JPH01305835A - Silicon nitride coated quartz glass vessel - Google Patents

Silicon nitride coated quartz glass vessel

Info

Publication number
JPH01305835A
JPH01305835A JP13483988A JP13483988A JPH01305835A JP H01305835 A JPH01305835 A JP H01305835A JP 13483988 A JP13483988 A JP 13483988A JP 13483988 A JP13483988 A JP 13483988A JP H01305835 A JPH01305835 A JP H01305835A
Authority
JP
Japan
Prior art keywords
quartz glass
silicon nitride
glass vessel
film
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13483988A
Other languages
Japanese (ja)
Inventor
Masaharu Shiroyama
城山 正治
Takeshi Sato
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP13483988A priority Critical patent/JPH01305835A/en
Publication of JPH01305835A publication Critical patent/JPH01305835A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides

Abstract

PURPOSE:To obtain a silicon nitride coated quartz glass vessel which hardly undergoes surface corrosion even by etching gas and is hardly deprived of its light transmissivity by forming a translucent silicon nitride coating layer on the inside of a quartz glass vessel. CONSTITUTION:A translucent Si3N4 coating layer of pref. 1-3mum thickness is formed on the inside of a quartz glass vessel to obtain an objective silicon nitride coated quartz glass vessel. The coating layer is preferably formed by plasma CVD by which a dense film having satisfactory adhesive strength to quartz glass as a base material can be obtd. at <=1,000 deg.C without lowering the light transmitting of the quartz glass. A volatile Si compd. such as SiH4 or SiCl4 and NH3 may be used as film forming gases.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板等のエツチングに使用される窒化
珪素被覆石英ガラス容器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon nitride-coated quartz glass container used for etching semiconductor substrates and the like.

〔従来の技術〕[Conventional technology]

従来より、半導体基板等のエツチングには光透過性の良
い石英ガラス製の反応容器を使用していた。
Conventionally, a reaction vessel made of quartz glass with good light transmittance has been used for etching semiconductor substrates and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、半導体基板等のエツチングで使用するガ
ス、例えばCF4は、グロー放電により分解してCとF
のラジカル、cp3、CFZ 、CF等の化学種になる
が、これらのうちFが石英ガラスの成分であるSing
と反応すると揮発性のSiF4を生じ次第に浸食されて
しまう。このような状態では石英ガラス容器壁内面に微
小の食刻ができ、すりガラスの表面のようになり、光の
透過性が大幅に損なわれる。このときには光センサー等
を用いて反応の終了点を知ることができない。更に浸食
が進めば石英ガラス容器壁にピンホールが空き、ガスリ
ークを起こして半導体基板等のエツチングができない状
態となる。
However, gas used in etching semiconductor substrates, such as CF4, decomposes into C and F due to glow discharge.
chemical species such as radicals, cp3, CFZ, and CF, among which F is a component of silica glass.
When it reacts with SiF4, volatile SiF4 is produced and it is gradually eroded. In such a state, minute etchings occur on the inner surface of the wall of the quartz glass container, making the surface resemble that of frosted glass, and the light transmittance is significantly impaired. At this time, it is not possible to determine the end point of the reaction using an optical sensor or the like. If the erosion progresses further, pinholes will form in the walls of the quartz glass container, causing gas leaks and making it impossible to etch semiconductor substrates, etc.

本発明はユ前記の問題点に鑑み、エツチングガスによっ
ても浸食されにくく、光透過性が失われにくい石英ガラ
ス容器を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a quartz glass container that is less likely to be corroded by etching gas and less likely to lose its optical transparency.

(問題点を解決するための手段・作用〕前記問題点を解
決するには、石英ガラス容器の内面に光透過性があり耐
食性に優れた物質を被覆すれば良い。
(Means and actions for solving the problem) In order to solve the above problem, the inner surface of the quartz glass container may be coated with a substance that is transparent to light and has excellent corrosion resistance.

前記物質としては5iJ4、SiC、AlzOi等の薄
膜が考えられる。特に、石英ガラスの光透過性を劣化さ
せないために、1000℃より低い温度で被覆する必要
がある。また、母材の石英ガラスと熱膨張係数の差が大
きくないものを選択しなければならない、そして容器自
体が加熱、冷却されるので熱衝撃に耐えられる材料でな
ければならない。そのためには、膜厚は厚くできないか
ら、薄膜でも前記目的を満足するものでなければならな
い。
The material may be a thin film of 5iJ4, SiC, AlzOi, or the like. In particular, it is necessary to coat the silica glass at a temperature lower than 1000° C. in order not to deteriorate the optical transparency of the quartz glass. In addition, a material must be selected that does not have a large difference in coefficient of thermal expansion from the base material, quartz glass, and since the container itself is heated and cooled, the material must be able to withstand thermal shock. For this purpose, the film cannot be made thicker, so even a thin film must satisfy the above objective.

種々の実験の結果、上記要求を満足する石英ガラス容器
として5iJaを内面に被覆したものが最適であること
を本発明者は見出した。
As a result of various experiments, the present inventors have found that a quartz glass container whose inner surface is coated with 5iJa is optimal as a quartz glass container that satisfies the above requirements.

Si2N4膜の形成方法としては、緻密で、母材である
石英ガラスとの密着強度が良好の膜を得ることができ、
しかも石英ガラスの光透過性を低下させないためにも1
000℃より低い温度で被覆できるプラズマCVD等に
よって被覆するのが好適である。成膜に使用するガスと
してはSiH,や5iC1,等の揮発しゃすいSi化合
物およびNH,等を使用すればよい、プラズマCVDで
形成したSiJ<膜は、粉末冶金法で作成した焼結体と
違って、Al2O3、Y2O1等の焼結助材を使用して
いないため、F等に対する耐食性に優れ、更にプラズマ
粒子の衝突に対する耐衝撃性にもにすぐれているため、
CF、、0□等の混合ガスで半導体用の基板をエツチン
グしても反応は極めて徐々に進行する程度であり、無被
覆の石英ガラス容器中でエツチングするより大幅に寿命
が延びる。
The method for forming the Si2N4 film is that it is possible to obtain a film that is dense and has good adhesion strength to the base material, quartz glass.
Moreover, in order not to reduce the light transmittance of quartz glass,
It is preferable to perform the coating by plasma CVD or the like which can perform the coating at a temperature lower than 000°C. As the gas used for film formation, volatile Si compounds such as SiH, 5iC1, NH, etc. may be used. On the contrary, since it does not use sintering aids such as Al2O3 and Y2O1, it has excellent corrosion resistance against F, etc., and also has excellent impact resistance against collisions of plasma particles.
Even when a semiconductor substrate is etched with a mixed gas of CF, 0□, etc., the reaction proceeds only very gradually, and the life is much longer than etching in an uncoated quartz glass container.

そして、5iJa膜の膜厚は、実験の結果1〜3nが最
適であることがわかった。膜厚が1μより薄いと、5i
J4被覆後の母材と膜の熱膨張係数の差による皮膜の剥
離は問題ないが、エツチングによる浸食に耐えるために
はl−以上ないと寿命の延長は達成できない。また、膜
厚が3gmを越えると、石英ガラスとSi3N4皮膜と
の熱膨張係数の差のために使用中に剥離しやすくなった
り、StユN4皮膜に微小クランクが多数入って光透過
度が低下してしまうので膜厚は1〜3−とした方がよい
As a result of experiments, it was found that the optimum thickness of the 5iJa film is 1 to 3 nm. If the film thickness is less than 1μ, 5i
There is no problem with peeling of the film due to the difference in thermal expansion coefficient between the base material and the film after J4 coating, but in order to resist erosion due to etching, the life cannot be extended unless it is 1- or more. Furthermore, if the film thickness exceeds 3 gm, it may easily peel off during use due to the difference in thermal expansion coefficient between quartz glass and Si3N4 film, and the optical transmittance may decrease due to the presence of many minute cranks in the St-N4 film. Therefore, it is better to set the film thickness to 1 to 3 -.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〔実施例〕〔Example〕

予め内面をプラズマCVD法により、5iJ4で0.8
.1.0.3.0.3.2−の膜厚にほぼ均一に被覆し
た石英ガラスでできた本発明の石英ガラス反応容器を作
製した。ここで窒化珪素膜の光透過度は可視光領域でほ
ぼ80%以上であった(対照試料は石英ガラス)、形状
は、概ね内径210m、外径220閤、高さ110mの
蓋状で、蓋上部にグロー放電発生のための陽極を取りつ
け、密封したものである。また、上記と同様にして、5
ixNaO代わりにAft(hで被覆したものと無被覆
の石英ガラス反応容器を作製した。そして、これらの石
英ガラス反応容器と陰極を有する反応容器下部とフラン
ジ部の密着によりガスシールした状態で、次のような条
件で比較試験をした。95%CF4−5%o、1合ガス
を導入しながら、基板温度200”C1容器内圧力I 
Torr、高周波出力400Wの条件で、St基板をプ
ラズマエツチングして石英ガラス反応容器の寿命を比較
した。エツチング開始からエツチングにより石英ガラス
反応容器壁に生じたピンホールからのガスリークが発生
するまでの時間、またはエツチングによる光透過度が低
下して反応の終了時を光センサーが捉えられなくなった
ときをその寿命とした。これらの結果を表1に示す。
The inner surface was coated in advance with 5iJ4 of 0.8 by plasma CVD method.
.. A quartz glass reaction vessel of the present invention was made of quartz glass coated almost uniformly with a film thickness of 1.0.3.0.3.2. Here, the light transmittance of the silicon nitride film was approximately 80% or more in the visible light region (the control sample was quartz glass), and the shape was a lid with an inner diameter of approximately 210 m, an outer diameter of 220 m, and a height of 110 m. An anode for generating glow discharge is attached to the top and sealed. Also, in the same way as above, 5
A quartz glass reaction vessel coated with Aft (h instead of ixNaO) and an uncoated quartz glass reaction vessel were prepared.Then, with these quartz glass reaction vessels and the lower part of the reaction vessel having a cathode in close contact with the flange, the following process was carried out. A comparative test was conducted under the following conditions: 95% CF4-5% O, 1 mixture gas was introduced, the substrate temperature was 200" C1, the pressure inside the container was I.
A St substrate was plasma etched under conditions of Torr and high frequency output of 400 W, and the lifespan of a quartz glass reaction vessel was compared. The time from the start of etching until gas leaks from a pinhole created in the wall of a quartz glass reaction vessel due to etching, or when the light transmittance due to etching decreases and the optical sensor cannot detect the end of the reaction. It was defined as the lifespan. These results are shown in Table 1.

表1 その結果をみると、従来の無被覆の石英ガラス容器は、
エツチングによる容器壁に生じたピンホールからのリー
クにより寿命に達したり、エツチングによる光透過度の
低下により寿命に達するので、寿命に大きなバラツキが
ある。また、Aha3被覆の石英ガラス容器は使用中に
剥離し、寿命は従来の無被覆の石英ガラス容器と殆どか
わりがなかった。これに対して、本発明の窒化珪素被覆
石英ガラス容器は、従来の無被覆の石英ガラス容器と比
較すると、寿命が2倍以上と大幅に延びていることがわ
かる。これはプラズマCVD等で形成した5i3Na皮
膜は、焼結助材を使用して得られた5iJa焼結体と異
なり、F等との反応で粒界が浸食されにくく、石英ガラ
スの成分であるSiO□より5iJaがF等に対して耐
食性があることによる。
Table 1 The results show that conventional uncoated quartz glass containers:
There is a large variation in the lifespan because the lifespan is reached due to leakage from pinholes created in the container wall due to etching, or due to a decrease in light transmittance due to etching. Furthermore, the quartz glass container coated with Aha3 peeled off during use, and its lifespan was almost the same as that of a conventional uncoated quartz glass container. On the other hand, it can be seen that the silicon nitride-coated quartz glass container of the present invention has a significantly longer life span, more than twice as long as the conventional uncoated quartz glass container. This is because the 5i3Na film formed by plasma CVD etc., unlike the 5iJa sintered body obtained using a sintering aid, is less likely to have its grain boundaries eroded by reaction with F etc. □ This is because 5iJa has corrosion resistance against F and the like.

更には、Si3N、皮膜がプラズマCVD等で比較的低
温で形成されると、皮膜に残留応力がほとんどなく、使
用中に剥離が発生しにくいことも寿命増加の一因である
と考えられる。また、光透過度については試験後もあま
り低下しなかった。
Furthermore, when the Si3N film is formed at a relatively low temperature by plasma CVD or the like, there is almost no residual stress in the film, and peeling is less likely to occur during use, which is considered to be one of the reasons for the increased lifespan. Furthermore, the light transmittance did not decrease much after the test.

5i3Na膜厚としては、 1,0趨より薄くなると従
来のものより寿命は延びているが、1.0〜3.0゜の
ちのより低くなる、また3、0−より厚くなるとエツチ
ング時の加熱冷却により熱膨張係数の差による皮膜の剥
離や皮膜中のクランクの発生があるので、同様に従来の
ものより寿命は延びてはいるが、1.0〜3.OI!m
のものより低くなっている。このため膜厚としては1.
0〜3.Onであることが最適であることがわかる。
As for the 5i3Na film thickness, when it becomes thinner than 1.0°, the life is longer than the conventional one, but it becomes lower after 1.0~3.0°, and when it becomes thicker than 3.0°, the heating during etching becomes more difficult. Due to the difference in thermal expansion coefficient due to cooling, the film may peel off or cracks may occur in the film, so although the lifespan is also longer than that of conventional products, the 1.0 to 3. OI! m
It is lower than that of . Therefore, the film thickness is 1.
0-3. It can be seen that being on is optimal.

〔発明の効果〕〔Effect of the invention〕

本発明の石英ガラス容器は、エツチングガスによっても
表面が浸食されにくく、光透過性が失われにくい。
The surface of the quartz glass container of the present invention is less likely to be eroded by etching gas, and its light transmittance is less likely to be lost.

Claims (1)

【特許請求の範囲】[Claims] 1、石英ガラス容器の内面に、透光性のある窒化珪素の
被覆層を有することを特徴とする窒化珪素被覆石英ガラ
ス容器。
1. A silicon nitride-coated quartz glass container characterized by having a transparent silicon nitride coating layer on the inner surface of the quartz glass container.
JP13483988A 1988-05-31 1988-05-31 Silicon nitride coated quartz glass vessel Pending JPH01305835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13483988A JPH01305835A (en) 1988-05-31 1988-05-31 Silicon nitride coated quartz glass vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13483988A JPH01305835A (en) 1988-05-31 1988-05-31 Silicon nitride coated quartz glass vessel

Publications (1)

Publication Number Publication Date
JPH01305835A true JPH01305835A (en) 1989-12-11

Family

ID=15137670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13483988A Pending JPH01305835A (en) 1988-05-31 1988-05-31 Silicon nitride coated quartz glass vessel

Country Status (1)

Country Link
JP (1) JPH01305835A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363021A (en) * 1991-02-08 1992-12-15 Sumitomo Metal Ind Ltd Plasma process device
WO1998001898A1 (en) * 1996-07-04 1998-01-15 Kabushiki Kaisha Ultraclean Technology Research Institute Rie apparatus
WO1998006126A1 (en) * 1996-08-07 1998-02-12 Hitachi, Ltd. Method and device for dry etching
CN102898034A (en) * 2012-09-28 2013-01-30 东海晶澳太阳能科技有限公司 Preparation method of crucible silicon nitride coating for crystalline silicon cast ingot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827494A (en) * 1971-08-12 1973-04-11
JPS5282918A (en) * 1975-12-29 1977-07-11 Suwa Seikosha Kk Cover glass for watch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827494A (en) * 1971-08-12 1973-04-11
JPS5282918A (en) * 1975-12-29 1977-07-11 Suwa Seikosha Kk Cover glass for watch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363021A (en) * 1991-02-08 1992-12-15 Sumitomo Metal Ind Ltd Plasma process device
WO1998001898A1 (en) * 1996-07-04 1998-01-15 Kabushiki Kaisha Ultraclean Technology Research Institute Rie apparatus
WO1998006126A1 (en) * 1996-08-07 1998-02-12 Hitachi, Ltd. Method and device for dry etching
CN102898034A (en) * 2012-09-28 2013-01-30 东海晶澳太阳能科技有限公司 Preparation method of crucible silicon nitride coating for crystalline silicon cast ingot

Similar Documents

Publication Publication Date Title
JP2020138906A (en) Rare-earth oxide based monolithic chamber material
JP5127196B2 (en) Plasma-fluorine-alumina ceramic material with low particle generation and manufacturing method
KR0162545B1 (en) Coated quartz glass component
KR20080025140A (en) Crucible for the crystallization of silicon
JP2004241203A (en) Treatment method of plasma treatment chamber wall
JP2008511179A (en) Semiconductor processing components and semiconductor processing using the same
JP5014656B2 (en) Plasma processing apparatus member and manufacturing method thereof
JPH07176524A (en) Material for vacuum processing device and manufacture
JP3164559B2 (en) Processing container material
US20020173117A1 (en) Semiconductor processing component
JPH01305835A (en) Silicon nitride coated quartz glass vessel
US7229694B2 (en) Micromechanical component and method for producing an anti-adhesive layer on a micromechanical component
JPH11157916A (en) Corrosion-resistant member
JPH10287483A (en) Air-tight part and its production
JP2008001562A (en) Yttrium-based ceramic covering material and its production method
US7083846B2 (en) Ceramic member
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JPH11279761A (en) Corrosion resistant member
JPH0995772A (en) Window material for vacuum device
KR19990037372A (en) Corrosion resistant member and its manufacturing method
JPH0586476A (en) Chemical vapor growth device
JPH11102900A (en) Corrosion resistant member for manufacturing semiconductor
JPH11263860A (en) Water repellent silicon oxide film
JPH1067584A (en) Reaction vessel
JPH07153370A (en) Discharge tube