JPH01305536A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH01305536A
JPH01305536A JP13703588A JP13703588A JPH01305536A JP H01305536 A JPH01305536 A JP H01305536A JP 13703588 A JP13703588 A JP 13703588A JP 13703588 A JP13703588 A JP 13703588A JP H01305536 A JPH01305536 A JP H01305536A
Authority
JP
Japan
Prior art keywords
layer
cross
wiring
under
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13703588A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
豊 吉田
Yoshihiko Nagayasu
芳彦 長安
Yoshihiro Shigeta
善弘 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13703588A priority Critical patent/JPH01305536A/en
Publication of JPH01305536A publication Critical patent/JPH01305536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve breakdown strength of cross-under wiring by forming cross-under wiring as a layer in the same process as an isolation layer or a collector wall layer reaching a buried layer through an epitaxial layer. CONSTITUTION:A p<+> layer 11 or a n<+> layer 12 is formed at the same time as impurity diffusion process for an isolation layer or a collector wall layer so that it may reach an n<+> buried layer 3 provided between a p type substrate and an n<-> epitaxial layer 2 laminated thereon. A p<+> layer 13 or an n<+> layer 14 to bring an electrode 7 into contact with the formed cross-under wiring 11 or 12 can be formed at the same time as source and drain regions. When an oxide film 5 is formed by the LOCOS method on the surface after providing the isolation layer and the collector wall layer, the upper sides of the cross- under wirings 11 and 12 formed in the same process are covered with LOCOS oxide films 5 about 1mum thick except the electrode parts 7, and breakdown strength with respect to a cross wiring 9 which is further provided thereon by an Al film with an insulating film is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板上に設けられる配線を交差させる
ために一方の配線を基板中の不純物拡散層によりクロス
アンダ−させる半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device in which one of the wirings provided on a semiconductor substrate is crossed under an impurity diffusion layer in the substrate in order to cross the wirings. .

〔従来の技術〕[Conventional technology]

半導体集積回路装置において低電位側と高電位側の電源
配線を交差させるために一方を基板内の不純物拡散層で
形成する場合、Bi−CMO3ICにおいてはソース・
ドレイン領域と同時に形成される拡散層を用いていた。
In a semiconductor integrated circuit device, when one of the power supply wirings on the low potential side and the high potential side is formed by an impurity diffusion layer in the substrate in order to cross each other, the source wiring in Bi-CMO3IC is
A diffusion layer formed at the same time as the drain region was used.

第2図はそのようなICのクロスアンダ−配線を示す。FIG. 2 shows the cross-under wiring of such an IC.

すなわち、p形基板1の上に積層されたn−エピタキシ
ャル層2は、基板との間にn1埋込層3を有し、横方向
にはp゛アイソレー99フ層4分離されている。
That is, an n-epitaxial layer 2 laminated on a p-type substrate 1 has an n1 buried layer 3 between it and the substrate, and is laterally separated by 4 p'isolated layers.

このn−エピタキシャル層2の分離領域にpチャネルM
O3FETを形成するときにはp3ソース・ドレイン領
域が設けられ、nチャネルMO3FETを形成するとき
には先ずn−層2分離領域にpウェルを形成したのち、
その表面層にn“ソース・ドレイン領域が設けられる。
In the isolation region of this n-epitaxial layer 2, a p-channel M
When forming an O3 FET, a p3 source/drain region is provided, and when forming an n channel MO3 FET, a p well is first formed in the n- layer 2 isolation region, and then a p well is formed in the n- layer 2 isolation region.
N'' source/drain regions are provided in the surface layer.

このようなソース・ドレイン領域と同様に表面にLOC
O3法で形成された酸化膜5の開口部からの不純物拡散
により91層21あるいはn4層22を形成する。この
拡散はp゛ソースドレイン領域あるいはn゛ソースドレ
イン領域のための拡散と同一の工程で行うこことができ
る。次いでCMO3形成のためのゲート酸化膜6で表面
が被覆されるのでその開口部で電極7を接触させる。こ
の電極7に表面配線を接続することにより、p゛層21
あるいはn゛層22はその上の絶縁膜8上に設けられる
M膜からなる配線9に対するクロスアンダ−配線として
用いられる。またバイポーラICにおいては、第3図に
示すようにn−エピタキシャル層2のp゛アイソレーシ
ヨン層4分離された領域にp′″ペース層を拡散し、さ
らにその中に01工ミツタ層を拡散してnpn トラン
ジスタを形成する。このトランジスタ形成のための拡散
工程を利用してn−層2の分離領域にp゛ベース層同時
にp゛層23、あるいはn1工ミツタ層と同時にn+層
24を形成し、これをクロスアンダ−配線として用いる
。すなわち、p+層23あるいはn“層24に酸化膜6
1.62の開口部で電極7を接触させて表面配線と接続
することにより、その上の酸化膜61の上の金属配線9
の下をくぐる配線となる。
Similar to such source/drain regions, there is a LOC on the surface.
The 91 layer 21 or the N4 layer 22 is formed by diffusion of impurities from the opening of the oxide film 5 formed by the O3 method. This diffusion can be performed in the same step as the diffusion for the p' source/drain region or the n' source/drain region. The surface is then covered with a gate oxide film 6 for forming CMO3, and an electrode 7 is brought into contact with the opening. By connecting the surface wiring to this electrode 7, the p layer 21
Alternatively, the n' layer 22 is used as a cross-under wiring for the wiring 9 made of an M film provided on the insulating film 8 thereon. In addition, in a bipolar IC, as shown in FIG. 3, a p''' paste layer is diffused in a region separated by the p' isolation layer 4 of the n-epitaxial layer 2, and an 01 emitter layer is further diffused therein. Using this diffusion process to form a transistor, a P' layer 23 is formed simultaneously with the P' base layer, or an N+ layer 24 is formed simultaneously with the N1 base layer, in the isolation region of the N- layer 2. This is used as a cross-under wiring. That is, an oxide film 6 is formed on the p+ layer 23 or the n" layer 24.
By bringing the electrode 7 into contact with the surface wiring through the opening of 1.62, the metal wiring 9 on the oxide film 61 thereon is connected.
The wiring will pass under the.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図の場合、クロスアンダ−配線の21層21あるい
はN1層22の上の酸化膜6はCMO3部のであるが、
プロセス中に半導体結晶に欠陥が生じた場合、あるいは
酸化膜の性質が変わった場合、耐圧は数十■まで下がる
。この酸化膜6の上に絶縁膜8を積層しても、その絶縁
性は下地の酸化膜6に影響されやすく、酸化膜6の耐圧
が下がると絶縁膜の耐圧がなくなる。もし交差配線間に
印加される電源電圧が酸化膜6の破壊電圧を超えると、
電源が短絡するという深刻な事態が生ずる決定がある。
In the case of FIG. 2, the oxide film 6 on the 21st layer 21 or the N1 layer 22 of the cross-under wiring is in the CMO3 part,
If defects occur in the semiconductor crystal during the process, or if the properties of the oxide film change, the withstand voltage drops to several tens of cubic meters. Even if an insulating film 8 is laminated on this oxide film 6, its insulating properties are easily influenced by the underlying oxide film 6, and when the withstand voltage of the oxide film 6 decreases, the withstand voltage of the insulating film disappears. If the power supply voltage applied between the cross wirings exceeds the breakdown voltage of the oxide film 6,
There are decisions that result in a serious situation where the power supply is short-circuited.

バイポーラICにおいてもベース層、エミツタ層形成後
表面を覆う酸化膜は薄いため、それと同一のp゛層23
.n’層24の上の酸化膜61も薄く同様な欠点がある
Even in bipolar ICs, after the base layer and emitter layer are formed, the oxide film covering the surface is thin, so the same p layer 23 is used.
.. The oxide film 61 on the n' layer 24 is also thin and has a similar drawback.

本発明の課題は、基板中の不純物拡散層よりなるクロス
アンダ−配線と基板上に酸化膜を介して存在する交差配
線との間の耐圧を高め、かつクロスアンダ−配線拡散層
の抵抗を低くした半導体集積回路装置を提供することに
ある。
An object of the present invention is to increase the withstand voltage between the cross-under wiring made of an impurity diffusion layer in the substrate and the cross-wire existing on the substrate via an oxide film, and to lower the resistance of the cross-under wiring diffusion layer. An object of the present invention is to provide a semiconductor integrated circuit device.

〔課題を解決するための手段〕[Means to solve the problem]

上述の課題の解決のために、本発明は、第一導電形の基
板上に積層された第二導電形の低不純物濃度エピタキシ
ャル層の基板との間に第二導電形の高不純物濃度の埋込
層を有し、エピタキシャル層表面から基板に達する第一
導電形のアイソレーション層によって分離された領域に
半導体素子を集積する半導体集積回路装置において、素
子形成領域以外で表面より埋込層に達する第一あるいは
第二導電形の高不純物濃度層が設けられ、その層の表面
に距離をおいて二つの電極が接触してなるクロスアンダ
−配線を有し、両電極間上にクロスアンダ−配線と交差
する配線が酸化膜を介して設けられたものとする。
In order to solve the above-mentioned problems, the present invention provides a substrate with a high impurity concentration of a second conductivity type between a substrate of a low impurity concentration epitaxial layer of a second conductivity type laminated on a substrate of a first conductivity type. In a semiconductor integrated circuit device in which semiconductor elements are integrated in a region separated by an isolation layer of the first conductivity type that reaches from the surface of the epitaxial layer to the substrate, the buried layer is reached from the surface in a region other than the element formation region. A high impurity concentration layer of the first or second conductivity type is provided, and a cross-under wiring is formed by contacting two electrodes at a distance on the surface of the layer, and a cross-under wiring is formed between the two electrodes. It is assumed that a wiring that intersects with is provided through an oxide film.

〔作用〕[Effect]

集積回路装置で基板上のエピタキシャル層を貫いて埋込
層に達する深さの高不純物濃度層とじてはコレクタウオ
ール層、アイソレーション層がある。これらの層は分離
領域内に素子を形成する工程の前に作られるため、その
上の酸化膜はソース・ドレイン領域上のゲート酸化膜あ
るいはベース層、エミツタ層上の酸化膜より厚い。従っ
てこれらコレクタウオール層あるいはアイソレーション
層形成と同時に作られる高不純物濃度層をクロスアンダ
−配線として利用すればその上の交差配線との間の酸化
膜を厚くするのに特別の工程を必要としない。また、こ
のコレクタウオール層、アイソレーション層の不純物濃
度を高くしても素子特性には影響しないので同時に作る
クロスアンダ−配線の抵抗を下げることもできる。
In integrated circuit devices, high impurity concentration layers penetrating the epitaxial layer on the substrate and reaching the buried layer include collector all layers and isolation layers. Since these layers are formed before the step of forming elements in the isolation region, the oxide film thereon is thicker than the gate oxide film on the source/drain region or the oxide film on the base layer and emitter layer. Therefore, if the high impurity concentration layer formed at the same time as the collector all layer or isolation layer is used as a cross-under wiring, no special process is required to thicken the oxide film between it and the overlying cross wiring. . Further, even if the impurity concentration of the collector all layer and the isolation layer is increased, the device characteristics are not affected, so that the resistance of the cross-under wiring formed at the same time can be lowered.

〔実施例〕〔Example〕

第1図は本発明のBi−CMO3ICにおける一実施例
を示し、第2図と共通の部分には同一の符号が付されて
いる。この半導体集積回路装置においては、マスクレイ
アウト上、VDD端子に接続される高電位側の配線が、
VB5端子に接続される低電位側の配線とが交差する場
合、低電位側の配線をクロスアンダ−とするためにはア
イソレーションN4と同時に形成できるp″1illを
用い、高電位側の配線をクロスアンダ−とするためには
バイポーラ部のNPN トランジスタのコレクタウオー
ル層と同時に形成できるn゛層12を用いる。すなわち
、p形基板とその上に積層されたn−エピタキシャルN
2との間に設けられるn゛埋込N3に達するように91
層11あるいはn′″層12をアイソレーション層ある
いはコレクタウオール層のための不純物拡散工程と同時
に形成する。クロスアンダ−配線11.12への電極7
のコンタクトのためのp゛層13あるいはn4層14は
ソース・ドレイン領域と同時に形成できる。Bi−0M
O3ICの製造工程では、アイソレーション層5コレク
タウオール層を設けてから表面にLOCO3法で酸化膜
5を形成し、その後p゛ソースドレイン領域 N +ソ
ース・ドレイン領域を設ける。トランジスタ・ドレイン
領域の中間部の下はチャネル領域となるため、LOGO
3酸化膜のない薄いゲート酸化膜のみの個所に形成され
るが、アイソレーション層。
FIG. 1 shows an embodiment of the Bi-CMO3 IC of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. In this semiconductor integrated circuit device, due to the mask layout, the wiring on the high potential side connected to the VDD terminal is
If the wiring on the low potential side connected to the VB5 terminal intersects, in order to make the wiring on the low potential side a cross under, use p''1ill, which can be formed at the same time as isolation N4, and connect the wiring on the high potential side. In order to form a cross-under, an n layer 12 is used which can be formed simultaneously with the collector all layer of the NPN transistor in the bipolar section.In other words, a p-type substrate and an n-epitaxial N layer laminated thereon are used.
91 so as to reach n embedding N3 provided between 2 and 2.
Layer 11 or n'' layer 12 is formed at the same time as the impurity diffusion process for isolation layer or collector all layer. Electrode 7 to cross-under wiring 11 and 12
The P layer 13 or the N4 layer 14 for contact can be formed simultaneously with the source/drain regions. Bi-0M
In the manufacturing process of the O3 IC, an isolation layer 5 and a collector all layer are provided, and then an oxide film 5 is formed on the surface by the LOCO3 method, and then a p source/drain region N+ source/drain region is provided. Since the channel region is below the middle part of the transistor drain region, the LOGO
It is an isolation layer that is formed in areas where there is no trioxide film and only a thin gate oxide film.

コレクタウオール層はその上をLOGO3酸化膜で覆う
ことができ、従って同一工程で形成されるクロスアンダ
−配線11.12の上には電極部7を除いてLOGO3
酸化膜5で覆うことができる。I。
The collector all layer can be covered with a LOGO3 oxide film, and therefore the LOGO3 oxide film, except for the electrode portion 7, is formed on the cross under wiring 11 and 12 formed in the same process.
It can be covered with an oxide film 5. I.

ocos酸化膜5の厚さは約1pであり、0.1 tn
nの酸化膜厚の約10倍である。この上にさらに絶縁膜
を介してA7膜により設けられる交差配線9との間の耐
圧は1000 V程度もあり、膜厚が厚いためプロセス
の変動の影響もうけに<<、100■程度の耐圧であれ
ば常に保証できる。コレクタウオール層と同時に形成さ
れるn4層12の下にはn1埋込層13を設けられるの
で、配線抵抗が下がる利点がある。また、アイソレーシ
ョン層と同時に形成されるp゛層11の下にn+埋込層
3を設けられていることにより同じ導電形である基板1
とクロスアンダ−配線11の電位を絶縁できるという利
点がある。さらに、第2図に示したようにソース・ドレ
イン領域と同時に形成するp゛層21.n”層22のシ
ート抵抗値を下げるために拡散濃度を上げると、イオン
注入による欠陥が増大し、歩留まりが急激に下がる。ソ
ース・ドレイン領域は拡散深さが浅いため、熱処理の温
度が低く時間も短くしなければならず、熱処理による欠
陥除去の効果は薄い。
The thickness of the ocos oxide film 5 is approximately 1 p, and 0.1 tn
This is about 10 times the thickness of the oxide film of n. The breakdown voltage between this and the cross wiring 9 provided by the A7 film via an insulating film is about 1000 V, and because the film is thick, it is less susceptible to the effects of process variations. I can always guarantee that. Since the N1 buried layer 13 is provided under the N4 layer 12 formed at the same time as the collector all layer, there is an advantage that wiring resistance is reduced. Furthermore, since the n+ buried layer 3 is provided under the p layer 11 formed at the same time as the isolation layer, the substrate 1 having the same conductivity type
There is an advantage that the potentials of the cross-under wiring 11 and the cross-under wiring 11 can be insulated. Furthermore, as shown in FIG. 2, a p layer 21 is formed simultaneously with the source and drain regions. If the diffusion concentration is increased to lower the sheet resistance value of the n'' layer 22, defects due to ion implantation will increase and the yield will drop sharply.Since the diffusion depth in the source/drain region is shallow, the heat treatment temperature is low and the time is short. Also, the heat treatment has little effect on removing defects.

従ってp+層21.n”層22の不純物濃度は高くでき
ない。これに対しアイソレーション層、コレクタウオー
ル層と同時に形成できるp゛層11.n’層12は拡散
深さが充分に深いため、熱処理温度が高く時間も長くな
って不純物の高濃度注入による欠陥の除去効果が高く、
しかもアイソレーション層を高濃度にするとエピタキシ
ャル層2の分離領域間の干渉が減少し、コレクタウオー
ル層を高濃度にするとNPN トランジスタのコレクタ
抵抗が下がる効果が生ずる。従って、p゛層11.n”
層12はp゛層211n”層22にくらべて容易に拡散
濃度を上げることができ、抵抗値が下がる。
Therefore, the p+ layer 21. The impurity concentration of the n'' layer 22 cannot be made high.On the other hand, the p'' layer 11 and the n' layer 12, which can be formed simultaneously with the isolation layer and the collector all layer, have a sufficiently deep diffusion depth, so the heat treatment temperature is high and the time is short. The longer it is, the more effective it is to remove defects due to high concentration implantation of impurities.
Moreover, making the isolation layer highly doped reduces interference between the isolation regions of the epitaxial layer 2, and making the collector all layer highly doped has the effect of lowering the collector resistance of the NPN transistor. Therefore, p' layer 11. n”
The diffusion concentration of the layer 12 can be increased more easily than that of the p'' layer 211n'' layer 22, and the resistance value can be lowered.

第4図に本発明をバイポーラICにおいて適応した別の
実施例を示し、前出の各図と共通の部分には同一の符号
が付されている。この実施例の場合もBi−0MO3I
Cと同様に、低電位側の配線をクロスアンダ−とすると
きはアイソレーション層と同時に形成できるp゛層11
を用い、高電位側の配線をクロスアンダ−とするときは
コレクタウオール層と同時に形成できるn゛層12を使
う。94層11の電極部7においてはベース層と同時に
形成できるp4コンタクト層13を、n1層12の電極
7においてはエミツタ層と同時に形成できるn1コンタ
ク日14を設け、表面濃度を高くする。バイポーラIC
の酸化膜プロセスでは、拡散を行う箇所の酸化膜をエツ
チングするため、後の工程の拡散層の上の酸化膜はど厚
さが薄くなる。特にエミツタ層の上の酸化膜厚は0.1
〜0.2I1mシかない。
FIG. 4 shows another embodiment in which the present invention is applied to a bipolar IC, and parts common to those in the previous figures are given the same reference numerals. In this example as well, Bi-0MO3I
Similarly to C, when the wiring on the low potential side is used as a cross-under, the p layer 11 which can be formed at the same time as the isolation layer is used.
When the high-potential side wiring is used as a cross-under, the n layer 12, which can be formed at the same time as the collector all layer, is used. In the electrode portion 7 of the 94 layer 11, a p4 contact layer 13 which can be formed at the same time as the base layer is provided, and in the electrode 7 of the n1 layer 12, an n1 contact layer 14 which can be formed simultaneously with the emitter layer is provided to increase the surface concentration. Bipolar IC
In the oxide film process, the oxide film at the location where diffusion is performed is etched, so the thickness of the oxide film on the diffusion layer in the subsequent process becomes thinner. In particular, the oxide film thickness on the emitter layer is 0.1
~0.2I1m is not enough.

M交差配線9とクロスアンダ−配線の拡散層11゜12
の耐圧を上げるためには、エミッタ層、ベース層より先
に拡散されるアイソレーション層、コレクタウオール層
と同時にp+層11.n’層12を形成する方が、交差
配線9との間の酸化膜61の厚さが厚くなって有利であ
る。第1図について説明したように、p′″層11.n
+層12の下にn1埋込層3が存在することにより同様
の利点が得られる。
M cross wiring 9 and cross under wiring diffusion layer 11゜12
In order to increase the withstand voltage of the p+ layer 11., the isolation layer and collector all layer, which are diffused before the emitter layer and the base layer, must be added at the same time. Forming the n' layer 12 is advantageous because the oxide film 61 between it and the cross wiring 9 becomes thicker. As explained with reference to FIG.
Similar advantages can be obtained by the presence of the n1 buried layer 3 under the + layer 12.

エミッタ層、ベース層の拡散濃度、拡散深さはNPN 
トランジスタのhFE+ 耐圧の重要なパラメータであ
り、さらに残留欠陥の問題があるため簡単に濃度を上げ
ることができない。これに対し、コレクタウオール層、
アイソレーション層は適宜拡散濃度を上げることができ
、この実施例においてもクロスアンダ−配線11.12
の抵抗値を下げることができる。
Diffusion concentration and depth of emitter layer and base layer are NPN
hFE+ is an important parameter for the breakdown voltage of a transistor, and the concentration cannot be easily increased due to the problem of residual defects. On the other hand, the collector-all layer,
The isolation layer can increase the diffusion concentration as appropriate, and in this embodiment as well, the cross under wiring 11.12
resistance value can be lowered.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体集積回路装置のクロスアンダ−
配線をエピタキシャル層を貫通して埋込層に達する深さ
のアイソレーション層あるいはコレクタウオール層と同
一工程で形成できる層で形成したので、クロスアンダ−
配線上の酸化膜が厚くすることができその上を通る交差
配線との耐圧が向上する。また、クロスアンダ−配線と
しての再拡散層の形成には長時間高温の熱処理が可能で
かつ高濃度にすることによって素子特性を悪くするとい
うことがないため、容易に高濃度にでき配線抵抗を下げ
ることができる。なお、本発明は実施例について述べた
工程で製造したものに限定されず、異なる工程で同様の
深いクロスアンダ−配線を形成した半導体集積回路装置
をも包含する。
According to the present invention, a cross under of a semiconductor integrated circuit device
Since the wiring is formed using a layer that can be formed in the same process as the isolation layer or the collector all layer, which penetrates the epitaxial layer and reaches the buried layer, cross-under
The oxide film on the wiring can be made thicker, and the breakdown voltage with the intersecting wiring passing over it is improved. In addition, to form a re-diffusion layer as a cross-under interconnect, long-term high-temperature heat treatment is possible, and high concentration does not deteriorate device characteristics, so it is easy to increase the concentration and reduce interconnect resistance. Can be lowered. Note that the present invention is not limited to those manufactured by the process described in the embodiments, but also includes semiconductor integrated circuit devices in which similar deep cross-under interconnections are formed in different processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるBi−CMO3ICの
配線交差部の断面図、第2図は従来のBi −CMO3
ICの配線交差部の断面図、第3図は従来のバイポーラ
ICの配線交差部の断面図、第4図は本発明の別の実施
例であるバイポーラICの配線交差部の断面図でしる。 1:p基板、2:n−エピタキシャル層、3:n゛埋込
層、4:分離層、5 : LOGO3酸化膜、6に酸化
膜、7:電極、9:交差配線、11,12:クロスアン
ダ−配線、13,14:コンタクト層。
FIG. 1 is a sectional view of a wiring intersection of a Bi-CMO3 IC which is an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a Bi-CMO3
FIG. 3 is a sectional view of a wiring intersection in an IC; FIG. 3 is a sectional view of a conventional bipolar IC; FIG. 4 is a sectional view of a bipolar IC according to another embodiment of the present invention. . 1: p-substrate, 2: n-epitaxial layer, 3: n-buried layer, 4: separation layer, 5: LOGO3 oxide film, 6: oxide film, 7: electrode, 9: cross wiring, 11, 12: cross Under wiring, 13, 14: contact layer.

Claims (1)

【特許請求の範囲】[Claims] (1)第一導電形の基板上に積層された第二導電形の低
不純物濃度エピタキシャル層の基板との間に第二導電形
の高不純物濃度の埋込層を有し、そのエピタキシャル層
の表面から基板に達する第一導電形のアイソレーション
層によって分離された領域に半導体素子が集積されるも
のにおいて、素子形成領域以外で表面より埋込層に達す
る第一あるいは第二導電形の高不純物濃度層が設けられ
、その層の表面に距離をおいて二つの電極が接触してな
るクロスアンダー配線を有し、両電極間上にクロスアン
ダー配線と交差する配線が酸化膜を介して設けられたこ
とを特徴とする半導体集積回路装置。
(1) A buried layer with a high impurity concentration of the second conductivity type is provided between the substrate of the low impurity concentration epitaxial layer of the second conductivity type laminated on the substrate of the first conductivity type; In devices where semiconductor elements are integrated in a region separated by an isolation layer of the first conductivity type that reaches from the surface to the substrate, high impurities of the first or second conductivity type that reach the buried layer from the surface in areas other than the element formation region A concentration layer is provided, and a cross-under wiring formed by contacting two electrodes at a distance is provided on the surface of the layer, and a wiring intersecting the cross-under wiring is provided between the two electrodes via an oxide film. A semiconductor integrated circuit device characterized by:
JP13703588A 1988-06-03 1988-06-03 Semiconductor integrated circuit device Pending JPH01305536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13703588A JPH01305536A (en) 1988-06-03 1988-06-03 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13703588A JPH01305536A (en) 1988-06-03 1988-06-03 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH01305536A true JPH01305536A (en) 1989-12-08

Family

ID=15189327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13703588A Pending JPH01305536A (en) 1988-06-03 1988-06-03 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH01305536A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687355A (en) * 1979-12-19 1981-07-15 Pioneer Electronic Corp Semiconductor device
JPS6095939A (en) * 1983-10-31 1985-05-29 Matsushita Electronics Corp Manufacture of semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687355A (en) * 1979-12-19 1981-07-15 Pioneer Electronic Corp Semiconductor device
JPS6095939A (en) * 1983-10-31 1985-05-29 Matsushita Electronics Corp Manufacture of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JPH02168646A (en) Semiconductor device and manufacture thereof
JPH07312424A (en) Semiconductor device and its manufacture
US5260228A (en) Method of making a semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors
JP2919757B2 (en) Insulated gate semiconductor device
JPH01305536A (en) Semiconductor integrated circuit device
JPH08195443A (en) Semiconductor device and its manufacture
JP3350170B2 (en) Power MOS type semiconductor device and method of manufacturing the same
JPH061816B2 (en) Method for manufacturing semiconductor device
JPH03239368A (en) Semiconductor device
JPS6394667A (en) Semiconductor integrated circuit
JPS5837969A (en) Protection circuit element
KR900000070B1 (en) The apparatus of semiconductor and method
JPH1126769A (en) N-type mosfet and manufacture thereof
JPS60117755A (en) Manufacture of semiconductor device
JPS6146062A (en) Semiconductor device
JPH0837299A (en) Protective circuit of semiconductor integrated circuit
JPH04180238A (en) Dmos semiconductor production method
JPH02218153A (en) Resistor and mis transistor
JPS63263769A (en) Semiconductor device
JPS61127157A (en) Semiconductor device
JPH065708B2 (en) Semiconductor integrated circuit device
JPH0851188A (en) Semiconductor integrated circuit device and manufacture of it
JPS61242059A (en) Semiconductor device for capacitor microphone
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPH03192758A (en) Semiconductor device