分
散含有せしめ、かつMo_xW_y固溶体粒子とタング
ステン粒子との合計が30〜90重量%となるように構
成したことを特徴とする導電材料。 2 Mo/W重量比が0.005〜2.5である特許請
求の範囲1項記載の放電加工電極用導電材料。 3 Mo/W重量比が0.25〜10である特許請求の
範囲1項記載の接点用導電材料。 4 タングステン−モリブデン全率固溶体粒子とタング
ステン粒子の合計含有量が50〜80重量%である特許
請求の範囲1〜3項の何れか一つに記載の導電材料。 5 銅あるいは銀中にタングステンに対するモリブデン
の重量比Mo/Wが0.005〜10であるタングステ
ン−モリブデン全率固溶体(Mo_xW_y)粒子を2
0〜80重量%、タングステン粒子を5〜50重量%分
散含有せしめかつMo_xW_y固溶体粒子とタングス
テン粒子との合計量が30〜90重量%となるように構
成するとともに5重量%以下の鉄族元素を含有すること
を特徴とする導電材料。 6 Mo/W重量比が0.005〜2.5である特許請
求の範囲5項記載の放電加工電極用導電材料。 7 Mo/W重量比が0.25〜10である特許請求の
範囲5項記載の接点用導電材料。 8 タングステン−モリブデン全率固溶体粒子とタング
ステン粒子との合計含有量が50〜80重量%である特
許請求の範囲5〜7項の何れか一つに記載の導電材料。
[Claims] 1. Tungsten-molybdenum total solid solution (Mo_xW_y) particles with a weight ratio of molybdenum to tungsten (Mo/W) of 0.005 to 10 in copper or silver.
1. A conductive material comprising: 0 to 80% by weight, 5 to 50% by weight of tungsten particles dispersed therein, and the total of Mo_xW_y solid solution particles and tungsten particles being 30 to 90% by weight. 2. The conductive material for electrical discharge machining electrodes according to claim 1, having a Mo/W weight ratio of 0.005 to 2.5. 3. The conductive material for contacts according to claim 1, having a Mo/W weight ratio of 0.25 to 10. 4. The conductive material according to any one of claims 1 to 3, wherein the total content of the tungsten-molybdenum solid solution particles and the tungsten particles is 50 to 80% by weight. 5 Tungsten-molybdenum total solid solution (Mo_xW_y) particles with a weight ratio Mo/W of molybdenum to tungsten of 0.005 to 10 in copper or silver.
0 to 80% by weight, 5 to 50% by weight of tungsten particles are dispersed, and the total amount of Mo_xW_y solid solution particles and tungsten particles is 30 to 90% by weight, and 5% by weight or less of iron group elements. A conductive material characterized by containing. 6. The electrically conductive material for electrical discharge machining electrodes according to claim 5, having a Mo/W weight ratio of 0.005 to 2.5. 7. The conductive material for contacts according to claim 5, having a Mo/W weight ratio of 0.25 to 10. 8. The conductive material according to any one of claims 5 to 7, wherein the total content of tungsten-molybdenum solid solution particles and tungsten particles is 50 to 80% by weight.
JP53059276A 1978-05-18 1978-05-18 conductive material Expired JPS5948943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53059276A JPS5948943B2 (en) 1978-05-18 1978-05-18 conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53059276A JPS5948943B2 (en) 1978-05-18 1978-05-18 conductive material

Publications (2)

Publication Number Publication Date
JPS54150319A JPS54150319A (en) 1979-11-26
JPS5948943B2 true JPS5948943B2 (en) 1984-11-29

Family

ID=13108687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53059276A Expired JPS5948943B2 (en) 1978-05-18 1978-05-18 conductive material

Country Status (1)

Country Link
JP (1) JPS5948943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322974Y2 (en) * 1985-09-20 1991-05-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452651A (en) * 1982-07-08 1984-06-05 Chugai Denki Kogyo K.K. Electrical contact materials and their production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322974Y2 (en) * 1985-09-20 1991-05-20

Also Published As

Publication number Publication date
JPS54150319A (en) 1979-11-26

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
KR0170798B1 (en) Electric contact point material
Lungu et al. AgSnO~ 2 sintered electrical contacts with ultrafine and uniformly dispersed microstructure
US2160659A (en) High resistance electrode
US4294616A (en) Electrical contacts
US2234969A (en) Tungsten base contact
JPS5948943B2 (en) conductive material
US2180984A (en) Metal composition
US4018630A (en) Method of preparation of dispersion strengthened silver electrical contacts
JPS6031891B2 (en) conductive material
US2157936A (en) Refractory metal compositions
US4011052A (en) Electrical contact material and process
CN112779436A (en) AgNi electrical contact material and preparation method thereof
US2189755A (en) Metal composition
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
CN108885948A (en) Prepare the method and slider material of the slider material based on siller tin oxide or Ag-ZnO
USRE29986E (en) Electrical contact material and process
JPS637345A (en) Electrical contact material and its production
JPS6248740B2 (en)
JPH036211B2 (en)
JP2889344B2 (en) Contact for vacuum valve
JPS61147415A (en) Manufacture of contact material for vacuum breaker
JPS58133339A (en) Electric contact material
JPH0313295B2 (en)
Debata et al. Corrosion behavior of powder metallurgy Y 2 O 3 dispersed iron-and nickel-base superalloys